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Introduction

Given nonnegative integers p and q, the Clifford algebra Cℓ p,q is a noncommutative associative algebra of dimension 2 p+q . Special cases include the complex numbers C ∼ = Cℓ 0,1 , the algebra of quaternions H ∼ = Cℓ 0,2 , the spacetime algebra Cℓ 1,3 , the algebra of physical space Cℓ 3,0 , and the n-particle fermion algebra Cℓ n,n . Applications of Clifford algebras include electromagnetism, special relativity, quantum theory, and gravity.

More recent applications of Clifford algebras include image processing [START_REF] Koenderink | Image space, Clifford Algebras Applications to Mathematics[END_REF], automated geometric theorem proving [START_REF] Li | Clifford algebra approaches to automated geometry theorem proving, Mathematics Mechanization and Applications[END_REF], and computer vision [START_REF] Lasenby | New geometric methods for computer vision[END_REF]. In work related to computer vision, Perwass, Gebken, and Sommer [START_REF] Perwass | Estimation of geometric entities and operators from uncertain data[END_REF] use Clifford algebras to discuss the estimation of points, lines, circles, etc. from uncertain data while keeping track of error propagation. Random walks are relevant in this context as models of error propagation.

In earlier work by the authors, Clifford methods were applied to the study of random graphs [START_REF] Schott | Nilpotent adjacency matrices and random graphs[END_REF]. The second author has used Clifford methods to formulate random walks on the hypercube [START_REF] Staples | Clifford-algebraic random walks on the hypercube[END_REF]. Time-homogeneous random walks on Clifford algebras have also been objects of recent study [START_REF] Schott | Random walks on Clifford algebras as directed hypercubes[END_REF].

The current work follows the approach of the work on Heisenberg groups developed by Guillotin-Plantard and Schott [START_REF] Guillotin-Plantard | Dynamic random walks on Heisenberg groups[END_REF]. Another work relating dynamical systems to Clifford algebras is Jadczyk's Clifford approach to quantum fractals [START_REF] Jadczyk | Quantum fractals on n-spheres. Clifford algebra approach[END_REF]. Definition 1.1. For fixed n ≥ 0, let {e 1 , . . . , e n } denote the canonical orthonormal basis of R n . The 2 n -dimensional Clifford algebra of signature (p, q), where p + q = n, is defined as the associative algebra generated by the collection {e i } along with the scalar e 0 = e ∅ = 1 ∈ R, subject to the following multiplication rules:

e i e j + e j e i = 0 for i = j, and

(1.1)

e i 2 = 1, if 1 ≤ i ≤ p -1, if p + 1 ≤ i ≤ p + q = n. (1.2)
The Clifford algebra of signature (p, q) is denoted Cℓ p,q .

Generally the vectors generating the algebra do not have to be orthogonal. When they are orthogonal as in the definition above, the resulting multivectors are called blades.

Let [n] = {1, , 2, . . . , n} and let arbitrary subsets of [n] be denoted by underlined Roman characters. The basis elements of Cℓ p,q can then be indexed by these finite subsets by writing e i = k∈i e k . Arbitrary elements of Cℓ p,q have the form u = i∈2 [n] u i e i ,

where u i ∈ R for each i ∈ 2 [n] . For nonnegative integer k, the degree-k part of u ∈ Cℓ p,q will be defined by

u k = |i|=k u i e i . (1.4) 
The inner-product of u, v ∈ Cℓ p,q is defined by u, v = i∈2 [n] u i e i , i∈2 [n] v i e i = i∈2 [n] u i v i .

(1.5)

Observe that for fixed multi-index i ∈ 2 [n] and arbitrary u ∈ Cℓ p,q , u, e i = u i , the coefficient of the multivector e i in the canonical expansion of u. The inner product induces a Clifford inner-product norm by

u 2 = u, u = i∈2 [n] u i 2 .
(1.6)

2 Dynamic Walks on Cℓ p,q

Given a random variable ξ, the expectation of ξ will be denoted by either ξ or E (ξ). Given a sequence of random variables {ξ N }, the notation ξ N D → ψ denotes convergence in distribution to the random variable ψ. The notation ξ N P → u denotes convergence in probability to u. The notation U (X) will denote the uniform distribution on the set X.

Fix nonnegative integers p and q, and let n = p + q. Following the approach of Guillotin-Plantard and Schott [START_REF] Guillotin-Plantard | Dynamic random walks on Heisenberg groups[END_REF], let Σ = (E, A, µ, T ) be a dynamical system where (E, A, µ) is a probability space and T is a transformation on E. Let n ≥ 1 and f 1 , . . . , f n be functions defined on E with values in [0, 1 n ]. Let x ∈ E and let {e j } 1≤j≤n be the unit coordinate vectors of R n . For every i ≥ 1, the law of the random vector

M i = (x 1 (i) , x 2 (i) , . . . , x n (i)
) is given by

P (M i = z) =      f j (T i x) if z = e j 1 n -f j (T i x) if z = -e j 0 otherwise.
(2.1)

In Cℓ p,q the multiplication satisfies

e i 2 = 1 if 0 ≤ i ≤ p -1 if p + 1 ≤ i ≤ n, (2.2) 
and e i e j = -e j e i if 1

≤ i = j ≤ n. (2.3) 
We are interested in the right dynamic random walk

ς k = (x 1 (1) , . . . , x n (1) ) • (x 1 (2) , . . . , x n (2) ) • • • (x 1 (k) , . . . , x n (k) ), k ≥ 1. (2.4)
The multiplicative walk (ς k ) can be visualized as a walk on a 2 n -vertex simple graph, as seen in Figure 1 for the walk in Cℓ 0,2 . In this walk, there is no chance of visiting the same vertex in two consecutive steps. That is,

P ς k = ±e i | ς k-1 = ±e i = 0. (2.5)
By definition, the walk (ς k ) alternates between blades of even and odd degree in Cℓ p,q . That is, when k ≇ |i| (mod 2)

