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Introduction

Let A be a set of (integer) digits and x = x 1 x 2 • • • x n be a word with letters x j in A.

The weight of x is the absolute sum of digits x = n j=1 |x j |. The Hamming weight of x is the number of non-zero digits in x. Of course, when A ⊆ {-1, 0, 1}, the two definitions coincide.

Expansions of minimal weight in integer bases β have been studied extensively. When β = 2, it is known since Booth [START_REF] Booth | A signed binary multiplication technique[END_REF] and Reitwiesner [START_REF] Reitwiesner | Binary arithmetic[END_REF] how to obtain such an expansion with the digit set {-1, 0, 1}. The well-known non-adjacent form (NAF) is a particular expansion of minimal weight with the property that the non-zero digits are isolated. It has many applications to cryptography, see in particular [START_REF] Morain | Speeding up the computations on an elliptic curve using additionsubtraction chains[END_REF][START_REF] Joye | Compact encoding of non-adjacent forms with applications to elliptic curve cryptography, Public key cryptography[END_REF][START_REF] Muir | Minimality and other properties of the width-w nonadjacent form[END_REF]. Other expansions of minimal weight in integer base are studied in [START_REF] Grabner | On the number of optimal base 2 representations of integers[END_REF][START_REF] Heuberger | Analysis of alternative digit sets for nonadjacent representations[END_REF]. Ergodic properties of signed binary expansions are established in [START_REF] Dajani | Ergodic properties of signed binary expansions[END_REF].

Non-standard number systems -where the base is not an integer -have been studied from various points of view. Expansions in a real non-integral base β > 1 have been introduced by Rényi [START_REF] Rényi | Representations for real numbers and their ergodic properties[END_REF] and studied initially by Parry [START_REF] Parry | On the β-expansions of real numbers[END_REF]. Number theoretic transforms where numbers are represented in base the Golden Ratio have been introduced in [START_REF] Dimitrov | Number theoretic transforms over the Golden Section quadratic field[END_REF] for application to signal processing and fast convolution. Fibonacci representations have been used in [START_REF] Meloni | New point addition formulae for ECC applications, Arithmetic of finite fields[END_REF] to design exponentiation algorithms based on addition chains. Recently, the investigation of minimal weight expansions has been extended to the Fibonacci numeration system by Heuberger [START_REF] Heuberger | Minimal expansions in redundant number systems: Fibonacci bases and greedy algorithms[END_REF], who gave an equivalent to the NAF. Solinas [START_REF] Solinas | Efficient arithmetic on Koblitz curves[END_REF] has shown how to represent a scalar in a complex base τ related to Koblitz curves, and has given a τ -NAF form, and the Hamming weight of these representations has been studied in [START_REF] Ebeid | On τ -adic representations of integers[END_REF].

In this paper, we study expansions in a real base β > 1 which is not an integer. Any number z in the interval [0, 1) has a so-called greedy β-expansion given by the β-transformation τ β , which relies on a greedy algorithm: let τ β (z) = βz -⌊βz⌋ and define, for j ≥ 1, x j = ⌊βτ j-1 β (z)⌋. Then z = ∞ j=1 x j β -j , where the x j 's are integer digits in the alphabet {0, 1, . . . , ⌊β⌋}. We write z = .x 1 x 2 • • • . If there exists a n such that x j = 0 for all j > n, the expansion is said to be finite and we write z = .x 1 x 2 • • • x n . By shifting, any non-negative real number has a greedy β-expansion:

If z ∈ [0, β k ), k ≥ 0, and β -k z = .x 1 x 2 • • • , then z = x 1 • • • x k .x k+1 x k+2 • • • .
We consider the sequences of digits x 1 x 2 • • • as words. Since we want to minimize the weight, we are only interested in finite words x = x 1 x 2 • • • x n , but we allow a priori arbitrary digits x j in Z. The corresponding set of numbers z = .x 1 x 2 • • • x n is therefore Z[β -1 ]. Note that we do not require that the greedy β-expansion of every z ∈ Z[β -1 ] ∩ [0, 1) is finite, although this property (F) holds for the three numbers β studied in Sections 4 to 6, see [START_REF] Ch | Finite beta-expansions[END_REF][START_REF] Akiyama | Cubic Pisot units with finite beta expansions[END_REF].

The set of finite words with letters in an alphabet A is denoted by A * , as usual. We define a relation on words

x = x 1 x 2 • • • x n ∈ Z * , y = y 1 y 2 • • • y m ∈ Z * by x ∼ β y if and only if .x 1 x 2 • • • x n = β k × .y 1 y 2 • • • y m for some k ∈ Z.
A word x ∈ Z * is said to be β-heavy if there exists y ∈ Z * such that x ∼ β y and y < x . We say that y is β-lighter than x. This means that an appropriate shift of y provides a β-expansion of the number .x 1 x 2 • • • x n with smaller absolute sum of digits than x . If x is not β-heavy, then we call x a β-expansion of minimal weight. It is easy to see that every word containing a β-heavy factor is β-heavy. Therefore we can restrict our attention to strictly β-heavy words x = x 1 • • • x n ∈ Z * , which means that x is β-heavy, and x 1 • • • x n-1 and x 2 • • • x n are not β-heavy.

In the following, we consider real bases β satisfying the condition If β is a Pisot number, i.e., an algebraic integer greater than 1 such that all the other roots of its minimal polynomial are in modulus less than one, then it satisfies (D B ) for some B > 0 by Proposition 3.5. The contrary is not true: There exist algebraic integers β > 1 satsfying (D B ) which are not Pisot, e.g. the positive solution of β 4 = 2β + 1 is not a Pisot number but satisfies (D 2 ) since 2 = 1000.(-1). The following example provides a large class of numbers β satisfying (D B ).

Example 1.1. If 1 = .t 1 t 2 • • • t d (t d+1 ) ω with integers t 1 ≥ t 2 ≥ • • • ≥ t d > t d+1 ≥ 0, then β satisfies (D B ) with B = t 1 + 1 = ⌊β⌋ + 1, since β d+1 -t 1 β d -• • • -t d β -t d+1 = t d+1 β -1 = β d -t 1 β d-1 -• • • -t d
and thus

β d+1 -(1 + t 1 )β d + (t 1 -t 2 )β d-1 + • • • + (t d-1 -t d )β + (t d -t d+1 ) = 0.
Recall that the set of greedy β-expansions is recognizable by a finite automaton when β is a Pisot number [START_REF] Bertrand | Développements en base de Pisot et répartition modulo 1[END_REF]. In this work, we prove that the set of all β-expansions of minimal weight is recognized by a finite automaton when β is a Pisot number.

We then consider particular Pisot numbers satisfying (D 2 ) which have been extensively studied from various points of view. When β is the Golden Ratio, we construct a finite transducer which gives, for a strictly β-heavy word as input, a β-lighter word as output. Similarly to the Non-Adjacent Form in base 2, we define a particular unique expansion of minimal weight avoiding a certain given set of factors. We show that there is a finite transducer which converts all words of minimal weight into these expansions avoiding these factors. From these transducers, we derive the minimal automaton recognizing the set of β-expansions of minimal weight in {-1, 0, 1} * . We give a branching transformation which provides all β-expansions of minimal weight in {-1, 0, 1} * of a given z ∈ Z[β -1 ]. Similar results are obtained for the representation of integers in the Fibonacci numeration system. The average weight of expansions of the numbers -M, . . . , M is 1 5 log β M , which means that typically only every fifth digit is non-zero. Note that the corresponding value for 2-expansions of minimal weight is 1 3 log 2 M , see [START_REF] Arno | Signed Digit Representations of Minimal Hamming Weight[END_REF][START_REF] Bosma | Signed bits and fast exponentiation[END_REF], and that 1 5 log β M ≈ 0.288 log 2 M . We obtain similar results for the case where β is the so-called Tribonacci number, which satisfies β 3 = β 2 + β + 1 (β ≈ 1.839), and the corresponding representations for integers. In this case, the average weight is

β 3 β 5 +1 log β M ≈ 0.282 log β M ≈ 0.321 log 2 M .
Finally we consider the smallest Pisot number, β 3 = β + 1 (β ≈ 1.325), which provides representations of integers with even lower weight than the Fibonacci numeration system: 1 7+2β 2 log β M ≈ 0.095 log β M ≈ 0.234 log 2 M . Since the proof techniques for the Tribonacci number and the smallest Pisot number are quite similar to the Golden Ratio case (but more complicated), some parts of the proofs are not contained in the final version of this paper. The interested reader can find them in [START_REF] Ch | Minimal weight expansions in Pisot bases, preliminary version[END_REF].

Preliminaries

A finite sequence of elements of a set A is called a word, and the set of words on A is the free monoid A * . The set A is called alphabet. The set of infinite sequences or infinite words on A is denoted by A N . Let v be a word of A * , denote by v n the concatenation of v to itself n times, and by v ω the infinite concatenation vvv • • • .

