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Three-dimensional stability

of a rotating MHD f low

T. Tomasino and P. Marty, Grenoble cedex, France

Summary. The increase of quality of semi-conductors grown under rotating magnetic fields has recently

motivated many numerical studies aiming at predicting the flow induced by the associated electromagnetic

body forces in a finite length container filled with a liquid metal. The mean feature of the basic flow is now

well known but the hydrodynamic stability of the solution is the subject of many researches which are

conducted either experimentally or numerically. From these stability studies, it appears that the value of

the critical magnetic Taylor number, Tm, which is deduced is a decreasing function of the aspect ratio H/R

of the cylinder. Nevertheless, most of the numerical studies have assumed an axial symmetry of the flow.

This problem is reconsidered here with a three-dimensional code. Surprisingly, it is found that no sig-

nificant azimuthal modes develop for Taylor numbers up to twice the critical value. Even small, the non-

axisymmetric modes are found to grow faster near the Ekman layers than in the core flow.

1 Introduction

The principle of the crystal growth technique is to solidify a molten semiconductor and an

additional dopant which are placed in a cylindrical volume submitted to a temperature

gradient. Many different configurations are used. In the vertical Bridgman technique, the

fluid is bounded by the solid walls of the growth ampoule, whereas in the Floating-zone

technique, the vertical lateral boundaries of the liquid crystal are free surfaces. The always

increasing size of crystal growth installations is responsible for more important buoyancy or

Marangoni forces which lead to unsteady flow and temperature field in the melt. This has

been a motivation for considering the use of a magnetic field to damp these fluctuations

which are detrimental to the solidified crystal. At first, many attempts have been made to

use constant magnetic fields which are known to brake all kinds of motion. The results are

positive in several situations but the pattern of the magnetic field distribution has to be

carefully determined. Recently, a rotating magnetic field (RMF) has been experimentally

tested and its effect seems promising as it is detailed below. One of the first experimental

evidence of the ability of a RMF to damp temperature and flow fluctuations was given by

Dold and Benz [1] who have built a test cell for temperature measurements in a cylindrical

cell submitted to a vertical temperature gradient. When no RMF is applied, a Rayleigh

number of 1.1�106 produces temperature fluctuations of approximately 3�C around a mean

value equal to 720�C. For the same Rayleigh number, a 20 Hz RMF with an intensity as

low as 1.63 mT reduces the temperature fluctuations by a factor 10. Moreover, the frequency

of the fluctuations was observed to be higher when a RMF is applied [1]. The solidification
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of a Germanium doped gallium sample has confirmed that low intensity dopant striations

are obtained when a RMF is applied and that the width of these striations is also smaller.

The same positive influence of a RMF is reported by Dold and Benz [2] when applied to the

Floating-zone configuration. In this case, the Marangoni flow generated by the shear stress

along the free surface seems to generate an intense velocity field, and a slightly stronger

magnetic field intensity (but still reasonable) is necessary to cancel the flow and temperature

fluctuations (B=7.5 mT with a frequency of 50 Hz).

The exact physical reason which explains the positive effect of a RMF has never been clearly

clarified. One can conjecture that the bulk rotating motion given to the core flow prevents, or at

least delays, the triggering of hydrodynamic instabilities in the liquid. One is not yet able to

predict the exact magnetic field intensity which will stabilize the flow in a real industrial

situation, but, at least, it has been known for a long time that a too strong rotation will generate

centrifugal instabilities similar to the well known Taylor vortices. This has been the motivation

for many recent numerical works on the stability study of a rotating MHD flow driven by a

RMF.