P(ς k = ±e i ) = 0. (2.6)
Moreover, for arbitrary multi-index i, the product of vectors indexed by elements of i each occurring with odd multiplicity taken with products of vectors indexed by elements outside i occurring with even multiplicities always results in blades of the form ±e i . This is stated formally in the following lemma. Another multiplicative walk is also defined. Let g 0 , g 1 , . . . , g n be functions defined on E with values in [0, 1 n+1 ]. Let x ∈ E and let (e j ) 1≤j≤n be the unit coordinate vectors of Z n . Also define the unit scalar e 0 = e ∅ = 1. For every i ≥ 1, the law of the random vector

P(ς k = ±e i ) = 1 n k ℓ 1 +•••+ℓn=k ℓ j odd if j∈i, ℓ j even if j / ∈i k ℓ 1 , . . . , ℓ n . ( 2 
Q i = (x 0 (i) , x 1 (i) , x 2 (i) , . . . , x n (i)
) is given by

P (Q i = z) =      g j (T i x) if z = e j 1 n+1 -g j (T i x) if z = -e j 0 otherwise.
(2.8)

In addition to the multiplicative properties of (2.2) and (2.3), the multiplication satisfies the following for 0 ≤ j ≤ n:

e 0 e j = e j e 0 = e j .

(2.9)

The right dynamic random walk of interest now is

τ k = (x 0 (1) , x 1 (1) , . . . , x n (1) ) • • • (x 0 (n) , x 1 (k) , . . . , x n (k) ), k ≥ 1.
(2.10)

The multiplicative walk (τ k ) can be visualized as a walk on a 2 n -vertex graph having loops at all vertices, as seen in Figure 1 for the walk in Cℓ 0,2 . Unlike the walk (ς k ), (τ k ) does not alternate between blades of even and odd degree in Cℓ p,q . Lemma 2.2. Let e i be an arbitrary blade in Cℓ p,q , and let k be an arbitrary positive integer such that k ≥ |i|. Then,

P τ k = ±e i = 1 (n + 1) k k ℓ0=0 k ℓ 0 ℓ 1 +•••+ℓn=k-ℓ 0 ℓ j odd if j∈i,ℓ j even if j / ∈i k -ℓ 0 ℓ 1 , . . . , ℓ n . (2.11)
Proof. For arbitrary multi-index i, the product of vectors indexed by elements of i each occurring with odd multiplicity taken with products of vectors indexed by elements outside i occurring with even multiplicities always results in blades of the form ±e i . The unit scalar may appear with any multiplicity. Recalling that τ k is a product of k vectors, the following holds when k ≥ |i|:

P τ k = ±e i = 1 (n + 1) k ℓ 0 +•••+ℓn =k ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k ℓ 0 , . . . , ℓ n = 1 (n + 1) k ℓ 0 +•••+ℓn=k ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k! ℓ 0 ! • • • ℓ n ! = 1 (n + 1) k k ℓ0=0 1 ℓ 0 ! ℓ 1 +•••+ℓn =k-ℓ 0 ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k! (k -ℓ 0 )! (k -ℓ 0 )! ℓ 1 ! • • • ℓ n ! = 1 (n + 1) k k ℓ0=0 k! ℓ 0 !(k -ℓ 0 )! ℓ 1 +•••+ℓn =k-ℓ 0 ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k -ℓ 0 ℓ 1 , . . . , ℓ n . (2.12)

Expectation

The expectation of an arbitrary step of the right dynamic walk (ς k ) can be computed directly.

Lemma 2.3. Let (ς k ) k≥1 be the Clifford-valued random walk defined by (2.4). Then,

ς k = k i=1   n j=1 2f j (T i x) - 1 n e j   . 
(2.13)

Proof. From (2.1), one sees

M i = n j=1 f j (T i x) - 1 n -f j (T i x) e j = n j=1 2f j (T i x) - 1 n e j . (2.14)
Using independence of the random vectors (M i ) and the definition of the random walk (ς k ), the expectation of ς k can then be computed directly. In Cℓ p,q , the product signature function satisfies e i e j = (-1) ̟(i,{j}) e i△{j} , where △ represents the set symmetric difference.

ς k = k i=1 M i = k i=1 M i = k i=1   n j=1 2f j (T i x) - 1 n e j   . ( 2 
Proposition 2.4. Define the notation s ± i (k) = P(ς k = ±e i ). The probability density functions s ± i (k) satisfy the following recurrence relation:

s + i (k) = 0 if k < |i|, f j (T x) if i = {j} and k = |i| = 1.
(2.17)

s - i (k) = 0 if k < |i|, 1 n -f j (T x) if i = {j} and k = |i| = 1.
(2.18)

When k > |i| or k = |i| > 1, s + i (k) = n j=1 (1 -̟(i, {j}))f j (T k x)s + i△{j} (k -1) + n j=1 ̟(i, {j}) 1 n -f j (T k x) s - i△{j} (k -1) (2.19) 
and

s - i (k) = n j=1 (1 -̟(i, {j}))f j (T k x)s - i△{j} (k -1) + n j=1 ̟(i, {j}) 1 n -f j (T k x) s + i△{j} (k -1) (2.20) Proof. The conditions s ± i (k) = 0 when k < |i|, s + {j} (1) = f j (T x), and s - {j} (1) = 1 n -f j (T x) are clear from the definition of the walk (ς k ). Let ⊔ denote disjoint union. When k > |i| or k = |i| > 1, the definition of (ς k ) dictates that ς k = e i if
and only if one of the following eight cases occurs for some j ∈ {1, . . . , n}:

• ς k-1 = ±e i\{j} , M k = ±e j , and ς k-1 M k = e i . • ς k-1 = ±e i⊔{j} , M k = ±e j , and ς k-1 M k = e i .
Similar conditions hold for ς k = -e i . The probabilities associated with these conditions are exactly the values appearing in the recurrence of the proposition.

Straightforward calculation reveals the expectation of the k th step of the random walk.