A finite word v is a factor of a (finite or infinite) word x if there exists u and w such that x = uvw. When u is the empty word, v is a prefix of

x. The prefix v is strict if v = x. When w is empty, v is said to be a suffix of x.
We recall some definitions on automata, see [START_REF] Eilenberg | Automata, languages, and machines[END_REF] and [START_REF] Sakarovitch | Eléments de théorie des automates[END_REF] for instance. An automaton over A, A = (Q, A, E, I, T ), is a directed graph labelled by elements of A. The set of vertices, traditionally called states, is denoted by

Q, I ⊂ Q is the set of initial states, T ⊂ Q is the set of terminal states and E ⊂ Q × A × Q is the set of labelled edges. If (p, a, q) ∈ E, we write p a → q. The automaton is finite if Q is finite. A subset H of A * is
said to be recognizable by a finite automaton if there exists a finite automaton A such that H is equal to the set of labels of paths starting in an initial state and ending in a terminal state.

A transducer is an automaton T = (Q, A * × A ′ * , E, I, T ) where the edges of E are labelled by couples of words in A * × A ′ * . It is said to be finite if the set Q of states and the set E of edges are finite. If (p, (u, v), q) ∈ E, we write p u|v -→ q. In this paper we consider letter-to-letter transducers, where the edges are labelled by elements of A × A ′ . The input automaton of such a transducer is obtained by taking the projection of edges on the first component.

General case

In this section, our aim is to prove that one can construct a finite automaton recognizing the set of β-expansions of minimal weight when β is a Pisot number.

We need first some combinatorial results for bases β satisfying (D B ). Note that β is not assumed to be a Pisot number here. 

Proof of Proposition 3.1. Let

A = {1 -B, . . . , B -1}. If x = x 1 x 2 • • • x n ∈ A * ,
then there is nothing to do. Otherwise, we use (D B ): there exists some word

b = b -k • • • b d ∈ A * such that b -k • • • b -1 (b 0 -B)b 1 • • • b d ∼ β 0 and b ≤ B.
We use this relation to decrease the absolute value of a digit x h ∈ A without increasing the weight of x, and we show that we eventually obtain a word in A * if we always choose the rightmost such digit. More precisely, set x (0) j = x j for 1 ≤ j ≤ n, x (0) j = 0 for j ≤ 0 and j > n, b j = 0 for j < -k and j > d. Define, recursively for i ≥ 0,

h i = max{j ∈ Z : |x (i) j | ≥ B}, x (i+1) hi = x (i) hi + sgn(x (i) hi )(b 0 -B), x (i+1) hi+j = x (i) hi+j + sgn(x (i) hi )b j for j = 0,
as long as h i exists. Then we have

j∈Z |x (0) j | = x , j∈Z x (i+1) j β -j = j∈Z x (i) j β -j and j∈Z |x (i+1) j | = |x (i+1) hi |+ j =0 |x (i+1) hi+j | ≤ |x (i) hi |+|b 0 |-B + j =0 (|x (i) hi+j |+|b j |) ≤ j∈Z |x (i) j |.
If h i does not exist, then we have |x (i) j | < B for all j ∈ Z, and the sequence (x (i) j ) j∈Z without the leading and trailing zeros is a word y ∈ A * with the desired properties.

Since x is finite, we have j∈Z |x (i+1)

j | < j∈Z |x (i)
j | only for finitely many i ≥ 0. In particular, the algorithm terminates after at most

x -B + 1 steps if b < B. 1 If b = B and j∈Z |x (i+1) j | = j∈Z |x (i) j |, then we have hi-1 j=-∞ |x (i+1) j | = hi-1 j=-∞ |x (i) j | + k j=1 |b -j | and ∞ j=hi+1 |x (i+1) j | = ∞ j=hi+1 |x (i) j | + d j=1 |b j |.
Assume that h i exists for all i ≥ 0. If (h i ) i≥0 has a minimum, then there exists an increasing sequence of indices (i m ) m≥0 such that h im ≤ h ℓ for all ℓ > i m , m ≥ 0, thus

x ≥ hi m -1 j=-∞ |x (im+1) j | ≥ hi m-1 -1 j=-∞ |x (i m-1 +1) j | + k j=1 |b -j | ≥ • • • ≥ (m + 1) k j=1 |b -j |.
If k j=1 |b -j | > 0, this is not possible since x is finite. Similarly, 

(h i ) i≥0 has no maximum if d j=1 |b j | > 0. Since x (i+1) j can differ from x (i) j only for h i -k ≤ j ≤ h i + d, we have h i+1 ≤ h i + d for all i ≥ 0. If h i < h i ′ , i < i ′ , then there is therefore a sequence (i m ) 0≤m≤M , i ≤ i 0 < i 1 < • • • < i M = i ′ , with M ≥ (h i ′ -h i )/d such that h im ≤ h ℓ for all ℓ ∈ {i m , i m + 1, . . . , i ′ }, m ∈ {0, . . . ,
i ′ < h i such that x (i ′ ) h i ′ -k • • • x (i ′ ) h i ′ = x (i) hi-k • • • x (i) hi , x (i ′ ) h i ′ +1 x (i ′ ) h i ′ +2 • • • = 0 hi-h i ′ x (i) hi+1 x (i) hi+2 • • • , and x (i) hi-j = x (i ′ ) h i ′ -j = 0 for all j > k. This implies x (i) hi-k • • • x (i) hi ∼ β 0 or β hi-h i ′ = 1. In the first case, x (i) hi+1 x (i) hi+2 • • •
without the trailing zeros is a word y ∈ A * with the desired properties. In the latter case, each x ∈ Z * can be easily transformed into some y ∈ {-1, 0, 1} * with y ∼ β x and y = x , and the proposition is proved.

2

The following proposition shows slightly more than the existence of a positive integer B such that β satisfies (D B ) when β is a Pisot number. Proof. If β is an integer, then we can choose B = β and b = 1. So let β be a Pisot number of degree d ≥ 2, i.e., β has d -1 Galois conjugates β (j) , 2 ≤ j ≤ d, with

|β (j) | < 1. For every z ∈ Q(β) set z (j) = P (β (j) ) if z = P (β), P ∈ Q[X].
Let B be a positive integer, L = ⌈log B/ log β⌉, and

x 1 x 2 • • • the greedy β-expansion of z = β -L B ∈ [0, 1). Since τ k β (z) = βτ k-1 (z) -x k = • • • = β k z - k ℓ=1 x ℓ β k-ℓ ,
we have

(τ k β (z)) (j) = (β (j) ) k z (j) - k ℓ=1 x ℓ (β (j) ) k-ℓ < β (j) k z (j) + ⌊β⌋ 1 -|β (j) | for all k ≥ 0 and 2 ≤ j ≤ d. Set k = max 2≤j≤d ⌈-log |z (j) |/ log |β (j) |⌉. Then τ k β (z) is an element of the finite set Y = y ∈ Z[β -1 ] ∩ [0, 1) : |y (j) | < 1 + ⌊β⌋ 1 -|β (j) | for 2 ≤ j ≤ d .
For every y ∈ Y , we can choose a β-expansion y = .a 1 • • • a m . Let W be the maximal weight of all these expansions and

τ k β (z) = .a ′ 1 • • • a ′ m . Since z = .x 1 . . . x k + τ k β (z), the digitwise addition of x 1 • • • x k and a ′ 1 • • • a ′ m provides a word b with b ∼ β B and b ≤ k⌊β⌋ + W = max 2≤j≤d log B log β - log B log |β (j) | ⌊β⌋ + W = O(log B).
If B is sufficiently large, we have therefore b < B.

2

In order to understand the relation ∼ β on A * , A = {1 -B, . . . , B -1}, we have to consider the words z ∈ (A -A) * with z ∼ β 0. Therefore we set

Z β = z 1 • • • z n ∈ {2(1 -B), . . . , 2(B -1)} * n ≥ 0, n j=1 z j β -j = 0
and recall a result from [START_REF] Ch | Representations of numbers and finite automata[END_REF]. All the automata considered in this paper process words from left to right, that is to say, most significant digit first.

Lemma 3.6 ([11]

). If β is a Pisot number, then Z β is recognized by a finite automaton.

For convenience, we quickly explain the construction of the automaton

A β recogniz- ing Z β . The states of A β are 0 and all s ∈ Z[β] ∩ ( 2(1-B) β-1 , 2(B-1) β-1
) which are accessible from 0 by paths consisting of transitions s e → s ′ with e ∈ A -A such that s ′ = βs + e. The state 0 is both initial and terminal. When β is a Pisot number, then the set of states is finite. Note that

A β is symmetric, meaning that if s e → s ′ is a transition, then -s -e
→ -s ′ is also a transition. The automaton A β is accessible and co-accessible. The redundancy automaton (or transducer) R β is similar to A β . Each transition 

s e → s ′ of A β is replaced in R β by a set of transitions s a|b -→ s ′ ,
(x 1 • • • x n , y 1 • • • y n ) ∈ A * × A * n ≥ 0, .x 1 • • • x n = .y 1 • • • y n . If β is a Pisot number, then R β is finite.
From the redundancy transducer R β , one constructs another transducer T β with states of the form (s, δ), where s is a state of R β and δ ∈ Z. The transitions are of the form (s, δ)

a|b -→ (s ′ , δ ′ ) if s a|b -→ s ′ is a transition in R β and δ ′ = δ + |b| -|a|.
The initial state is (0, 0), and terminal states are of the form (0, δ) with δ < 0.