Kaiser and Benz [3] have performed a two-dimensional computation of the flow induced by

the RFM. As mentioned earlier by Davidson et al. [4], they have shown that the flow consists of

a mean azimuthal movement which induces a meridional recirculation owing to the weakening

of the centrifugal forces near the top and bottom wall of the container which contains the liquid

metal. Still using a two-dimensional computer code, Marty et al. [5], have expressed the

dependence of the critical Taylor number on the aspect ratio h ¼ H=R of the container. In this

study it has been shown that an increase of the Taylor number is responsible for the occurrence

of unsteady vortices which are converced by the mean meridional flow. A recent stability study

of the axially symmetric solution (Grants and Gerbeth [6]) has shown that several linearly

unstable solutions can exist close to the stable basic state. The triggering of these instabilities

has been studied as a function of the amplitude of the perturbations. Soon after this work, the

same authors [7] have also performed a three-dimensional linear stability study of the flow. All

the variables have been expanded into Chebyshev polynomials in the meridional plane whereas

a Fourier transform has been used for describing the azimuthal variations. Their conclusion is

that non-axisymmetric modes first become unstable. When the aspect ratio h is increased, they

have observed that the wave number of the most unstable modes decrease from 3 to 2 and from

2 to 1 for h ¼ 1:31 and 2.47, respectively. It is worth mentioning a clever experimental work

done by the same authors [8], which confirms some of the results of their previous theoretical

analysis. Recently, Walker et al. [9] have presented an extension of the work done by Grants

and Gerbeth [7] by adding a rotation of the container either in the same direction as that of the

magnetic field or in the opposite direction. Again, a spectral decomposition has been used in the

meridional plane while a Fourier transform has been employed in the azimuthal direction.

Table 1 presents the value of the critical value of the Taylor number as a function of the

aspect ratio h of the cavity. As can be seen, a certain disagreement between these results exists.

It can be explained by the difficulty of determining the precise value of the critical Taylor

number with a numerical tool. As a matter of fact, the instability can take a long time to grow

and it needs a considerable computational effort to obtain visible flow oscillations. These

discrepancies between different authors have been a motivation to perform a fully numerical

computation of the flow.

Consequently, this study presents the stability results obtained with a three-dimensional

numerical computation of the problem. Our approach is a Direct Numerical Simulation (DNS)

and differs from Grants et al. (2002) [7], who linearized the Navier-Stokes equations and then

performed a stability study of the remaining terms.
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2 Numerical formulation

We consider a cylinder with height H and R filled with an incompressible liquid metal of

kinematic viscosity m, density q and electrical conductivity r (Fig. 1) The aspect ratio is defined

as h ¼ H=R. The whole cylinder is submitted to a rotating magnetic field with an angular

frequency x and intensity B. The frequency of the RMF is expected to be small enough to

neglect any magnetic field distortion inside the liquid metal (i.e., the magnetic field distribution

is the same as it would be in vacuum). Except for numerical tests which will be described later

for which additional temperature terms have been added in the vertical momentum equation,

the dimensionless flow equations write:

div~V ¼ 0; ð1:1Þ

D~V

Dt
¼ � ~rpþ 1

Tm
1=2

r2~V þ~F; ð1:2Þ

where the characteristic scales are R for length, U� ¼ BR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rx=ð2qÞ
p

for the velocity, R=U� for

time and rxRB2=2 for the azimuthal Lorentz forces Fh which have the following analytical

expression [5]:

Fh ¼ r �
X

1

k¼0

2J1ðkkrÞ
ðk2k � 1ÞJ1ðkkÞ

sinhðkkzÞ þ sinhðkkðh� zÞ
sinhðkkhÞ

� �

; ð2Þ

where J1 is the Bessel function of first kind and where the kk are such as J 0
1
ðkkÞ ¼ 0.

z=0

z=H

H
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z
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B w
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Fig. 1. Geometry under consider-

ation showing the probing points

where the velocity signals have been

recorded

Table 1. Critical Taylor number Tmc as a function of the aspect ratio h ¼ H=R according to different

authors

h ¼ H=R 1 2 4 6 10 12

Kaiser and Benz

(1998) [3]

0.54Æ105 11250 5Æ103

Marty et al.