ς k = i∈2 [n] s + i (k) -s - i (k) e i .
(2.21) Proposition 2.5. For any k > 0, the expectation of the k th step of the random walk satisfies the following:

ς 1 = n j=1 2f j (T x) - 1 n e j , (2.22 
)

and when k > |i| or k = |i| > 1, ς k = i∈2 [n] n j=1 f j (T k x) - ̟(i, {j}) n s + i△{j} (k -1) -s - i△{j} (k -1) e i .
(2.23) In particular,

E ς k , e i = n j=1 f j (T k x) - ̟(i, {j}) n E ς k-1 , e i△{j} . (2.24) 
Proof. Proof is by direct calculation using Proposition 2.4. Beginning with the observation (2.21),

E ς k , e i = s + i (k) -s - i (k) = n j=1 (1 -̟(i, {j}))f j (T k x)s + i△{j} (k -1) + n j=1 ̟(i, {j}) 1 n -f j (T k x) s - i△{j} (k -1) - n j=1 (1 -̟(i, {j}))f j (T k x)s - i△{j} (k -1) - n j=1 ̟(i, {j}) 1 n -f j (T k x) s + i△{j} (k -1) = n j=1 s + i△{j} (k -1) -s - i△{j} (k -1) f j (T k x) - ̟(i, {j}) n = n j=1 f j (T k x) - ̟(i, {j}) n E ς k-1 , e i△{j} . (2.25)
Linearity of expectation then gives

ς k = i∈2 [n] E ς k , e i e i = i∈2 [n] n j=1 f j (T k x) - ̟(i, {j}) n E ς k-1 , e i△{j} e i = i∈2 [n] n j=1 f j (T k x) - ̟(i, {j}) n s + i△{j} (k -1) -s - i△{j} (k -1) e i . (2.26)
Corollary 2.6. For any k > 0 and i ∈ 2 [n] , the expectation of ς k , e i is given by

E ς k , e i = n j0=1 • • • n j k-1 =1 f j0 (T k x) - ̟(i, {j 0 }) n × k-1 ℓ=1 f j ℓ (T k-ℓ x) - 1 n ̟ i △ 1≤m≤ℓ-1 {j m } , {j ℓ } . (2.27)
Proof. The result follows from Proposition 2.5 and back-substitution.

As in Lemma 2.3, the expectation of an arbitrary step of the right dynamic walk (τ k ) can also be computed directly.

Lemma 2.7. Let (τ k ) k≥1 be the Clifford-valued random walk defined by (2.10). Then,

τ k = k i=1   n j=0 2g j (T i x) - 1 n + 1 e j   .
(2.28)

Proof. From (2.8), one sees

Q i = n j=0 g j (T i x) - 1 n + 1 -g j (T i x) e j = n j=0 2g j (T i x) - 1 n + 1 e j .
(2.29) Using independence of the random vectors (Q i ) and the definition of the random walk (τ k ), the expectation of τ k can then be computed directly.

τ k = k i=1 Q i = k i=1 Q i = k i=1   n j=0 2g j (T i x) - 1 n + 1 e j   . (2.30)
The expected values of the components of τ k can be computed recursively.

Proposition 2.8. Define the notation t ± i (k) = P(τ k = ±e i ). The probability density functions t ± i (k) satisfy the following recurrence relation:

t + i (k) = 0 if k < |i|, g j (T x) if i = {j} and k = |i| = 1.
(2.31)

t - i (k) = 0 if k < |i|, 1 n+1 -g j (T x) if i = {j} and k = |i| = 1.
(2.32)

When k > |i| or k = |i| > 1, t + i (k) = t + i (k -1)g 0 (T k x) + 1 n + 1 -g 0 (T k x) t - i (k -1) + n j=1 (1 -̟(i, {j}))g j (T k x)t + i△{j} (k -1) + n j=1 ̟(i, {j}) 1 n + 1 -g j (T k x) t - i△{j} (k -1) (2.33) and t - i (k) = t - i (k -1)g 0 (T k x) + 1 n + 1 -g 0 (T k x) t + i (k -1) + n j=1 (1 -̟(i, {j}))g j (T k x)t - i△{j} (k -1) + n j=1 ̟(i, {j}) 1 n + 1 -g j (T k x) t + i△{j} (k -1) (2.34)
Proof. The conditions t ± i (k) = 0 when k < |i|, t + {j} (1) = g j (T x), and t - {j} (1) = 1 n+1g j (T x) are clear from the definition of the walk (τ k ). Let ⊔ denote disjoint union. When k > |i| or k = |i| > 1, the definition of (τ k ) dictates that τ k = e i if and only if one of the following cases occurs for some j ∈ {0, . . . , n}:

• τ k-1 = ±e i , Q k = ±e 0 , and τ k-1 Q k = e i . • τ k-1 = ±e i\{j} , Q k = ±e j , and τ k-1 Q k = e i . • τ k-1 = ±e i⊔{j} , Q k = ±e j , and τ k-1 Q k = e i .
Similar conditions hold for τ k = -e i . The probabilities associated with these conditions are exactly the values appearing in the recurrence of the proposition.

For convenience, define ̟(i, {j}) = 0 when j = 0.

Corollary 2.9. The quantity t i (k) = t + i (k)t - i (k) satisfies the following recurrence:

t i (k) =      0 if k < |i|, 2g j (T x) -1 n+1 if i = {j} and k = 1, 2g 0 (T x) -1 n+1 if i = ∅ and k = 1, (2.35) and when k > |i| or k = |i| > 1, t i (k) =   2g 0 (T k x) + n j=1 g j (T k x) - ̟(i, {j}) n + 1   t i (k -1). (2.36)
Proof. Proof is by direct computation using Proposition 2.8.

A recurrence relation for the expectation found in Lemma 2.7 is now revealed.