Lemma 3.8. The transducer T β recognizes the set

(x 1 • • • x n , y 1 • • • y n ) ∈ A * × A * .x 1 • • • x n = .y 1 • • • y n , y 1 • • • y n < x 1 • • • x n .
Of course, the transducer T β is not finite, and the core of the proof of the main result consists in showing that we need only a finite part of T β .

We also need the following well-known lemma, and give a proof for it because the construction in the proof will be used in the following sections. Lemma 3.9. Let H ⊂ A * and M = A * \ A * HA * . If H is recognized by a finite automaton, then so is M .

Proof. Suppose that H is recognized by a finite automaton H. Let P be the set of strict prefixes of H. We construct the minimal automaton M of M as follows. The set of states of M is the quotient P/ ≡ where p ≡ q if the paths labelled by p end in the same set of states in H as the paths labelled by q. Since H is finite, P/ ≡ is finite. Transitions are defined as follows. Let a be in A. If pa is in P , then there is a transition Proof. Let A = {1 -B, . . . , B -1}, x ∈ A * be a strictly β-heavy word and y ∈ A * be a β-expansion of minimal weight with x ∼ β y. Such a y exists because of Proposition 3.1. Extend x, y to words x ′ , y ′ by adding leading and trailing zeros such that

[p] ≡ a → [pa] ≡ . If pa is not in H ∪ P , then there is a transition [p] ≡ a → [v] ≡ with v in P maximal in length such that pa = uv. Every state is terminal.
x ′ = x 1 • • • x n , y ′ = y 1 • • • y n and .x 1 • • • x n = .y 1 • • • y n . Then there is a path in the transducer T β composed of transitions (s j-1 , δ j-1 ) xj |yj -→ (s j , δ j ), 1 ≤ j ≤ n, with s 0 = 0, δ 0 = 0, s n = 0, δ n < 0.
We determine bounds for δ j , 1 ≤ j ≤ n, which depend only on the state s =

s j . Choose a β-expansion of s, s = a 1 • • • a i .a i+1 • • • a m , and set w s = a 1 • • • a m . If δ j > w s , then we have y 1 • • • y j > x 1 • • • x j +w s . Since s j = (x 1 -y 1 ) • • • (x j -y j )., the digitwise subtraction of 0 max(i-j,0) x 1 • • • x j 0 m-i and 0 max(j-i,0) a 1 • • • a m provides a word which is β-lighter than y 1 • • • y j , which contradicts the assumption that y is a β-expansion of minimal weight. Let W = max{w s | s is a state in A β }. If δ j ≤ -W -B, then let h ≤ j be such that x h = 0, x i = 0 for h < i ≤ j. Since |x h | < B, we have δ h-1 < δ j + B ≤ -W ≤ -w s h-1 , hence x 1 • • • x h-1 > y 1 • • • y h-1 + w s h-1 . Let a 1 • • • a m be the word which was used for the definition of w s h-1 , i.e., s h-1 = a 1 • • • a i .a i+1 • • • a m , w s h-1 = a 1 • • • a m . Then the digitwise addition of 0 max(i-h+1,0) y 1 • • • y h-1 0 m-i and 0 max(h-1-i,0) a 1 • • • a m provides a word which is β-lighter than x 1 • • • x h-1 . Since x h = 0,
this contradicts the assumption that x is strictly β-heavy.

Let S β be the restriction of T β to the states (s, δ) with -W -B < δ ≤ w s with some additional initial and terminal states: Every state which can be reached from (0, 0) by a path with input in 0 * is initial, and every state with a path to (0, δ), δ < 0, with an input in 0 * is terminal. Then the set H which is recognized by the input automaton of S β consists only of β-heavy words and contains all strictly β-heavy words in A * . Therefore M = A * \ A * HA * is the set of β-expansions of minimal weight in A * , and M is recognizable by a finite automaton by Lemma 3.9. 

Golden Ratio case

In this section we give explicit constructions for the case where β is the Golden Ratio

1+ √ 5 
2 . We have 1 = .11, hence 2 = 10.01 and β satisfies (D 2 ), see also Example 1.1. Corollary 3.2 shows that every z ∈ Z[β -1 ] can be represented by a β-expansion of minimal weight in {-1, 0, 1} * . For most applications, only these expansions are interesting. Remark that the digits of arbitrary β-expansions of minimal weight are in {-2, -1, 0, 1, 2} by the proof of Theorem 3.11, since 3 = 100.01.

For typographical reasons, we write the digit -1 as 1 in words and transitions.

β-expansions of minimal weight for

β = 1+ √ 5 2
Our aim in this section is to construct explicitly the finite automaton recognizing the β-expansions of minimal weight in A * , A = {-1, 0, 1}. It is of course possible to follow the proof of Theorem 3.10, but the states of

A β are 0, ± 1 β 3 , ± 1 β 2 , ± 1 β , ±1, ±β, ±β 2 , ±β ± 1 β 2 , ±β ± 1 β 3 , ±β 2 ± 1 β 2 , ±β 2 ± 1 β 3 ,
thus W = 2 and the transducer S β has 160 states. For other bases β, the number of states can be much larger. Therefore we have to refine the techniques if we do not want computer-assisted proofs. It is possible to show that a large part of S β is not needed, e.g. by excluding some β-heavy factors such as 11 from the output, and to obtain finally the transducer in Figure 2. However, it is easier to prove Theorem 4.1 by an indirect strategy, which includes some results which are interesting by themselves. Proof. The transducer in Figure 2 is a part of the transducer S β in the proof of Theorem 3.10. This means that every word which is the input of a path (with full or dashed transitions) going from (0, 0) to (0, -1) is β-heavy, because the output has the same value but less weight. Since a β-heavy word remains β-heavy if we omit the leading and trailing zeros, the dashed transitions can be omitted. Then the set of inputs is

H = 1(0100) * 1 ∪ 1(0100) * 0101 ∪ 1(00 10) * 1 ∪ 1(00 10) * 0 1 ∪ 1(0 100) * 1 ∪ 1(0 100) * 0 10 1 ∪ 1(0010) * 1 ∪ 1(0010) * 01
and M β is constructed as in the proof of Lemma 3.9.

2

Similarly to the NAF in base 2, where the expansions of minimal weight avoid the set {11, 1 1, 11 , 11}, we show in the next result that, for β = 1+ √ 5

2 , every real number admits a β-expansion which avoids a certain finite set X.

Proposition 4.3. If

β = 1+ √ 5 2 , then every z ∈ R has a β-expansion of the form z = y 1 • • • y k .y k+1 y k+2 • • • with y j ∈ {-1, 0, 1} such that y 1 y 2 • • • avoids the set X = {11, 101, 1001, 1 1, 10 1, and their opposites}. If z ∈ Z[β] = Z[β -1 ]
, then this expansion is unique up to leading zeros.

0, 0 -1, 1 -1/β, 0 0, -1 -1, 0 -1/β, -1 -1, -1 -1/β, -2 1, 1 1/β, 0 0, -1 1, 0 1/β, -1 1, -1 1/β, -2 1|0 1|0 0|0 1|0 0|0 1|0 0| 1 1|0 1|0 1|0 0|0 1|0 0|0 1|0 0|1 1|0 0|1 0| 1 0| 10|1 Figure 2.
Transducer with strictly β-heavy words as inputs,

β = 1+ √ 5 2 .
Proof. We determine this β-expansion similarly to the greedy β-expansion in the Introduction. Note that the maximal value of .x

1 x 2 • • • for a sequence x 1 x 2 • • • avoiding the elements of X is .(1000) ω = β 2 /(β 2 + 1
). If we define the transformation

τ : -β 2 β 2 + 1 , β 2 β 2 + 1 → -β 2 β 2 + 1 , β 2 β 2 + 1 , τ (z) = βz - β 2 + 1 2β z + 1/2 ,
and set

y j = β 2 +1 2β τ j-1 (z) + 1/2 for z ∈ -β 2 β 2 +1 , β 2 β 2 +1 , j ≥ 1, then z = .y 1 y 2 • • • . If y j = 1 for some j ≥ 1, then we have τ j (z) ∈ β × β β 2 +1 , β 2 β 2 +1 -1 = -1 β 2 +1 , 1/β β 2 +1
, hence y j+1 = 0, y j+2 = 0, and

τ j+2 (z) ∈ -β 2 β 2 +1 , β β 2 +1
, hence y j+3 ∈ { 1, 0}. This shows that the given factors are avoided. A similar argument for y j = -1 shows that the opposites are avoided as well, hence we have shown the existence of the expansion for z ∈ -β 2 β 2 +1 , β 2 β 2 +1 . For arbitrary z ∈ R, the expansion is given by shifting the expansion of β -k z, k ≥ 0, to the left.