(1999) [5]

0.76–0.88�106 1.7–1.8Æ105 2.6–3.4�104 1.1–1.8Æ104 4–7�103

Grants and Gerbeth

(2001) [6]

1.635Æ105 2.96Æ104

Present work 1.85�106 1.7�105 3.05�104 1.46�104 5.75�103
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The magnetic Taylor number is defined as: Tm ¼ rxB2R4=ð2qc2Þ: it is the square of a

Reynolds number built with the typical velocity U� ¼ BR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rx=ð2qÞ
p

resulting from a balance

between inertial forces in the fluid and electromagnetic forces. The time-averaging of the radial

and axial forces Fr and Fz is equal to zero.

The finite-difference technique has been used in the ðr; zÞ plane and a spectral method has

been considered in the azimuthal direction h. A pressure-velocity formulation associated to a

staggered ‘‘Marker and Cell mesh’’ [10] has been chosen. A second-order fractional step

method has been used for the time differencing. The precision of a spectral method is known to

be OðN�aÞ where a is a function of the variable derivability. If this one can be derivated

infinitely, a becomes much greater than one and the precision of the calculation increases.

Using the Fourier decomposition constitutes a natural approach for the azimuthal discretiza-

tion. Each variable u(pressure, velocity, temperature and forces) was then written as follows:

uðr; z; h; tÞ ¼
X

S=2�1

k¼�S=2

ûkðr; z; tÞeikh; ð3Þ

where k is the azimuthal wave number, ûk the k-th Fourier coefficient in the ‘‘spectral space’’ of

the variable u and S the number of spectral modes. The Gauss-Labatto formula has been used

to complete this discretization:

hj ¼
2p

S
j ¼ 0; 1; . . . ;S� 1: ð4Þ

The convective terms have been evaluated by using

ûv
k ¼ 1

S

X

S�1

j¼0

ujvj:e
�ikhj with � S=2 � k � ðS=2� 1Þ:

Then, the following dimensionless continuity and Navier-Stokes equations have to be solved in

the ‘‘spectral space’’ for each mode k:

@V̂r

@r
þ ikV̂ h þ r

@V̂z

@z
¼ 0; ð5Þ

@V̂ r

@t
þ 1

r

@

@r

rV̂
2

r

r

!

þ ik
^VhVr

r

!

þ @

@z
^VrVz

� �

� V2

h

r

¼ F̂r �
@P̂

@r
þ 1

T
1=2
m

@

@r

1

r

@ðrV̂ rÞ
@r

!

� k2

r2
V̂ r þ

@2V̂ r

@z2
� 2

r2
ikV̂ h

( )

;

ð6Þ

@V̂h

@t
þ 1

r

@

@r
r ^VhVr

� �

þ
^VhVr

r
þ ik

r
V̂

2

h þ
@

@z
^VhVz

� �

¼ F̂h �
ik

r
P̂þ 1

T
1=2
m

@

@r

1

r

@ðrV̂hÞ
@r

!

� k2

r2
V̂h þ

@2V̂h

@z2
þ 2

r2
ikV̂r

( )

;

ð7Þ

@V̂z

@t
þ 1

r

@

@r
r ^VzVr

� �

þ ik

r
^VhVz

� �

þ @

@z
ðV̂2

z Þ

¼ F̂z �
@P̂

@z
þ 1

T
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m

1
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@ðV̂zÞ
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ð8Þ
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In the above equations, the force ~F ¼ ðFr;Fh;FzÞ can be considered as a source term. The r

and z derivatives have been discretized with a classical second-order finite-difference tech-

nique. A second-order fractional step method associated to a Runge-Kutta 3 (RK3)/ Crank-

Nicolson scheme has been used for the time differencing. A grid size of the order of

100�200 has been used in the meridional plane and 16 to 32 modes have been used in the

azimuthal direction. The time step is adapted to each case but the value of 0.001 is a mean

value.