Corollary 2.10. The expected value of the k th step of the random walk τ k satisfies the following recurrence:

τ 1 = n j=0 2g j (T x) - 1 n + 1 e j , (2.37 
)

and when k > |i| or k = |i| > 1, τ k = i∈2 [n]   t i (k -1)   2g 0 (T k x) + n j=1 g j (T k x) - ̟(i, {j}) n + 1   e i   .
(2.38)

Proof. The stated result is a consequence of

τ k = i∈2 [n] t i (k)e i .
(2.39)

Corollary 2.11. For i ∈ 2 [n] and k > 0, the expected value of τ k , e i is given by

E τ k , e i = n j0=0 • • • n j k-1 =0 g j0 (T k x) - ̟(i, {j 0 }) n + 1 × k-1 ℓ=1 g j ℓ (T k-ℓ x) - 1 n + 1 ̟ i △ 1≤m≤ℓ-1 {j m } , {j ℓ } . (2.40)
Proof. The result follows from Corollary 2.10 and back-substitution.

The following lemma is a consequence of the multiplication in Cℓ p,q and will make computations more straightforward. Lemma 2.12. Let nonnegative integers p and q be given, and let k > 1 be an integer. Then, in Cℓ p,q n i=1

a i e i k =                    p i=1 a i 2 - n j=p+1 a j 2   k/2 if k ≡ 0 (mod 2)   p i=1 a i 2 - n j=p+1 a j 2   (k-1)/2 n i=1 a i e i if k ≡ 1 (mod 2).
(2.41)

Remark 2.13. Throughout the remainder of the paper, notation will be simplified for the case p = q by adopting the convention (pq) 0 = (2pn) 0 ≡ 1.

Letting a i = 1 for 1 ≤ i ≤ n in Lemma 2.12 gives the following corollary.

Corollary 2.14. Define γ = e 1 + • • • + e n ∈ Cℓ p,q . Then,

γ 2k = (2p -n) k , and (2.42 
)

γ 2k+1 = (2p -n) k γ. (2.43)
Corollary 2.15. Let γ be defined as in Corollary 2.14. In Cℓ p,q ,

(1 + e 1 + • • • + e n ) k = k ℓ=0 k ℓ (2p -n) ⌊ℓ/2⌋ γ ℓ (mod 2) . (2.44) 
Proof. With γ = e 1 + • • • + e n , applying the binomial theorem gives

(1 + γ) k = k ℓ=0 k ℓ γ ℓ .
(2.45) By Corollary 2.14, γ ℓ = (2pn) ⌊ℓ/2⌋ γ ℓ (mod 2) .

3 Limit theorems

Writing γ = e 1 + • • • + e n , τ k = k i=1   n j=0 2g j (T i x) - 1 n + 1 e j   = 2 k 0≤j1,...,j k ≤n ±g j1 (T x)g j2 (T 2 x) • • • g j k (T k x)e j1 • • • e j k + k-1 ℓ=1 1 (n + 1) k-ℓ k-ℓ m=0 k -ℓ m (2p -n) ⌊m/2⌋ γ m (mod 2) × 2 ℓ 0≤j 1 ,...,j ℓ ≤n h 1 =••• =h ℓ ∈[k] ±g j1 (T h1 x) • • • g j ℓ (T h ℓ x)e j1 • • • e j ℓ + (-1) k (n + 1) k k ℓ=0 k ℓ (2p -n) ⌊ℓ/2⌋ γ ℓ (mod 2) . (3.1) Lemma 3.1. As k → ∞, 1 (n + 1) k k ℓ=0 k ℓ (2p -n) ⌊ℓ/2⌋ γ ℓ (mod 2) → 0. (3.2) 
Proof. Begin by writing

η = 1 (n + 1) k k ℓ=0 k ℓ (2p -n) ⌊ℓ/2⌋ γ ℓ (mod 2) = 1 (n + 1) k   k ℓ=0 ℓ even k ℓ (2p -n) ℓ/2 + k ℓ=1 ℓ odd k ℓ (2p -n) (ℓ-1)/2 γ   . (3.3)
Let the polynomials ϕ k + (z) and ϕ k -(z) be defined by

ϕ k + (z) = 1 (n + 1) k k ℓ=0 ℓ even k ℓ z ℓ/2 , (3.4) 
ϕ - k (z) = 1 (n + 1) k k ℓ=1 ℓ odd k ℓ z (ℓ-1)/2 , (3.5) 
so that ϕ k + (z 2 ) + zϕ k -(z 2 ) = z + 1 n + 1 k . Letting z = (2p -n) 1/2 so that ϕ k + (z 2 ) + γϕ k -(z 2 ) = η, it becomes clear that lim k→∞ η = 0. It now follows that lim k→∞ τ k , if it exists, is given by lim k→∞ τ k = lim k→∞ 2 k 0≤j1,...,j k ≤n ±g j1 (T x)g j2 (T 2 x) • • • g j k (T k x)e j1 • • • e j k + k-1 ℓ=1 1 (n + 1) k-ℓ k-ℓ m=0 k -ℓ m (2p -n) ⌊m/2⌋ γ m (mod 2) × 2 ℓ 0≤j 1 ,...,j ℓ ≤n h 1 =••• =h ℓ ∈[k] ±g j1 (T h1 x) • • • g j ℓ (T h ℓ x)e j1 • • • e j ℓ (3.6)
Remark 3.2. In the homogeneous random walk with g k (x) ≡ 1 n+1 for all k = 0, 1, . . . , n, the expression

1 (n + 1) k k ℓ=0 k ℓ (2p -n) ⌊ℓ/2⌋ γ ℓ (mod 2) is equal to τ k (cf. [8]
). As a result, the following limit is known:

lim k→∞ τ k = 0. (3.7) Observing that t + i (k) + t - i (k) = P τ k = ±e i , the distribution of τ k can be expressed.
Theorem 3.3. Let e i be an arbitrary blade in Cℓ p,q , and let k be an arbitrary positive integer. Then,

P τ k = e i = 1 2(n + 1) k ℓ 0 +•••+ℓn =k ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k ℓ 0 , . . . , ℓ n + 1 2 n j0=0 • • • n j k-1 =0 g j0 (T k x) - ̟(i, {j 0 }) n + 1 × k-1 ℓ=1 g j ℓ (T k-ℓ x) - 1 n + 1 ̟ i △ 1≤m≤ℓ-1 {j m } , {j ℓ } ., (3.8) 
and