If we choose y j = 0 in case τ j-1 (z) > β/(β 2 + 1) = .(0100) ω , then it is impossible to avoid the factors 11, 101 and 1001 in the following. If we choose y j = 1 in case τ j-1 (z) < β/(β 2 + 1), then βτ j-1 (z) -1 < -1/(β 2 + 1) = .(00 10) ω , and thus it is impossible to avoid the factors 1 1, 10 1, 11 , 10 1 and 100 1. Since β/(

β 2 + 1) ∈ Z[β], we have τ j-1 (z) = β/(β 2 + 1) for z ∈ Z[β].
Similar relations hold for the opposites, thus the expansion is unique. 

0, 0; 100 1, 1 1/β, 0 1, 0 1/β, 1 1/β, -1 -1/β 2 , 0 0, 0; 1 0, 0; 10 0, 0; 100 -1, 1 -1/β, 0 -1, 0 -1/β, 1 -1/β, -1 1/β 2 , 0 1|1 0|0 0|0 0|0 1|1 0|1 1|0 0|0 0|1 1|0 0|0 1|0 1|1 0|1 0|0 1|1 0|0 0|0 0|0 1|1 0|1 1|0 0|0 0|1 1|0 0|0 1|0 1|1 0|1 0|0 0|1 0|1 Figure 3. Transducer N β normalizing β-expansions of minimal weight, β = 1+ √ 5 2 .
Proof.

Set Q 0 = {(0, 0; 0), (-1, 1), (1, 1)} = Q ′ 0 , Q 1 = {(0, 0; 1), (-1/β, 0)}, Q ′ 1 = {(0, 0; 10)}, Q 10 = {(0, 0; 10), (-1, 0)}, Q ′ 10 = {(0, 0; 100)}, Q 100 = {(0, 0; 100), (-1/β, 1)}, Q ′ 100 = {(0, 0; 0), (-1, 1)}, Q 101 = {(-1/β, -1), (1/β 2 , 0)}, Q ′ 101 = {(0, 0; 1)},
and, symmetrically, Q1 = {(0, 0; 1), (1/β, 0)}, Q ′ 1 = {0, 0; 10}, . . . . Then the paths in N β with input in 00 * lead to the three states in Q 0 , the paths with input 01 lead to the two states in Q 1 , and more generally the paths in N β with input 0x such that x is accepted by M β lead to all states in Q u or to all states in Q ′ u , where u labels the shortest path in M β leading to the state reached by x. Indeed, if

u a → v is a transition in M β , then we have Q u a → Q v or Q u a → Q ′ v , and Q ′ u a → Q v or Q ′ u a → Q ′ v , where Q a → R means that for every r ∈ R there exists a transition q a|b -→ r in N β with q ∈ Q.
Since every Q u and every Q ′ u contains a state q with a transition of the form q 0|b -→ (0, 0; w), there exists a path with input 0x0 going from (0, 0; 0) to (0, 0; w) for every word x accepted by M β . By construction, the output y of this path satisfies x ∼ β y and x = y . It can be easily checked that all outputs of N β avoid the factors in X. 2

Proof of Theorem 4.1. For every x ∈ Z * , by Proposition 3.1 and Lemma 4.2, there exists a β-expansion of minimal weight y accepted by M β with y ∼ β x. By Proposition 4.5, there also exists a β-expansion of minimal weight y ′ ∈ {-1, 0, 1} * avoiding X with y ′ ∼ β y ∼ β x. By Proposition 4.3, the output of N β is the same (if we neglect leading and trailing zeros) for every input 0x ′ 0 such that x ′ ∼ β x and x ′ is accepted by M β . Therefore x ′ = y ′ for all these x ′ , and the theorem is proved. 

Branching transformation

All β-expansions of minimal weight can be obtained by a branching transformation. Theorem 4.6.

Let x = x 1 • • • x n ∈ {-1, 0, 1} * and z = .x 1 • • • x n , β = 1+ √ 5 2 . Then x is a β-expansion of minimal weight if and only if -2β β 2 +1 < z < 2β β 2 +1
and

x j =                1 if 2 β 2 +1 < β j-1 z -x 1 • • • x j-1 . < 2β β 2 +1 0 or 1 if β β 2 +1 < β j-1 z -x 1 • • • x j-1 . < 2 β 2 +1 0 if -β β 2 +1 < β j-1 z -x 1 • • • x j-1 . < β β 2 +1 -1 or 0 if -2 β 2 +1 < β j-1 z -x 1 • • • x j-1 . < -β β 2 +1 -1 if -2β β 2 +1 < β j-1 z -x 1 • • • x j-1 . < -2 β 2 +1
for all j, 1 ≤ j ≤ n.

The sequence

(β j-1 z -x 1 • • • x j-1 .
) 1≤j≤n is a trajectory (τ j-1 (z)) 1≤j≤n , where the branching transformation τ : z → βzx 1 with x 1 ∈ {-1, 0, 1} is given in Figure 4. Proof. To see that all words x 1 • • • x n given by the branching transformation are βexpansions of minimal weight, we have drawn in Figure 5 an automaton where every state is labeled by the interval containing all numbers β j z -x 1 • • • x j . such that x 1 • • • x j labels a path leading to this state. This automaton turns out to be the automaton M β in Figure 1 (up to the labels of the states), which accepts exactly the β-expansions of minimal weight. Recall that .(0010) ω = 1 β 2 +1 and thus .1(0100) ω = 2β β 2 +1 . If the conditions on z and x j are not satisfied, then we have either |.x j • • • x n | > .1(0100) ω , or x j = 1 and .x j+1 • • • x n < .(00 10) ω , or x j = -1 and .x j+1 • • • x n > .(0010) ω for some j, 1 ≤ j ≤ n. In every case, it is easy to see that x j • • • x n must contain a factor in the set H of the proof of Lemma 4.2, hence

-2β β 2 +1 , -β β 2 +1 -2 β 2 +1 , -2β β 2 +1 -β β 2 +1 , 1 β 2 +1 β β 2 +1 , -1 β 2 +1 2 β 2 +1 , 2β β 2 +1
x 1 • • • x n is β-heavy. 2

Fibonacci numeration system

The reader is referred to [START_REF] Lothaire | Algebraic combinatorics on words[END_REF]Chapter 7] for definitions on numeration systems defined by a sequence of integers. Recall that the linear numeration system canonically associated with the Golden Ratio is the Fibonacci (or Zeckendorf) numeration system 

= (F n ) n≥0 with F n = F n-1 + F n-2 , F 0 = 1 and F 1 = 2. Any non-negative integer N < F n can be represented as N = n j=1 x j F n-j with the property that x 1 • • • x n ∈ {0, 1} * does not contain the factor 11. For words x = x 1 • • • x n ∈ Z * , y = y 1 • • • y m ∈ Z * , we define a relation x ∼ F y if and only if n j=1 x j F n-j = m j=1 y j F m-j .
The properties F -heavy and F -expansion of minimal weight are defined as for βexpansions, with ∼ F instead of ∼ β . An important difference between the notions F -heavy and β-heavy is that a word containing a F -heavy factor need not be F -heavy, e.g. 2 is F -heavy since 2 ∼ F 10, but 20 is not F -heavy. However, uxv is F -heavy if x0 length(v) is F -heavy. Therefore we say that x ∈ Z * is strongly F -heavy if every element in x0 * is F -heavy. Hence every word containing a strongly F -heavy factor is F -heavy.

The Golden Ratio satisfies (D 2 ) since 2 = 10.01. For the Fibonacci numbers, the corresponding relation is 2F n = F n+1 + F n-2 , hence 20 n ∼ F 10010 n-2 for all n ≥ 2. Since 20 ∼ F 101 and 2 ∼ F 10, we obtain similarly to the proof of Proposition 3.1 that for every x ∈ Z * there exists some y ∈ {-1, 0, 1} * with x ∼ F y and y ≤ x . We will show the following theorem.

Theorem 4.7. The set of F -expansions of minimal weight in

{-1, 0, 1} * is equal to the set of β-expansions of minimal weight in {-1, 0, 1} * for β = √ 5+1
2 . The proof of this theorem runs along the same lines as the proof of Theorem 4.1. We use the unique expansion of integers given by Proposition 4.8 (due to Heuberger [START_REF] Heuberger | Minimal expansions in redundant number systems: Fibonacci bases and greedy algorithms[END_REF]) and provide an alternative proof of Heuberger's result that these expansions are Fexpansions of minimal weight.

Proposition 4.8 ([15]

). Every N ∈ Z has a unique representation N = n j=1 y j F n-j with y 1 = 0 and y 1 • • • y n ∈ {-1, 0, 1} * avoiding X = {11, 101, 1001, 1 1, 10 1, and their opposites}.