3 Validation tests

The importance of the accuracy of the numerical model has been shown in [6]. This is the

reason why a significant effort has been done for validating our numerical model. The

meridional discretization in the ðr; zÞ plane was first validated by comparing the velocity

profiles for various magnetic Taylor numbers to those obtained with the 2-D code used in [5].

Another validation has been done with the well-known axisymmetric vortex breakdown phe-

nomena. This phenomenon appears when one end wall of a cylindrical container which con-

tains a fluid is driven into rotation at a constant angular velocity X. For particular Reynolds

numbers ðRe ¼ XR2=cÞ and aspect ratios ðH=RÞ, the flow is purely axisymmetric and one vortex

or more appear along the central axis. This causes the vertical velocity along the z axis to

change its sign. This is visible in Fig. 2a which is in excellent agreement with the experimental

–V
z

–V
z

0.08

0.06

0.04

0.02

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

z

z

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00
0.0 0.2 2.00.8 1.2

1.6

: 70*140 pts
: 50*100 pts

a

b

Fig. 2. Vertical profiles of the axial

velocity �Vz at r=0 for a vortex

breakdown induced when Re=1854

and H/R=2; a our results, b Sorensen

et al. [12] results for different meshes

(the curve indicated by the arrow

corresponds to the finest grid)
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results from [11] and with the numerical computations from [12] Fig. 2b. The transient

development of the vortices near the Oz-axis is also in fine agreement with Escudier (1984)

experiments: this is reported in Fig. 3. This first test validates the ðr; zÞ plane discretization and

the time-discretization scheme of our code.

The second validation test is the Rayleigh-Bénard problem which has allowed us to validate

the azimuthal discretization and the spectral method effectiveness. This test has also confirmed

that the code was able to describe the transition from 2-D to 3-D flows.

The energy equation has been added and discretized similarly to the Navier-Stokes equa-

tions. A buoyancy term using the Boussinesq approximation has been incorporated in the

vertical momentum equation. In such a situation, the energy and the Navier-Stokes equations

are strongly coupled.

The bottom end wall was then maintained at a temperature greater than the top wall whereas

the vertical walls are thermally insulated. It is well known that a convection flow appears when

the temperature difference DT ¼ Tþ � T� between the end walls exceeds a certain threshold.

The dimensionless numbers of this Rayleigh-Bénard problem are the Prandtl number and the

Rayleigh number built with the characteristic length H and the characteristic velocity

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gbHDT
p

: They write as follows: Ra ¼ bgH3
DT

ca
and Pr ¼ c

a
, where a is the thermal diffusivity

of the fluid.

An aspect ratio h ¼ H=R ¼ 2 and a low Prandtl number, Pr ¼ 0:022, equal to that of

mercury, have been considered for different values of the Rayleigh number. The meridional

grid has been refined from 33� 65 for small values of Ra to 65� 129 for Ra � 10
6: In the
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same time, the number of spectral modes has been changed from S ¼ 8 to S ¼ 32. The

critical value of the Rayleigh number ðRacÞ at which the flow becomes 3-D (i.e., for k=1)

has been measured (Fig. 4). A good agreement has been found since our critical value

10–8
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10–10 0 10 20 30 40

t

E
1

E
1

10–7

10–8

10–9

10–10

0 10 20 30 40 50 60 70 80 90 100

Ra = 3900
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b

time

Fig. 4. Time evolution of the

non-axisymmetric mode k=1 of the

‘‘azimuthal energy’’ during the Ray-

leigh-Bénard transient regime for dif-

ferent Rayleigh numbers (Pr=0.022

and h=2): a Verzicco et al. [13]

results with, from the lower to the

upper curve, Ra ¼ 3600, Ra ¼ 3700,

Ra ¼ 3750, Ra ¼ 3800, Ra ¼ 4000;

b our results: Ra ¼ 3800,

Ra ¼ 3900, Ra ¼ 3950, Ra ¼ 4000,

Ra ¼ 4100
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7



0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015
355 356 357 358 359 360 361

355 356 357 358 359 360 361

–0.12

–0.14

–0.16

–0.18

–0.2

–0.22

–0.24

–0.26

time

time

 Vz

Vr 0.045

35

Vz

Vr

–0.147

a

b

Vq

Vq

Fig. 6. Time evolutionof the different velocity components forh ¼ 1 andTm=1.9�106: amid-plane probe

in (r ¼ 0:5; z ¼ h=2), and b upper end wall probe in (r ¼ 0:75; z ¼ 0:95 h)

8



Rac=3900 is only 4% higher than numerical results obtained by Verzicco and Camussi [13].

