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Minimal weight expansions in Pisot bases

Christiane Frougny and Wolfgang Steiner

Abstract. For applications to cryptography, itis important to regrgsnumbers with a small number
of non-zero digits (Hamming weight) or with small absolutensof digits. The problem of finding
representations with minimal weight has been solved farget bases, e.g. by the non-adjacent
formin base 2. In this paper, we consider numeration systethgespect to real basgswhich are
Pisot numbers and prove that the expansions with minimadlatessum of digits are recognizable
by finite automata. Whefiis the Golden Ratio, the Tribonacci number or the smallesitPiumber,
we determine expansions with minimal number of digits and give explicitely the finite automata
recognizing all these expansions. The average weight isrltvan for the non-adjacent form.

Keywords. Minimal weight, beta-expansions, Pisot numbers, Fibonawmbers, automata.

AMS classification. 11A63, 11B39, 68Q45, 94A60.

1 Introduction

Let A be a set of (integer) digits and= xz1z; - - -z, be a word with letters:; in A.
Theweightof z is theabsolute sum of digitéz|| = Z}Ll |zj|. TheHamming weight
of z is the number of non-zero digits in Of course, wheM C {-1,0,1}, the two
definitions coincide.

Expansions of minimal weight in integer baseéhave been studied extensively.
Wheng = 2, it is known since Booth [4] and Reitwiesner [23] how to obtain such
an expansion with the digit s¢t-1,0, 1}. The well-known non-adjacent form (NAF)
is a particular expansion of minimal weight with the property that the noo-digits
are isolated. It has many applications to cryptography, see in parti@fadf, 21].
Other expansions of minimal weight in integer base are studied in [14,B§)dic
properties of signed binary expansions are established in [6].

Non-standard number systems — where the base is not an integer —bé&ane
studied from various points of view. Expansions in a real non-integaaéhh > 1
have been introduced by Rényi [24] and studied initially by Parry [22]mNer the-
oretic transforms where numbers are represented in base the Gaterh&e been
introduced in [7] for application to signal processing and fast convaiutiibonacci
representations have been used in [19] to design exponentiation algobésad on
addition chains. Recently, the investigation of minimal weight expansioadéan
extended to the Fibonacci numeration system by Heuberger [15], ed®an equiv-
alent to the NAF. Solinas [26] has shown how to represent a scalar implew base
7 related to Koblitz curves, and has giver-&NAF form, and the Hamming weight of
these representations has been studied in [9].

This research was supported by the French Agence Natioeale Becherche, grant ANR-JCJC06-134288
“DyCoNum”.
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In this paper, we study expansions in a real base 1 which is not an integer.
Any numberz in the interval|0, 1) has a so-callegreedy3-expansiorgiven by the
S-transformationrs, which relies on a greedy algorithm: lei(z) = 8z — |3z] and
define, forj > 1, z; = |8} '(z)]. Thenz = Y°°, x;877, where thez;'s are
integer digits in the alphabd0, 1,...,[3]}. We writez = .x1252---. If there exists
an such thate; = 0 for all j > n, the expansion is said to mite and we write
z =.x172 - - - Tp. By shifting, any non-negative real number has a gregeéypansion:
If 2€[0,8%),k>0,and3 %z = .x125---,thenz = 21 2. 2p 17842 - - -

We consider the sequences of digits; - - - as words. Since we want to minimize
the weight, we are only interested in finite words= zixs---x,, but we allow a
priori arbitrary digitsz; in Z. The corresponding set of numbers= .x1z2- - - x, IS
thereforeZ[3~1]. Note that we do not require that the greeghexpansion of every
z € Z|3~Y N[0, 1) is finite, although this property (F) holds for the three numigers
studied in Sections 4 to 6, see [12, 1].

The set of finite words with letters in an alphabkis denoted by4*, as usual. We
define a relation on words = x1x2 -+ -1, € Z*, y = y1y2 - - - ym € Z* by

x~gy ifandonlyif .zixp- -z, = B% % 41y - - -y, fOr somek e Z.

A word z € Z* is said to be3-heavyif there existsy € Z* such that: ~3 y and
lyll < ||l=||. We say thay is g-lighter thanz. This means that an appropriate shiftof
provides g3-expansion of the numbetyx; - - - z,, with smaller absolute sum of digits
than||z||. If z is not8-heavy, then we call a 5-expansion of minimal weightt is
easy to see that every word containing-aeavy factor is3-heavy. Therefore we can
restrict our attention tetrictly 5-heavywordsz = z; - - - z,, € Z*, which means that

is g-heavy, andc; - - - x,,_1 andxs - - - z,, are nots-heavy.

In the following, we consider real basgsatisfying the condition

(Dp) : there existsawortle {1— B,...,B —1}* such thatB ~5 b and|b|| < B

for some positive integeB. Corollary 3.2 and Remark 3.4 show that every class of
words (with respect te-3) contains g3-expansion of minimal weight with digits in
{1- B,...,B—1}ifand only if 5 satisfies ().

If 3is a Pisot number, i.e., an algebraic integer greater than 1 such that athibr
roots of its minimal polynomial are in modulus less than one, then it sati§igsfor
someB > 0 by Proposition 3.5. The contrary is not true: There exist algebraigense
8 > 1 satsfying (I;) which are not Pisot, e.g. the positive solution®f= 23 + 1
is not a Pisot number but satisfiesyj3ince 2= 100Q(—1). The following example
provides a large class of numbeétsatisfying (D3).