Proof. Let g n be the smallest positive integer with an F -expansion of length n starting with 1 and avoiding X, and G n be the largest integer of this kind. Since g n+1 ∼ F 1(00 10) n/4 , G n ∼ F (1000) n/4 and 1( 10 10

) n/4 ∼ F 1, we obtain g n+1 -G n = 1. (A fractional power (y 1 • • • y k ) j/k denotes the word (y 1 • • • y k ) ⌊j/k⌋ y 1 • • • y j-⌊j/k⌋k .) Therefore the length n of an expansion y 1 y 2 • • • y n of N = 0 with y 1 = 0 avoiding X is determined by G n-1 < |N | ≤ G n . Since g n -F n-1 = -G n-3 and G n -F n-1 = G n-4 , we have -G n-3 ≤ N -F n-1 ≤ G n-4 if y 1 = 1, hence y 2 = y 3 = 0, y 4 = 1,
and we obtain recursively that N has a unique expansion avoiding X. Proof of Theorem 4.7. Let a 1 • • • a n ∈ Z * , z = n j=1 a j β n-j , N = n j=1 a j F n-j . By using the equations

2 0, 0 -1, 1 -1/β, 0 0, -1 -1, 0 -1/β, -1 -1, -1 -1/β, -2 1/β 2 , - 1 
1, 1 1/β, 0 0, - 1 
1, 0 1/β, -1 1, -1 1/β, -2 -1/β 2 , -1 1|0 1|0 0|0 1|0 0|0 0| 1 1|0 1|0 1|0 1|0 0|0 1|0 0|0 1|0 0|1 1|0 0|0 0| 1 1| 1 0|0 0|1 1|1 0| 1 0|1
β k = β k-1 + β k-2 and F k = F k-1 + F k-2 , we obtain integers m 0 and m 1 such that z = m 1 β + m 0 and N = m 1 F 1 + m 0 F 0 = 2m 1 + m 0 .
Clearly, z = 0 implies m 1 = m 0 = 0 and thus N = 0, but the converse is not true: N = 0 only implies m 0 = -2m 1 , i.e., z = -m 1 /β 2 . Therefore we have

x 1 • • • x n ∼ F y 1 • • • y n if and only if (x 1 -y 1 ) • • • (x n -y n ). = m/β 2
for some m ∈ Z, hence the redundancy transducer R F for the Fibonacci numeration system is similar to R β , except that all states m/β 2 , m ∈ Z, are terminal.

The transducer in Figure 6 shows that all strictly β-heavy words in {-1, 0, 1} * are strongly F -heavy. Therefore all words which are not accepted by M β are F -heavy. Let N F be as N β , except that the states (±1/β 2 , 0) are terminal. Every set Q u and Q ′ u contains a state of the form (0, 0; w) or (±1/β 2 , 0). If x is accepted by N β , then N F transforms therefore 0x into a word y avoiding the factors given in Proposition 4.8. Hence x is an F -expansion of minimal weight.

2 Remark 4.9. If we consider only expansions avoiding the factors 11, 101, 1 1, 10 1, 100 1, then the difference between the largest integer with expansion of length n and the smallest positive integer with expansion of length n + 1 is 2 if n is a positive multiple of 3. Therefore there exist integers without an expansion of this kind, e.g. N = 4. However, a small modification provides another "nice" set of F -expansions of minimal weight: Every integer has a unique representation of the form N = n j=1 y j F n-j with y 1 = 0, y 1 • • • y n ∈ { 1, 0, 1} * avoiding the factors 11, 11 , 10 1, 1 1, 11, 10 1, 101, 100 1 and y j-2 y j-1 y j = 101 or y j-3 • • • y j = 1001 only if j = n.

Weight of the expansions

In this section, we study the average weight of F -expansions of minimal weight. For every N ∈ Z, let N F be the weight of a corresponding F -expansion of minimal weight, i.e., N F = x if x is an F -expansion of minimal weight with x ∼ F N . Theorem 4.10. For positive integers M , we have, as M → ∞,

1 2M + 1 M N =-M N F = 1 5 log M log 1+ √ 5 2 + O(1).
Proof. Consider first M = G n for some n > 0, where G n is defined as in the proof of Proposition 4.8, and let W n be the set of words x = x 1 • • • x n ∈ {-1, 0, 1} n avoiding 11, 101, 1001, 1 1, 10 1, and their opposites. Then we have

1 2G n + 1 Gn N =-Gn N F = 1 #W n x∈Wn x = n j=1 E X j ,
where E X j is the expected value of the random variable X j defined by

Pr[X j = 1] = #{x 1 • • • x n ∈ W n : x j = 0} #W n , Pr[X j = 0] = #{x 1 • • • x n ∈ W n : x j = 0} #W n
Instead of (X j ) 1≤j≤n , we consider the sequence of random variables (Y j ) 1≤j≤n defined by

Pr[Y 1 = y 1 y 2 y 3 , . . . , Y j = y j y j+1 y j+2 ] = #{x 1 • • • x n+2 ∈ W n 00 : x 1 • • • x j+2 = y 1 • • • y j+2 }/#W n , Pr[Y j-1 = xyz, Y j = x ′ y ′ z ′ ] = 0 if x ′ = y or y ′ = z.
It is easy to see that (Y j ) 1≤j≤n is a Markov chain, where the non-trivial transition probabilities are given by

1 -Pr[Y j+1 = 000 | Y j = 100] = Pr[Y j+1 = 00 1 | Y j = 100] = G n-j-2 -G n-j-3 G n-j+1 -G n-j , 1 -2 Pr[Y j+1 = 001 | Y j = 000] = Pr[Y j+1 = 000 | Y j = 000] = 2G n-j-3 + 1 2G n-j-2 + 1 ,
and the opposite relations. Since

G n = cβ n + O(1) (with β = 1+ √ 5 2 , c = β 3 /5), the transition probabilities satisfy Pr[Y j+1 = v | Y j = u] = p u,v + O(β -n+j ) with (p u,v ) u,v∈{100,010,001,000,00 1,0 10,00 1} =              0 0 0 2 β 2 1 β 3 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 2β 2 1 β 1 2β 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 β 3 2 β 2 0 0 0              . The eigenvalues of this matrix are 1, -1 β , ±i β , 1± i √ 3 2β , -1 β 2 .
The stationary distribution vector (given by the left eigenvector to the eigenvalue 1) is ( 110 , 1 10 , 1 10 , 2 5 , 1 10 , 1 10 , 1 10 ), thus we have

E X j = Pr[Y j = 100] + Pr[Y j = 100] = 1/5 + O β -min(j,n-j) ,
cf. [START_REF] Drmota | The Zeckendorf expansion of polynomial sequences[END_REF]. This proves the theorem for

M = G n . If G n < M ≤ G n+1 , then we have N F = 1 + N -F n F if G n < N ≤ M ,

and a similar relation for

-M ≤ N < -G n . With G n + 1 -F n = -G n-2 , we obtain M N =-M N F = Gn N =-Gn N F + M-Fn N =-G n-2 (1 + N F ) + G n-2 N =Fn-M (1 + N F ) = Gn N =-Gn N F + G n-2 N =-G n-2 N F + sgn(M -F n ) |M-Fn| N =-|M-Fn| N F + O(M ) = 2 5 log β F n log M + (M -F n ) log |M -F n | + O(M ) = 2M log M 5 log β + O(M )
by induction on n and using

M-Fn M log | M-Fn M | = O(1).
2 Remark 4.11. As in [START_REF] Drmota | The Zeckendorf expansion of polynomial sequences[END_REF], a central limit theorem for the distribution of N F can be proved, even if we restrict the numbers N to polynomial sequences or prime numbers.

Remark 4.12. If we partition the interval

-β 2 β 2 +1 , β 2 β 2 +1
, where the transformation τ :

z → βz -β 2 +1
2β z + 1/2 of the proof of Proposition 4.3 is defined, into intervals

I1 00 = -β 2 β 2 +1 , -β β 2 +1 , I 0 10 = -β β 2 +1 , -1 β 2 +1 , I 00 1 = -1 β 2 +1 , -1/β β 2 +1 , I 000 = -1/β β 2 +1 , 1/β β 2 +1 , I 001 = 1/β β 2 +1 , 1 β 2 +1 , I 010 = 1 β 2 +1 , β β 2 +1 , I 100 = β β 2 +1 , β 2 β 2 +1 , then we have p u,v = λ(τ (I u ) ∩ I v )/λ(τ (I u ))
, where λ denotes the Lebesgue measure.

Tribonacci case

In this section, let β > 1 be the Tribonacci number,

β 3 = β 2 + β + 1 (β ≈ 1.839).
Since 1 = .111, we have 2 = 10.001 and β satisfies (D 2 ). Here, the digits of arbitrary β-expansions of minimal weight are in {-5, . . . , 5} since 6 = 1000.00 10 10 1. We have 5 = 101.100011 and we will show that 101100011 is a β-expansion of minimal weight, thus 5 is also a β-expansion of minimal weight.

The proofs of the results in this section run along the same lines as in the Golden Ratio case. Therefore we give only an outline of them.