P τ k = -e i = 1 2(n + 1) k ℓ 0 +•••+ℓn=k ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k ℓ 0 , . . . , ℓ n - 1 2 n j0=0 • • • n j k-1 =0 g j0 (T k x) - ̟(i, {j 0 }) n + 1 × k-1 ℓ=1 g j ℓ (T k-ℓ x) - 1 n + 1 ̟ i △ 1≤m≤ℓ-1 {j m } , {j ℓ } .. (3.9)
Proof. The result follows from the following observation:

P τ k = e i = t + i (k) = 1 2 t + i (k) + t - i (k) + t + i (k) -t - i (k) = 1 2 P(τ k = ±e i ) + τ k , e i (3.10) 
Similarly,

P τ k = -e i = t - i (k) = 1 2 t + i (k) + t - i (k) -t + i (k) -t - i (k) . (3.11) Theorem 3.4. If τ k → 0 as k → ∞, then τ k D → U {±e i } . (3.12)
Proof. If τ k → 0, then sufficiently large values of k give

P τ k = e i = 1 2(n + 1) k ℓ 0 +•••+ℓn =k ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k ℓ 0 , . . . , ℓ n + o(ε). (3.13)
Moreover,

P τ k = -e i = 1 2(n + 1) k ℓ 0 +•••+ℓn=k ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k ℓ 0 , . . . , ℓ n + o(ε). (3.14)
Turning now to the distribution of τ k , recall Lemma 2.2. Passing to binary representations of subsets i, each blade e i ∈ Cℓ p,q is uniquely associated with a vertex of the n-dimensional hypercube. By identifying each pair ±e i , the walk (τ k ) induces a walk on the n-dimensional hypercube. The probability distribution of the k th step of the associated hypercube random walk is determined by (2.11). Moreover, the limiting distribution of this walk is known to be uniform [START_REF] Diaconis | Asymptotic analysis of a random walk on a hypercube with many dimensions[END_REF].

It then follows that

lim k→∞ P τ k , e i = 1 = lim k→∞ P τ k , e i = -1 = 1 2 n+1 , (3.15) 
and lim

k→∞ P τ k , e i = 0 = 2 n -1 2 n . ( 3 

.16)

Considering now the walk (ς k ),

ς k = k i=1   n j=1 2f j (T i x) - 1 n e j   = 2 k j1,...,j k ∈[n] ±f j1 (T x)f j2 (T 2 x) • • • f j k (T k x)e j1 • • • e j k + k-1 ℓ=1 (2p -n) ⌊(k-ℓ)/2⌋ n k-ℓ γ (k-ℓ) (mod 2) × 2 ℓ j 1 ,...,j ℓ ∈[n] h 1 =••• =h ℓ ∈[k] ±f j1 (T h1 x) • • • f j ℓ (T h ℓ x)e j1 • • • e j ℓ + (-1) k n k (2p -n) ⌊k/2⌋ γ k (mod 2) . (3.17) Lemma 3.5. As k → ∞, 1 n k (2p -n) ⌊k/2⌋ γ k (mod 2) → 0. (3.18) Proof. Note that |2p -n| ≤ n and ⌊k/2⌋ ≤ k/2 imply (2p -n) 1/2 n k ≤ 1 n k/2 . ( 3.19) 
Hence, for all k > 0,

(2p -n) ⌊k/2⌋ n k γ k (mod 2) ≤ n 1 n k/2 = 1 n (k-2)/2 .
(3.20)

Remark 3.6. In the time-homogeneous case given by f k (x) ≡ 1 n for each k = 0, . . . , n, the expression 1 n k (2pn) ⌊k/2⌋ γ k (mod 2) represents ς k (cf. [START_REF] Schott | Random walks on Clifford algebras as directed hypercubes[END_REF]). Like the random walk (τ k ), lim k→∞ ς k , if it exists, is given by

lim k→∞ ς k = lim k→∞ 2 k j1,...,j k ∈[n] ±f j1 (T x)f j2 (T 2 x) • • • f j k (T k x)e j1 • • • e j k + k-1 ℓ=1 (2p -n) ⌊(k-ℓ)/2⌋ n k-ℓ γ (k-ℓ) (mod 2) × 2 ℓ j 1 ,...,j ℓ ∈[n] h 1 =••• =h ℓ ∈[k] ±f j1 (T h1 x) • • • f j ℓ (T h ℓ x)e j1 • • • e j ℓ (3.21)
Unlike the walk (τ k ), the walk (ς k ) alternates between blades of even and odd degree. Hence, for each k ≥ 0,

ς k = i∈2 [n] |i|∼ =k (mod 2)
α i e i .

(3.22)

An immediate consequence of this behavior is the following theorem.

Theorem 3.7. If ∃λ ∈ Cℓ p,q such that lim

k→∞ ς k = λ, then λ = 0.
Like τ k , with probability 1, ς k = ±e i for some i ∈ 2 [n] . Hence, for all k > 0,

||ς k || = 1. (3.23)
Theorem 3.8. Let e i be an arbitrary blade in Cℓ p,q , and let k be an arbitrary positive integer. Then,

P ς k = e i = 1 2n k ℓ 1 +•••+ℓn=k ℓ j odd if j∈i,ℓ j even if j / ∈i k ℓ 1 , . . . , ℓ n + 1 2 n j0=1 • • • n j k-1 =1 f j0 (T k x) - ̟(i, {j 0 }) n × k-1 ℓ=1 f j ℓ (T k-ℓ x) - 1 n ̟ i △ 1≤m≤ℓ-1 {j m } , {j ℓ } , (3.24) 
and

P ς k = -e i = 1 2n k ℓ 1 +•••+ℓn =k ℓ j odd if j∈i,ℓ j even if j / ∈i k ℓ 1 , . . . , ℓ n - 1 2 n j0=1 • • • n j k-1 =1 f j0 (T k x) - ̟(i, {j 0 }) n × k-1 ℓ=1 f j ℓ (T k-ℓ x) - 1 n ̟ i △ 1≤m≤ℓ-1 {j m } , {j ℓ } . (3.25)
Proof. Proof is similar to that of Theorem 3.3.