For higher values of Ra, when the flow becomes turbulent, the asymptotic law

Nu ¼ 0:155Ra0:265 has been found for the Nusselt number between the two cylinder end

walls. This result is in correct agreement with the experimental results of Cioni et al. [14]

obtained on mercury: Nu ¼ 0:140Ra0:260, and with the numerical results of Verzicco and

Camussi [13]. Nu ¼ 0:165Ra0:255.
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4 Results

The flow stability has been studied by starting the time-dependent computation at t ¼ 0 with a

fluid at rest and for a given value of Tm and of the aspect ratio h. Two different cases have been

considered: near the critical stability threshold, i.e., for Tm � Tmc and for magnetic Taylor

numbers approximately equal to twice the critical value, i.e., for Tm � 2Tmc: The values of h

which have been studied vary from h ¼ 1 to h ¼ 12. The grid size is 100�200 in the ðr; zÞ plane
with S=16 modes in the azimuthal direction. A time step of the order of 0.001 is used.

4.1 Results for Tm � Tmc

When the magnetic Taylor number Tm is smaller than the critical value Tmc, the time history of

each velocity component at a given point of the flow shows a progressive evolution of the

amplitude which finally keeps a constant value after the spin-up time has been reached. For

h ¼ 2 and Tm = 160000, Fig. 5a shows the time evolution of the axial velocity vz in r ¼ 0:5 and

z ¼ 1, i.e., at mid-height of the cylinder. One can see that the flow has become almost steady for
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t larger than approximately 50. For higher values of Tm, an unstable oscillatory regime can be

observed: Fig. 5b and c shows this behavior for Tm=170000 and 180000, respectively. For

h ¼ 2 the value Tmc=170000 can be obtained. When h is varied from 1 to 12, the value of the

critical Taylor number which has been obtained is reported in the last row of Table 1. These

results are in good agreement with previous results obtained with 2-D, axially symmetric codes

[5], [6], but differ from those from [3].

The most striking result from this work is that for each value of h which has been considered,

absolutely no azimuthal variation has been noticed, i.e., no spectral mode except k ¼ 0 is suffi-

ciently large to qualify the flow as non-axisymmetric. This means that the vortices which are

created stay axially symmetric. A frequency analysis of the time history of the velocity compo-

nents shows that the signal is not rigorously a sinusoidal function of time. This has been shown

through the recording of three different probes located in the ðr; zÞplane in (0.5;h/2), (0.75 ; 0.05h)
and (0.75 ; 0.95h), respectively (see Fig. 1b). The first probe is then located in the mid-plane

whereas the two others are close to the end walls and situated near the Ekman layers.

– For h=1 and Tm=1.9�106, the mid-plane probe reveals that vh has a 90� shift with vr and vz.

This is shown in Fig. 6a. A Fourier analysis shows that the signal consists of a main fre-

quency, say f0, which is such as f0=0.5, together with the frequency 3

2
f0. The amplitude of the

3
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latter frequency is only 10% of that of f0. The end walls probe signal is shown in Fig. 6b where

we see that the almost purely sinusoidal nature is lost. A frequency analysis confirms that, in

addition to the frequencies f0 and 3

2
f0, a frequency equal to 2f0 has appeared with an

amplitude equal to 30% of that of f0. This would seem to indicate that the place where

instabilities develop with the faster growth rate is near the Ekman layers close to the end-

walls. A careful observation of the meridional streamlines over one period (which has the

value 1=f0) does not allow to see any noticeable change (Fig. 7).