β-expansions of minimal weight

All words which are not accepted by the automaton M β in Figure 7, where all states are terminal, are β-heavy since they contain a factor which is accepted by the input automaton of the transducer in Figure 8 (without the dashed arrows). The expansion in Proposition 5.1 is given by the transformation τ :

-

β β + 1 , β β + 1 → -β β + 1 , β β + 1 , τ (z) = βz - β + 1 2 z + 1 2 .
Note that the word avoiding X with maximal value is (100) ω , .(100

) ω = β β+1 . Remark 5.2. The transformation τ (z) = βz -β 2 -1 2 z + 1 2 on -β β 2 -1 , β β 2 -1
provides a unique expansion avoiding the factors 11, 1 1, 10 1 and their opposites. 7 into the expansion avoiding X = {11, 101, 1 1, and their opposites} is realized by the transducer N β in Figure 9 and does not change the weight. Theorem 5.4. If β is the Tribonacci number, then the set of β-expansions of minimal weight in {-1, 0, 1} * is recognized by the finite automaton M β of Figure 7 where all states are terminal.

Proposition 5.3. The conversion of an arbitrary expansion accepted by the automaton

M β in Figure

Branching transformation

Contrary to the Golden Ratio case, we cannot obtain all β-expansions of minimal weight by the help of a piecewise linear branching transformation: If z = .01(001) n , then we have no β-expansion of minimal weight of the form z = .1x 2 x 3 • • • , whereas z ′ = .0011 has the expansion .1 1, and z ′ < z. On the other hand, z = .1(100) n 11 has no β-expansion of minimal weight of the form z = .1x 2 x 3 • • • (since 1(100) n 11 is βheavy but (100) n 11 is not β-heavy), whereas z ′ = .1101 is a β-expansion of minimal

0, 0 -1, 1 1 -β, 0 -1/β, -1 -1, -1 1 -β, -2 -1/β, -3 1 -1/β, -2 1/β 3 , -1 1/β 2 , -1 1/β -1, - 2 
1/β 2 -1, -2 -1 -1/β 2 , -2 1/β 3 -1/β, -2 1/β 3 , -3 -1/β 2 , -3 0, -2 0, 0 1, 1 β -1, 0 1/β, -1 1, -1 β -1, -2 1/β, -3 1/β -1, -2 -1/β 3 , -1 -1/β 2 , -1 1 -1/β, - 2 
1 -1/β 2 , -2 1 + 1/β 2 , -2 1/β -1/β 3 , -2 -1/β 3 , -3 1/β 2 , -3 1|0 1|0 1|0 1|0 0|0 0| 1 1|0 0| 1 1|0 0|0 1|0 0|0 0| 1 1|0 1|0 0|0 1| 1 0|0 1|0 1|0 1|0 1|0 1|0 0|0 0|1 1|0 0|1 1|0 0|0 1|0 0|0 0|1 1|0 1|0 0|0 1|1 0|0 1|0 0|0 1| 1 0|0 1|1 0|0 0|1 0| 1 1| 1 0| 1 0|0 0| 1 0|0 1|1 0|1 0|1 0|0 0|0 Figure 8. The relevant part of S β , β 3 = β 2 + β + 1, and S T .
weight, and z ′ > z. Hence the maximal interval for the digit 1 is [.(010) ω , .1(100) ω ],

with .(010

) ω = β β 3 -1 = 1 β+1 and .1(100) ω = 2β+1 β(β+1)
. The corresponding branching transformation and the possible expansions are given in Figure 10.

Tribonacci numeration system

The linear numeration system canonically associated with the Tribonacci number is the Tribonacci numeration system defined by the sequence T = (T n ) n≥0 with T 0 = 1, T 1 = 2, T 2 = 4, and T n = T n-1 + T n-2 + T n-3 for n ≥ 3. Any non-negative integer N < T n has a representation N = n j=1 x j T n-j with the property that x 1 • • • x n ∈ {0, 1} * does not contain the factor 111. The relation ∼ T and the properties T -heavy, T -expansion of minimal weight and strongly T -heavy are defined analogously to the Fibonacci numeration system. We have 20 n ∼ T 100010 n-3 for n ≥ 3, 200 ∼ T 1001, 0, 0; 0 0, 0; 1 0, 0; 10 20 ∼ T 100 and 2 ∼ T 10, therefore for every x ∈ Z * there exists some y ∈ {-1, 0, 1} * with x ∼ T y and y ≤ x . Since the difference of 1(0 10) n/3 and (100) n/3 is 1( 11 0) n/3 ∼ T 1, we obtain the following proposition.

-1, 1 1 -β, 0; 0 -1/β, 1 -1/β, -1; 0 -1, -1 -1 -1/β, 0 1 -β, 0; 1 -1/β, -1; 1 -1/β 2 , -1; 0 -1/β 2 , -1; 10 1/β 2 -1, -2 -1/β 3 , -1; 0 1 -1/β, 0 1 -1/β, -2 -1/β 3 , -1; 1 -1/β 2 , -1; 1 -1/β 2 , -1; 1 0, 0; 1 0, 0; 10 1, 1 β -1, 0; 0 1/β, 1 1/β, -1; 0 1, -1 1 + 1/β, 0 β -1, 0; 1 1/β, -1; 1 1/β 2 , -1; 0 1/β 2 , -1; 10 1 -1/β 2 , -2 1/β 3 , -1; 0 1/β -1, 0 1/β -1, -2 1/β 3 , -1; 1 1/β 2 , -1; 1 1/β 2 ,
Proposition 5.5. Every N ∈ Z has a unique representation N = n j=1 y j T n-j with y 1 = 0 and y 1 • • • y n ∈ {-1, 0, 1} * avoiding X = {11, 101, 1 1, and their opposites}.

If z = a 1 • • • a n . = m 2 m 1 m 0 ., then N = n j=1 a j T n-j = 4m 2 + 2m 1 + m 0 = 0 if and only if m 0 = 2m ′ 0 and m 1 = -2m 2 -m ′ 0 , i.e., z = -m 2 /β 2 + m ′ 0 /β 3 ,
hence all states s = m/β 2 + m ′ /β 3 with some m, m ′ ∈ Z are terminal states in the redundancy transducer R T . The transducer S T , which is given by Figure 8 including the dashed arrows except that the states (±1/β, -3) are not terminal, shows that all strictly β-heavy words in {-1, 0, 1} * are strongly T -heavy, but that some other x ∈ {-1, 0, 1} * are T -heavy as well. Thus the T -expansions of minimal weight are a subset of the set recognized by the automaton M β in Figure 7. Every set Q u and Q ′ u , u ∈ {0, 1, 10, 11}, contains a terminal state (0, 0; w) or (1 -1/β, 0), hence the words labelling paths ending in these states are T -expansions of minimal weight. The sets Q u and Q ′ u , u ∈ {1 1, 1 10, 1 11, 1 10, 1 101}, contain states (±1/β 3 , -1; w), (±1/β 2 , -1; w), (±(1 -1/β), -2), hence the words labelling paths ending in these states are T -heavy, and we obtain the following theorem.

-2β-1 β(β+1) , -β β+1 -2-1/β β(β+1) , -2β-1 β(β+1) -1 β+1 , 1 β+1 
1 β+1 , - 1 
Theorem 5.6. The T -expansions of minimal weight in {-1, 0, 1} * are exactly the words which are accepted by M T , which is the automaton in Figure 7 where only the states with a dashed outgoing arrow are terminal. The words given by Proposition 5.5 are T -expansions of minimal weight.

Weight of the expansions

Let W n be the set of words x = x 1 • • • x n ∈ {-1, 0, 1} n avoiding the factors 11, 101, 1 1, and their opposites. Then the sequence of random variables (Y j ) 1≤j≤n defined by

Pr[Y 1 = y 1 y 2 , . . . , Y j = y j y j+1 ] = #{x 1 • • • x n+1 ∈ W n 0 : x 1 • • • x j+1 = y 1 • • • y j+1 } #W n is Markov with transition probabilities Pr[Y j+1 = v | Y j = u] = p u,v + O(β -n+j ), (p u,v ) u,v∈{10,01,00,0 1, 10} =         0 0 β 2 -1 β 2 1 β 2 0 1 0 0 0 0 0 β-1 2β 1 β β-1 2β 0 0 0 0 0 1 0 1 β 2 β 2 -1 β 2 0 0         .
The eigenvalues of this matrix are 1,

± 1 β , -β-1± i √ 3β 3 -β 2β 3
, and the stationary distribution vector of the Markov chain is β 3 /2 β 5 +1 , β 3 /2 β 5 +1 , β 3 +β 2 β 5 +1 , β 3 /2 β 5 +1 , β 3 /2 β 5 +1 . We obtain the following theorem (with β 3 β 5 +1 = .(0011010100) ω ≈ 0.28219). The expansion in Proposition 6.1 is given by the transformation

τ : -β 3 β 2 + 1 , β 3 β 2 + 1 → -β 3 β 2 + 1 , β 3 β 2 + 1 , τ (x) = βx - β 2 + 1 2β 2 x + 1 2 since τ β 2 β 2 +1 , β 3 β 2 +1 = β 3 β 2 +1 -1, β 4 β 2 +1 -1 = -1/β 3 β 2 +1 , 1/β 4 β 2 +1
. The word avoiding X with maximal value is (10 7 ) ω , .( 10

7 ) ω = β 7 /(β 8 -1) = β 3 /(β 2 + 1). Remark 6.2. The transformation τ (z) = βz -1 β z + 1 2 on -β 2 2 , β 2 2
provides a unique expansion avoiding 10 6 1 instead of 10 6 1.