Theorem 3.9. If ς k → 0 as k → ∞, then ς 2k D → U {±e i : |i| ≡ 0 (mod 2)} , (3.26) ς 2k-1 D → U {±e i : |i| ≡ 1 (mod 2)} . (3.27)
Proof. If ς k → 0, then sufficiently large values of k give the following when k -|i| ≡ 0 (mod 2).

P ς k = e i = 1 2n k ℓ 1 +•••+ℓn =k ℓ j odd if j∈i,ℓ j even if j / ∈i k ℓ 1 , . . . , ℓ n + o(ε). (3.28)
The even and odd subwalks then satisfy

P ς 2k = e i |i| ≡ 0 (mod 2) = 1 2n k ℓ 1 +•••+ℓn =k ℓ j odd if j∈i,ℓ j even if j / ∈i k ℓ 1 , . . . , ℓ n + o(ε), (3.29) 
P ς 2k-1 = e i |i| ≡ 1 (mod 2) = 1 2n k ℓ 1 +•••+ℓn =k ℓ j odd if j∈i,ℓ j even if j / ∈i k ℓ 1 , . . . , ℓ n + o(ε). (3.30)
Each is proportional to the distribution of the random walk on the (n -1)dimensional hypercube. When |i| ≡ 0 (mod 2),

lim k→∞ P ς 2k , e i = 1 = lim k→∞ P ς 2k , e i = -1 = 1 2 n , (3.31) 
and (3.34)

lim k→∞ P ς 2k , e i = 0 = 2 n-1 -1 2 n-1 . ( 3 

Conditions for convergence

Conditions on the functions {g j (x)} such that τ k → 0 as k → ∞ will now be discussed. The time-homogeneous case is considered first by fixing the transition probability g j (x) for 0 ≤ j ≤ n.

Theorem 3.10. Let α be a constant satisfying

0 ≤ α ≤ 1 n + 1 . Defining g j (x) ≡ α for 0 ≤ j ≤ n, the walk (τ k ) k≥0 defined by (2.10) is time-homogeneous. Then τ k → 0 as k → ∞ if (τ k ) k≥0
is defined on any Clifford algebra of signature other than (1, 0). The walk (τ k ) defined on Cℓ 1,0 converges if and only

if 0 < α < 1 2 .
Proof. Given α and random walk (τ k ) as described in the hypotheses of the theorem and applying Corollary 2.15,

τ k = k i=1 n j=0 2g j (T i x) - 1 n + 1 e j = k i=1 n j=0 2α - 1 n + 1 e j =   n j=0 2α - 1 n + 1 e j   k = 2α - 1 n + 1 k 0≤ℓ≤k ℓ even k ℓ (2p -n) ℓ/2 + 2α - 1 n + 1 k 1≤ℓ≤k ℓ odd k ℓ (2p -n) (ℓ-1)/2 γ. (3.35) Let P k (z) = 0≤j≤k j even k j z j/2 , and let Q k (z) = 1≤j≤k j odd k j z j-1 2 so that P k (z 2 ) + zQ k (z 2 ) = (1 + z) k . Putting z 2 = 2p -n, it becomes apparent that τ k → 0 if and only if (1 + z) 2α - 1 n + 1 < 1. Observe that for any choice of α ∈ 0, 1 n + 1
, the following inequality holds: 2α -

1 n + 1 ≤ 1 n + 1
, so that convergence is guaranteed for all signatures except (1, 0) via

(1 + z) 2α - 1 n + 1 ≤ 1 + z n + 1 = 1 + |p -q| 1 + p + q < 1. (3.36) 
In signature (1, 0), convergence is guaranteed by the observation

(1 + z) 2α - 1 2 = 2 2α - 1 2 (3.37) 
with the observation that 2α -

1 2 < 1 2 ⇔ 0 < α < 1 2 . (3.38) 
Before turning to the dynamic case, an auxiliary result is established.

Lemma 3.11. Given u, v ∈ Cℓ p,q , the inner product norm satisfies the following inequality:

uv ≤ 2 n 2 u • v . (3.39) 
Proof. By definition of the inner product norm and application of Schwartz' Inequality,

uv 2 = k∈2 [n] (uv) 2 k ≤ k∈2 [n]   i△j=k |u i v j |   2 = k∈2 [n]   j∈2 [n] |u j v j△k |   2 ≤ k∈2 [n] ( u • v ) 2 ≤ 2 n u 2 v 2 . (3.40)
Theorem 3.12. Let (τ k ) k≥0 be the dynamic random walk defined by (2.10).

Then a sufficient condition for

τ k → 0 as k → ∞ is n j=0 g j (T i x) - 1 2(n + 1) = O 1 2 (n+3)/2 , ∀i ≥ 0.
Proof. Given the random walk (τ k ) as described in the hypotheses of the theorem,

|| τ k || = k i=1 n j=0 2g j (T i x) - 1 n + 1 e j ≤ 2 nk/2 k i=1 n j=0 2g j (T i x) - 1 n + 1 e j . (3.41) 
Observe that

n j=0 2g j (T i x) - 1 n + 1 e j = n j=0 2g j (T i x) - 1 n + 1 = O 1 2 n/2+1 . (3.42) Thus, || τ k || = O 2 nk/2 k i=1 1 2 n/2+1 = O 2 nk/2 2 nk/2+k = O 1 2 k . (3.43) Hence, lim k→∞ τ k = 0.
Similar conditions for convergence apply to the random walk (ς k ) k≥0 . The time-homogeneous case is considered first. Theorem 3.13. Let α be a fixed constant satisfying 0 ≤ α ≤ 1 n . Defining

f j (x) ≡ α for 1 ≤ j ≤ n, the walk (ς k ) k≥0 defined by (2.4) is time-homogeneous. Then ς k → 0 as k → ∞ if (ς k ) k≥0
is defined on any Clifford algebra of signature other than (1, 0). The walk (ς k ) defined on Cℓ 1,0 converges if and only if 0 < α < 1.