– Giving a higher aspect ratio h ¼ 2 to the cylinder together with Tm ¼ 1:8 � 105, which is a few

percent larger than the critical threshold, also shows that the core probe located in

ðr ¼ 0:5; z ¼ h=2Þ displays an almost purely sinusoidal variation with the frequency f0=0.66.

The velocity vr is shifted 90� with respect to vh and vz which are in opposite phase (Fig. 8a).

The tendency to the period-doubling phenomenon which has been observed for h ¼ 1 on the

end-wall probes is confirmed in Fig. 8b. Nevertheless the frequency analysis on these end

probes shows that only f0 and 2f0 are present in the signal. Following the streamlines evo-

lution over one period f�1

0
=1.5 shows that vortices are periodically generated along the

central axis r ¼ 0 (Fig. 9). This phenomenon is reminiscent of the vortex breakdown problem

which has been discussed earlier. These vortices are quite different from the so-called Taylor

vortices which have been reported in most of the previous studies on this problem. Finally, it

is interesting to compare the value of the frequency f0 which has been observed with that

predicted by the recent analytical stability study published in [6]. For h ¼ 2 and
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Tm ¼ 1:6 � 105, these authors find a dimensionless pulsation x ¼ 2pf equal to 1659. Using our

physical scales changes this value into x ¼ 1659

T
1=2
m

¼ 4:147. This value is remarkably close to the

value x ¼ 2pf0 ¼ 4:14 which is deduced from our value of f0.

4.2 Results from Tm � 2Tmc

In order to know how long the axial symmetry will survive when the Taylor number is increased

further, numerical simulations have been done for Tm � 2Tmc and h=1, 2 and 6.
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– For h=1 and Tm ¼ 3:6 � 106 ¼ 1:9Tmc, Fig. 10 shows the time evolution of the modes

k=0,1,2 and 3 of the azimuthal velocity in one of the two near-wall probes. It is shown that

the non-axisymmetric modes are almost equal and limited to 0.1% of the mode k=0. They

start to grow near t=20 which corresponds to the spin-up time of this problem. An analysis

of the mid-plane probe displays similar results except that the velocity signals look less

turbulent and are 10 times smaller than near the walls (Fig. 11).

– For h=2 and Tm ¼ 3:0 � 105 ¼ 1:8Tmc, the modes k=1,2 and 3 near the end walls are

roughly 10 times greater than in the mid-plane. The mode k=2 is now the dominant non-

axisymmetric mode and reaches 10% of the mode m=0 in the Ekman layers.
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– For h=6 and Tm ¼ 2:5 � 104 ¼ 1:7Tmc, the same remarks can be made, i.e., the mode k=1

has the faster growth rate and its intensity is roughly 10 times larger near the end walls than

in the core (see Figs. 12 and 13).

For each one of these three values of h, the Fourier spectrum of the velocity signal is no more

discrete as it was near the critical threshold Tmc: it is more continuous and limited by the

dimensionless frequency f � 1.

5 Conclusion

This work shows that the axial symmetry of a rotating flow driven by a RMF is kept far beyond

the critical threshold at which unsteady vortices appear.

Near the threshold, i.e., for Tm � Tmc, the velocity fluctuations are almost sinusoidal with a

main frequency f0 which compares well with recent analytical predictions [6]. The intensity of

the secondary higher frequencies is found higher near the end walls than in the core near the

mid-plane. For h ¼ 2, a periodic growth of vortices is noticed near the flow axis.

For values of Tm twice as large as the critical value, the non-axisymmetric modes remain

smaller than the mode k=0 but the mode 2 can reach 10% of the mode 0 for h ¼ 2.

Whatever the value of Tm, the growth rate of the instabilities is found larger near the end

walls. This seems to indicate that the Ekman layers can be the primary source of instability, at

least for the aspect ratios which have been considered.
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