Proposition 6.3. The conversion of an arbitrary expansion accepted by M β into the expansion avoiding

X = {10 6 1, 10 k 1, 10 k 1, 0 ≤ k ≤ 5
, and their opposites} is realized by the transducer N β in Figure 14 and does not change the weight. Theorem 6.4. If β is the smallest Pisot number, then the set of β-expansions of minimal weight in {-1, 0, 1} * is recognized by the finite automaton M β of Figure 11 (without the dashed arrows) where all states are terminal.

Branching transformation

In the case of the smallest Pisot number β, the maximal interval for the digit 1 is [.(010 6 ) ω , .1(0 5 10 2 ) ω ], with .(010 6 ) ω = β 2 β 2 +1 and .1(0 5 10 2 ) ω = β 2 +1/β β 2 +1 . The corresponding branching transformation and expansions are given in Figure 15. 

0, 0 0, -1 0, -2 -1/β 5 , 0 1/β 5 , 0 -1/β 4 , 0 1/β 4 , 0 -1/β 3 , 0 1/β 3 , 0 -1/β 2 , 0 1/β 2 , 0 -1/β, 0 1/β, 0 -1, 0 1, 0 -β, 0 β, 0 -β 2 , 0 β 2 , 0 -1/β 5 , - 1 
1/β 5 , -1 -1/β 4 , -1 1/β 4 , -1 -1/β 3 , -1 1/β 3 , -1 -1/β 2 , - 1 
1/β 2 , -1 -1/β, -1 1/β, -1 -1, -1 1, -1 -β, -1 β, -1 -1/β 5 , - 2 
1/β 5 , -2 -1/β 4 , -2 1/β 4 , -2 -1/β 3 , - 2 
1/β 3 , -2 -1/β 2 , - 2 
1/β 2 , -2 -1/β, -2 1/β, -2 -1, 1 1, 1 -β, 1 β, 1 1|0 

Integer expansions

Let (S n ) n≥0 be a linear numeration system associated with the smallest Pisot number β which is defined as follows:

S 0 = 1, S 1 = 2, S 2 = 3, S 3 = 4, S n = S n-2 + S n-3 for n ≥ 4.
Note that we do not choose the canonical numeration system associated with the smallest Pisot number, which is defined by

U 0 = 1, U 1 = 2, U 2 = 3, U 3 = 4, U 4 = 5, U n = U n-1 + U n-5 for n ≥ 5, since U n = U n-2 + U n-3 holds only for n ≡ 1 mod 3, n ≥ 4.
For every x ∈ Z * , there exists y ∈ {-1, 0, 1} * with x ∼ S y, y ≤ x , since 2 ∼ S 10, 20 ∼ S 1000, 200 ∼ S 1010, 20 3 ∼ S 10100, 20 4 ∼ S 100100, 20 5 ∼ S 1010 4 , 20 n ∼ S 10 6 10 n-5 for n ≥ 6. Proposition 6.5. Every N ∈ Z has a unique representation N = n j=1 y j S n-j with y 1 = 0 and y 1 • • • y n ∈ {-1, 0, 1} * avoiding the set X = {10 6 1, 10 k 1, 10 k 1, 0 ≤ k ≤ 5, and their opposites}, with the exception that 10 6 1, 10 5 1, 10 5 1, 10 4 1 and their opposites are possible suffixes of y 1 • • • y n .

As for the Fibonacci numeration system, Proposition 6.5 is proved by considering g n , the smallest positive integer with an expansion of length n starting with 1 avoiding these factors, and G n , the largest integer of this kind. The representations of g n+1 and G n , n ≥ 1, depending on the congruence class of n modulo 8 are given by the following table.

0, 0 -1/β 5 , 0 -1/β 4 , 0 -1/β 3 , 0 -1/β 2 , 0 -1/β, 0 -1, 0 -β, 0 -β 2 , 0 -1/β 5 , -1 -1/β 4 , -1 -1/β 3 , -1 -1/β 2 , -1 -1/β, -1 -1, -1 -β, -1 -1, 1 -β, 1 -1/β, 1 1/β 5 , 0 1/β 4 , 0 1/β 3 , 0 1/β 2 , 0 1/β, 0 1, 0 β, 0 β 2 , 0 1/β 5 , -1 1/β 4 , -1 1/β 3 , -1 1/β 2 , -1 1/β, -1 1, -1 β, -1 1, 1 β, 1 1/β, 1 1|1 
n ≡ j mod 8 g n+1 G n g n+1 -G n 1, 2, 3, 4 1(0 6 10) n/8 ( 10 7 
) n/8 1 10 j-1 ∼ S 1 5 1(0 6 10) (n-5)/8 0 4 1 (10 7 ) (n-5)/8 10 4 1 1000 1 ∼ S 1 6 1(0 6 10) (n-6)/8 0 5 1 (10 7 ) (n-6)/8 10 5 1 10000

1 ∼ S 1 1 ∼ S 1 7 
1(0 6 10) (n-7)/8 0 6 1 (10 7 ) (n-7)/8 10 5 1 1 100000 2 ∼ S 10 2 ∼ S 1 0 1(0 6 10) n/8 (10 7 ) n/8-1 10 6 1 1 100000 1 1 ∼ S 10 11 ∼ S 1

For the calculation of g n+1 -G n we have used S n -S n-1 -S n-7 = S n-8 for n ≥ 9.

Since S n = S n-2 -S n-3 holds only for n ≥ 4 and not for n = 3, determining when x ∼ S y is more complicated than for ∼ F and ∼ T . If z = a 1 • • • a n . = m 3 m 2 m 1 a n ., then we have N = n j=1 a j S n-j = 4m 3 + 3m 2 + 2m 1 + a n . We have to distinguish between different values of a n .

• If a n = 0, then N = 0 if and only if m 2 = 2m ′ 2 , m 1 = -2m 3 -3m ′ 2 , hence

z = m 3 (β 3 -2β) + m ′ 2 (2β 2 -3β) = -m 3 /β 4 -m ′ 2 (1/β 4 + 1/β 7 ).
In particular, m ′ 2 = 0, m 3 ∈ {0, ±1} implies N = 0 if z ∈ {0, ±1/β 4 }. In particular, m 3 m ′ 2 ∈ {00, 11, 01} provides N = 0 if z ∈ {1/β 2 , 1/β 3 , 1/β 5 }.

• If a n = 2, then m 3 m 2 m 1 ∈ {00 1, 101} provides N = 0 if z ∈ {2β, 1}.

We have x 1 • • • x n ∼ S y 1 • • • y n if the corresponding path in R β ends in a state z corresponding to a n = x ny n (or in -z, a n = y nx n ) and obtain the following theorem.

Theorem 6.6. The set of S-expansions of minimal weight in {-1, 0, 1} * is recognized by M S , which is the automaton in Figure 11 including the dashed arrows. The words given by Proposition 6.5 are S-expansions of minimal weight.

For details on the proof of Theorem 6.6, we refer again to [START_REF] Ch | Minimal weight expansions in Pisot bases, preliminary version[END_REF].

Weight of the expansions

Let W n be the set of words 

Concluding remarks

Another example of a number β < 2 of small degree satisfying (D 2 ), which is not studied in this article, is the Pisot number satisfying β 3 = β 2 + 1, with 2 = 100.0000 1. A question which is not approached in this paper concerns β-expansions of minimal weight in {1 -B, . . . , B -1} * when β does not satisfy (D B ), in particular minimal weight expansions on the alphabet {-1, 0, 1} when β < 3 and (D 2 ) does not hold.

In view of applications to cryptography, we present a summary of the average minimal weight of representations of integers in linear numeration systems (U n ) n≥0 associated with different β, with digits in A = {0, 1} or in A = {-1, 0, 1}. If we want to compute a scalar multiple of a group element, e.g. a point P on an elliptic curve, we can choose a representation N = n j=0 x j U j of the scalar, compute U j P , 0 ≤ j ≤ n, by using the recurrence of U and finally N P = n j=0 x j (U j P ). In the cases which we have considered, this amounts to n + N U additions (or subtractions). Since n ≈ log β N is larger than N U , the smallest number of additions is usually given by a 2-expansion of minimal weight. (We have log (1+ √ 5)/2 N ≈ 1.44 log 2 N , log β N ≈ 1.137 log 2 M for the Tribonacci number, log β N ≈ 2.465 log 2 N for the smallest Pisot number.)