Proof. Given α and random walk (ς k ) as described in the hypotheses of the theorem and applying Corollary 2.14,

ς k = k i=1 n j=1 2f j (T i x) - 1 n e j = k i=1 n j=1 2α - 1 n e j =   n j=1 2α - 1 n e j   k = 2α - 1 n k (2p -n) ⌊k/2⌋ . (3.44) It becomes apparent that ς k → 0 if and only if |2p -n| 2α - 1 n < 1.
Observe that for any choice of α ∈ 0, 1 n , the following inequality holds:

2α - 1 n ≤ 1 n
, so that convergence is guaranteed for all signatures except (1, 0) via

|2p -n 2α - 1 n ≤ |2p -n| n = |p -q| p + q < 1. (3.45)
In signature (1, 0), convergence is guaranteed by choosing 0 < α < 1. With this assumption,

|2p -n| 2α - 1 n = |2α -1| < 1. (3.46)
Theorem 3.14. Let (ς k ) k≥0 be the dynamic random walk defined by (2.4). Then a sufficient condition for

ς k → 0 as k → ∞ is n j=0 f j (T i x) - 1 2n = O 1 2 (n+3)/2 , ∀i ≥ 0.
Proof. Given the random walk (ς k ) as described in the hypotheses of the theo-rem,

|| ς k || = k i=1 n j=1 2f j (T i x) - 1 n e j ≤ 2 nk/2 k i=1 n j=1 2f j (T i x) - 1 n e j . (3.47) Observe that n j=1 2f j (T i x) - 1 n e j = n j=1 2f j (T i x) - 1 n = O 1 2 n/2+1 . (3.48) Thus, || ς k || = O 2 nk/2 k i=1 1 2 n/2+1 = O 2 nk/2 2 nk/2+k = O 1 2 k . (3.49)
It follows that lim k→∞ ς k = 0.

Induced Additive Walks

Given multiplicative walks (ς k ) and (τ k ), define the additive walks (Ξ N ) and (Υ N ) by

Ξ N = N k=1 ς k , (3.50) 
Υ N = N k=1 τ k . (3.51)
Moreover, define the even and odd additive walks (Ξ N + ) and (Ξ N -) by

Ξ N + = N k=1 ς 2k , (3.52) 
Ξ N -= N k=1 ς 2k-1 . (3.53) (3.54) Recalling ς k = M 1 M 2 • • • M k and τ k = L 1 L 2 • • • L k , M 1 • • • M ℓ = M 1 • • • M k M k+1 • • • M ℓ . (3.55)
Similarly, The goal is to prove a law of large numbers and a central limit theorem for the walks (Ξ N ) N >0 and (Υ N ) N >0 .

L 1 • • • L ℓ = L 1 • • • L k L k+1 • • • L ℓ . ( 3 
Let i ∈ 2 [n] be arbitrary. Note that for each N > 0, linearity of expectation gives

E Υ N , e i = N k=1 n j0=0 • • • n j k-1 =0 g j0 (T k x) - ̟(i, {j 0 }) n + 1 × k-1 ℓ=1 g j ℓ (T k-ℓ x) - 1 n + 1 ̟ i △ 1≤m≤ℓ-1 {j m } , {j ℓ } . (3.57)
Proposition 3.15. If ς k → 0 as k → ∞, then the following limit exists:

Ξ = lim N →∞ Ξ N . (3.58)
Similarly, if τ k → 0 as k → ∞, then the following limit exists: The next result shows that the limiting expectations Υ and Ξ depend only on the expected values of τ 1 and ς 1 , respectively.

Υ = lim N →∞ Υ N . ( 3 
Theorem 3.16. If τ k → 0 as k → ∞, then Υ = ∞ ℓ=1   n j=0 2g j (T x) - 1 n + 1 e j   ℓ . (3.61) Similarly, if ς k → 0 as k → ∞, then Ξ = ∞ ℓ=1   n j=1 2f j (T x) - 1 n e j   ℓ . (3.62) Proof. Given Υ N = Q 1 + Q 1 Q 2 + • • • + (Q 1 • • • Q N ), write Υ ′ N = Q 2 + Q 2 Q 3 + • • • + (Q 2 • • • Q N ) so that Υ N = Υ 1 (1 + Υ ′ N ) . (3.63)
Given that the limit Υ exists, passing to the limit then gives

Υ = Υ 1 (1 + Υ), (3.64) so that Υ = Υ 1 (1 -Υ 1 ) . (3.65) Then, Υ 1 (1 -Υ 1 ) = Υ 1 (1 + Υ 1 + Υ 1 2 + • • • ), (3.66) 
which implies the result. An analogous argument for Ξ completes the proof.

Remark 3.17. In the time-homogeneous case, the limiting expectations are found to be paravector-valued.

Lemma 3.18. For fixed i ∈ 2 [n] , the variance of Υ N -Υ, e i is given by

σ Υ (N, i) 2 = var Υ N -Υ, e i = E Υ N , e i 2 -E Υ N , e i 1 + 2 Υ, e i + Υ, e i 2 + Υ, e i , (3.67) 
where

E Υ N , e i = N k=1 n j0=0 • • • n j k-1 =0 g j0 (T k x) - ̟(i, {j 0 }) n + 1 × k-1 ℓ=1 g j ℓ (T k-ℓ x) - 1 n + 1 ̟ i △ 1≤m≤ℓ-1 {j m } , {j ℓ } (3.68) and E Υ N , e i 2 = N k=1 1 (n + 1) k ℓ 0 +•••+ℓn=k ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k ℓ 0 , . . . , ℓ n + 2 1≤k<j≤N E τ k , e i τ j , e i . (3.69) Proof. By Theorem 3.3, E τ k , e i = n j0=0 • • • n j k-1 =0 g j0 (T k x) - ̟(i, {j 0 }) n + 1 × k-1 ℓ=1 g j ℓ (T k-ℓ x) - 1 n + 1 ̟ i △ 1≤m≤ℓ-1 {j m } , {j ℓ } . (3.70)
Summing over k then gives E Υ N , e i .