If however we have to compute several multiples N P with the same P and different N ∈ {-M, . . . , M }, then it suffices to compute U j P for 0 ≤ j ≤ n ≈ log β M once, and do N U additions for each N . Starting from 10 multiples of the same P , the Fibonacci numeration system is preferable to base 2 since (1 + 10/5) log (1+ 

(

  D B ) : there exists a word b ∈ {1 -B, . . . , B -1} * such that B ∼ β b and b ≤ B for some positive integer B. Corollary 3.2 and Remark 3.4 show that every class of words (with respect to ∼ β ) contains a β-expansion of minimal weight with digits in {1 -B, . . . , B -1} if and only if β satisfies (D B ).

Proposition 3 . 1 .Corollary 3 . 2 .Remark 3 . 3 .Remark 3 . 4 .

 31323334 If β satisfies (D B ) with some integer B ≥ 2, then for every word x ∈ Z * there exists some y ∈ {1 -B, . . . , B -1} * with x ∼ β y and y ≤ x . If β satisfies (D B ) with some integer B ≥ 2, then for every word x ∈ Z * there exists a β-expansion of minimal weight y ∈ {1 -B, . . . , B -1} * with x ∼ β y. If β satisfies (D B ) for some positive integer B, then it is easy to see that β satisfies (D C ) for every integer C > B. If β does not satisfy (D B ), then all words x ∈ {1 -B, . . . , B -1} * with x ∼ β B are β-heavier than B. It follows that the set of β-expansions of minimal weight x ∼ β B is 0 * B0 * .
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 35 For every Pisot number β, there exists some positive integer B and some word b ∈ Z * such that B ∼ β b and b < B.

Lemma 3 . 7 .

 37 with a, b ∈ A and ab = e. From Lemma 3.6, one obtains the following lemma. The redundancy transducer R β recognizes the set

2Theorem 3 . 10 .

 310 Now, we can prove the following theorem. The main result, Theorem 3.11, will be a special case of it. Let β be a Pisot number and B a positive integer such that (D B ) holds. Then one can construct a finite automaton recognizing the set of β-expansions of minimal weight in {1 -B, . . . , B -1} * .

2 Theorem 3 . 11 .

 2311 Let β be a Pisot number. Then one can construct a finite automaton recognizing the set of β-expansions of minimal weight.Proof. Proposition 3.5 shows that β satisfies (D B ) for some positive integer B, and that no β-expansion of minimal weight y ∈ Z * can contain a digit y j with |y j | ≥ B, since we obtain a β-lighter word if we replace B by b as in the proof of Proposition 3.1. Therefore Theorem 3.10 implies Theorem 3.11.
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 4112 Figure 1. Automaton M β recognizing β-expansions of minimal weight for β = 1+ √ 5 2

Lemma 4 . 2 .

 42 All words in {-1, 0, 1} * which are not recognized by the automaton M β in Figure1are β-heavy.

2 Remark 4 . 4 .Proposition 4 . 5 .

 24445 Similarly, the transformation τ (z) = βz -⌊z + 1/2⌋ on [-β/2, β/2) provides for every z ∈ Z[β] a unique expansion avoiding the factors 11, 101, 1 1, 10 1, 100 1 and their opposites. If x is accepted by M β , then there exists y ∈ {-1, 0, 1} * avoiding X = {11, 101, 1001, 1 1, 10 1 and their opposites} with x ∼ β y and x = y . The transducer N β in Figure3realizes the conversion from 0x0 to y.
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 245 Figure 4. Branching transformation giving all 1+ √ 5 2 -expansions of minimal weight.

. 1 (Figure 5 .

 15 Figure 5. Automaton M β with intervals as labels. defined by the sequence of Fibonacci numbers F= (F n ) n≥0 with F n = F n-1 + F n-2 , F 0 = 1 and F 1 = 2. Any non-negative integer N < F n can be represented as N = n j=1 x j F n-j with the property that x 1 • • • x n ∈ {0, 1} * does not contain the factor 11. For words x = x 1 • • • x n ∈ Z * , y = y 1 • • • y m ∈ Z * , we define a relation

Figure 6 .

 6 Figure 6. All inputs of this transducer are strongly F -heavy.

Figure 7 .Proposition 5 . 1 .

 751 Figure 7. Automata M β , β 3 = β 2 + β + 1, and M T . Proposition 5.1. If β > 1 is the Tribonacci number, then every z ∈ R has a βexpansion of the form z = y 1 • • • y k .y k+1 y k+2 • • • with y j ∈ {-1, 0, 1} such that y 1 y 2 • • • avoids the set X = {11, 101, 1 1, and their opposites}. If z ∈ Z[β] = Z[β -1 ], then this expansion is unique up to leading zeros.

Figure 9 .

 9 Figure 9. Normalizing transducer N β , β 3 = β 2 + β + 1.

Figure 10 .

 10 Figure 10. Branching transformation, corresponding automaton, β 3 = β 2 + β + 1.

Figure 12 .

 12 Figure 12. Compact representation of M β . set X = {10 6 1, 10 k 1, 10 k 1, 0 ≤ k ≤ 5, and their opposites}. If z ∈ Z[β] = Z[β -1 ], then this expansion is unique up to leading zeros.

Figure 13 .

 13 Figure 13. The relevant part of S β , β 3 = β + 1.

Figure 14 .

 14 Figure 14. Transducer N β normalizing β-expansions of minimal weight, β 3 = β + 1.

-β 2 - 1

 21 ω , .1(0 5 10 2 ) ω .(010 6 ) ω , .(10 7 ) ω .(10 7 ) ω , .(010 6 )

Figure 15 .

 15 Figure 15. Branching transformation and corresponding automaton, β 3 = β + 1.

6 . 7 .

 67 x = x 1 • • • x n ∈ {-1,0, 1} n avoiding the factors given by Proposition 6.5. Then the sequence of random variables (Y j ) 1≤j≤n defined byPr[Y 1 = y 1 • • • y 7 , . . . , Y j = y j • • • y j+6 ] = #{x 1 • • • x n+6 ∈ W n 0 6 : x 1 • • • x j+6 = y 1 • • • y j+6 }/#W nand we obtain the following theorem (with 1 7+2β 2 ≈ 0.09515). Theorem For positive integers M , we have, as M → ∞,

( 2 (

 2 log β M )/(β 2 + 1) ≈ 0.398 log 2 M F n {-1, 0, 1} 1+ √ 5 log β M )/5 ≈ 0.288 log 2 M T n {-1, 0, 1} β 3 = β 2 + β + 1 (log β M )β 3 /(β 5 + 1) ≈ 0.321 log 2 M S n {-1, 0, 1} β 3 = β + 1 (log β M )/(7 + 2β 2 ) ≈ 0.235 log 2 M

√ 5 )

 5 /2 M ≈ 4.321 log 2 M < (1 + 10/3) log 2 M . Starting from 20 multiples of the same P , Sexpansions of minimal weight are preferable to the Fibonacci numeration system since (1+20/(7+2β 2 )) log β M ≈ 7.156 log 2 M < 7.202 log 2 M ≈ (1+20/5) log (1+ √ 5)/2 M .

Hence we have shown that h i cannot exist for all i ≥ 0 if k j=1 |b -j | > 0 and d j=1 |b

  M }. As above, we obtain x ≥ (M + 1) k j=1 |b -j |, but M can be arbitrarily large if (h i ) i≥0 has neither minimum nor maximum. j | > 0.It remains to consider the case b = B with k = 0 or d = 0. Assume, w.l.o.g., d = 0. Then we have h i+1 ≤ h i . If h i exists for all i ≥ 0, then both k j=0 |x

	∞ j=1 |x (i)	(i) hi-j | and

hi+j | are eventually constant. Therefore we must have some i, i ′ with h
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For the proof of Theorem 3.11, it is sufficient to consider the case b < B. However, Corollary 3.2 is particularly interesting in the case b = B, and we use it in the following sections for B =

, then the set of β-expansions of minimal weight in {-1, 0, 1} * is recognized by the finite automaton M β of Figure1where all states are terminal.

Theorem 5.7. For positive integers M , we have, as M → ∞,

Smallest Pisot number case

The smallest Pisot number β ≈ 1.325 satisfies β 3 = β + 1. Since 1 = .011 = .10001 implies 2 = 100.00001 as well as 2 = 1000.000 1, (D 2 ) holds. We have furthermore 3 = β 4β -9 , thus all β-expansions of minimal weight have digits in {-2, . . . , 2}. Let M β be the automaton in Figure 11 without the dashed arrows where all states are terminal. Then it is a bit more difficult than in the Golden Ration and the Tribonacci cases to see that all words which are not accepted by M β are β-heavy, not only because the automata are larger but also because some inputs of the transducer in Figure 13 are not strictly β-heavy (but of course still β-heavy). We refer to [START_REF] Ch | Minimal weight expansions in Pisot bases, preliminary version[END_REF] for details. 

β-expansions of minimal weight