On the other hand,

E Υ N , e i 2 = E   N k=1 τ k , e i 2   = E   N k=1 τ k , e i 2 + 2 1≤k<j≤N τ k , e i τ j , e i   = N k=1 1 (n + 1) k ℓ 0 +•••+ℓn =k ℓ j odd if 1≤j∈i,ℓ j even if 1≤j / ∈i k ℓ 0 , . . . , ℓ n + 2 1≤k<j≤N E τ k , e i τ j , e i . (3.71)

Central Limit Theorems

It has now been established that under appropriate conditions, such as those indicated in Theorems 3.13 and 3.14, Ξ exists, and for each N > 0, var

  Ξ N -Ξ, e i σ Ξ (N, i)   = 1. (3.72) Moreover, as N → ∞, E   Ξ N -Ξ, e i σ Ξ (N, i)   → 0. (3.73)
Similarly, under conditions such as those in Theorems 3.10 and 3.12, Υ exists, and for each N > 0, var

  Υ N -Υ, e i σ Υ (N, i)   = 1. (3.74) As N → ∞, E   Υ N -Υ, e i σ Υ (N, i)   → 0. (3.75)
Characterizing the limiting distributions of these random variables is all that remains. 

Theorem 3.19. If ς k → 0 as k → ∞, then Ξ N -Ξ, e i σ Ξ (N, i) D → N (0, 1). (3.76) Similarly, if τ k → 0 as k → ∞, then Υ N -Υ, e i σ Υ (N, i) D → N (0, 1). ( 3 
P(X i = 1) = 1 + 1 - 2 n -1 2 n-1 2 , (3.78) 
P(X i = 0) = 1 -1 - 2 n -1 2 n-1 2 . ( 3 

.79)

For each i ∈ N, Y i takes values in {-1, 0} such that

P(Y i = -1) = 1 + 1 - 2 n -1 2 n-1 2 , (3.80) 
P(Y i = 0) = 1 -1 - 2 n -1 2 n-1 2 . ( 3 

.81)

Note that for each positive integer i, Here ψ M (x) is the M th mass function defined by

var(X i ) = var(Y i ) = 1 + 1 - 2 n -1 2 n-1 2 . ( 3 
ψ M (x) = 1 2 n |x| ⌊ M -|x| 2 ⌋ k=0 M k M -k |x| + k 1 2 n 2k 2 n-1 -1 2 n-1 M - (|x|+2k) 
.

(3.96) which has support {-M, . . . , M } and gives the probability that the sum of M random variables taking values in {-1, 0, 1} with respective probabilities { 1 2 n , 2 n-1 -1 2 n-1 , 1 2 n } is equal to x. Because ψ M (x) is associated with a sum of independent Bernoulli random variables each converging to a Gaussian random variable, the functions {ψ M } converge to the mass function of a Gaussian random variable as M → ∞. .

(3.115) which has support {-M, . . . , M } and gives the probability that the sum of M random variables taking values in {-1, 0, 1} with respective probabilities { 1 2 n+1 , 2 n -1 2 n , 1 2 n+1 } is equal to x. Because φ M (x) is associated with a sum of independent Bernoulli random variables each converging to a Gaussian random variable, the functions {φ M } converge to the mass function of a Gaussian random variable as M → ∞. 
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 1 Figure 1: Graphs associated with walks (ς k ) and (τ k ) on Cℓ 0,2 .
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 2 Fix x ∈ R and N ε > 0. As N → ∞, |F N (x) -F N -Nε (x)| → 0. Observing that N k=1 ς 2k , e i = Ξ N+ , e i and replacing Ξ Nε by Ξ, one findsP Ξ N + -Ξ, e i ≤ x -F N (x) τ k → 0 as k → ∞, the limiting distribution of τ k is uniform on the positive and negative basis multivectors of Cℓ p,q by Theorem 3.4. It follows that for each i ∈ 2[n] , τ k , e i k>0 is a sequence of random variables having values in {-1, 0, 1} with limiting distributionlim k→∞ P τ k , e i = β = (n+1) if β = 1 1 -2 -n if β = 0 2 -(n+1) if β = -1.

For arbitrary i ∈ 2

 2 [n] , as k → ∞τ k , e i D → Z i ′ . (3.112)Convergence in distribution of the sequence τ k , e i k>0 implies that for any ε > 0, there existsN ε such that N > N ε implies G N -Nε (x)ε ≤ P N k=Nε τ k , e i ≤ x ≤ G N -Nε (x) + ε,(3.113)where writingM = N -N ε yields G M (x) =⌊x⌋ κ=-M φ M (κ). (3.114) Here φ M (x) is the M th mass function defined by φ M (x

  Fix x ∈ R and N ε > 0. As N → ∞, |G N (x) -G N -Nε (x)| → 0. Observing that N k=1τ k , e i = Υ N , e i and replacing Υ Nε by Υ, one findsP Υ N -Υ, e i ≤ x -G N (x)

→ N (0, 1).

(3.84)

For each positive integer i,

Hence, defining W N = S N + T N , the limiting distribution is the sum of two Gaussian random variables and

The limiting distribution function is then given by

If ς k → 0 as k → ∞, the limiting distribution of ς 2k is uniform on the positive and negative basis multivectors of even degree in Cℓ p,q by Theorem 3.9. It follows that for each i ∈ 2 [n] , ς 2k , e i k>0 is a sequence of random variables having values in {-1, 0, 1} with limiting distribution

(3.91)

The characterization of the limiting distribution of 

For each positive integer i, The limiting distribution function is then given by

exp -2 n y 2 2N dy.

(3.109)