Example 1.1. If 1 = .t1t5-- -td(td+1)w with integersty > t, > -+ > tg > tg.1 > 0,
theng satisfies (3) with B =t; + 1= [ 3] + 1, since

ta+1 _
ﬁd+l—ﬁ15d—"'—tdﬁ—ﬁd+1:6jl:ﬁd—t15d Loty

and thus
B — (14 1)B%+ (t1 — t2) 84T+ -+ (ta—1 — ta) B + (tg — tapa) = 0.
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Recall that the set of greedy-expansions is recognizable by a finite automaton
wheng is a Pisot number [3]. In this work, we prove that the set offadixpansions of
minimal weight is recognized by a finite automaton wiikis a Pisot number.

We then consider particular Pisot numbers satisfying) (iZhich have been exten-
sively studied from various points of view. Wheris the Golden Ratio, we construct
a finite transducer which gives, for a strictbyheavy word as input, &-lighter word
as output. Similarly to the Non-Adjacent Form in base 2, we define a particuique
expansion of minimal weight avoiding a certain given set of factors. stMav that
there is a finite transducer which converts all words of minimal weight ireeelex-
pansions avoiding these factors. From these transducers, we tleivainimal au-
tomaton recognizing the set gfexpansions of minimal weight ifi—1,0,1}*. We
give a branching transformation which provides@kxpansions of minimal weight in
{-1,0,1}* of a givenz € Z[3~1]. Similar results are obtained for the representation
of integers in the Fibonacci numeration system. The average weigkpahsions of
the numbers-M, ..., M is % log,; M, which means that typically only every fifth digit
is non-zero. Note that the corresponding value for 2-expansionsnirinad weight is
3log, M, see [2, 5], and thatlog, M ~ 0.288log, M.

We obtain similar results for the case wherés the so-calledribonacci number
which satisfies?® = 52 + 5+ 1 (8 ~ 1.839), and the corresponding representa-
tions for integers. In this case, the average Weig%ﬁ% log; M ~ 0.282log; M ~
0.321log, M.

Finally we consider the smallest Pisot numb#r= 3 + 1 (3 ~ 1.325), which pro-
vides representations of integers with even lower weight than the Fiianaceration
system:z55 log; M ~ 0.095log, M ~ 0.234log, M.

Since the proof techniques for the Tribonacci number and the smailsestramber
are quite similar to the Golden Ratio case (but more complicated), someopants
proofs are not contained in the final version of this paper. The intefesteler can
find them in [13].

2 Preliminaries

A finite sequence of elements of a skis called aword, and the set of words oA
is the free monoidd*. The setA is calledalphabet The set of infinite sequences
or infinite words onA is denoted byAY. Let v be a word ofA*, denote byy" the
concatenation of to itselfn times, and by* the infinite concatenatiomwwv - - - .

A finite word v is afactor of a (finite or infinite) wordy if there exists, andw such
thatz = wovw. Whenu is the empty wordy is aprefixof x. The prefixv is strict if
v # x. Whenw is empty,v is said to be auffixof x.

We recall some definitions on automata, see [10] and [25] for instarcautoma-
tonoverd, A= (Q, A, E,1,T),is adirected graph labelled by elementsiofThe set
of vertices, traditionally calledtatesis denoted by, I C @ is the set ofnitial states,
T C Q is the set oterminal states and? C Q x A x Q is the set of labelle@dges
If (p,a,q) € E, we writep % ¢q. The automaton ifinite if Q is finite. A subset of
A* is said to baecognizable by a finite automatdfithere exists a finite automato#
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such thatH is equal to the set of labels of paths starting in an initial state and ending
in a terminal state.

A transduceris an automatol” = (Q, A* x A™, E, I, T) where the edges df are
labelled by couples of words id* x A™. It is said to befinite if the set@ of states

and the seF of edges are finite. Ifp, (u,v), ¢) € E, we writep v, q. In this paper

we consideletter-to-lettertransducers, where the edges are labelled by elements of
A x A’. Theinput automatorof such a transducer is obtained by taking the projection
of edges on the first component.

3 General case

In this section, our aim is to prove that one can construct a finite autormetogmizing
the set ofs-expansions of minimal weight whehis a Pisot number.

We need first some combinatorial results for baseatisfying (Ds). Note thats is
not assumed to be a Pisot number here.

Proposition 3.1. If 3 satisfies(Dg) with some integeiB > 2, then for every word
x € Z* there exists somge {1— B,...,B —1}* withz ~5 y and||y|| < ||=]|.

Corollary 3.2. If g satisfiedD ) with some integeB > 2, then for every word: € Z*
there exists g-expansion of minimal weighte {1— B,..., B — 1}* withz ~g3 y.

Remark 3.3. If 3 satisfies ([;) for some positive integeB, then it is easy to see that
G satisfies () for every integelC' > B.

Remark 3.4. If 5 does not satisfy (B), then all wordse € {1— B, ..., B — 1}* with
x ~g B arepg-heavier tharB. It follows that the set ofi-expansions of minimal weight
T ~g B is 0 BO*,

Proof of Proposition 3.1Let A = {1 - B,...,B —1}. If 2 = x122--- 2, € A%,
then there is nothing to do. Otherwise, we usg]Dthere exists some wordl =
b_j---bg € A* such thath_;, - -- bfl(bo — B)bl- <-bg ~p 0 and ||b|| < B. We use
this relation to decrease the absolute value of a digiz A without increasing the
weight of z, and we show that we eventually obtain a worddinif we always choose
the rightmost such digit. More precisely, 3;%9) =z, forl < j <n, xgo) = 0 for
j <0andj >mn,b; =0forj < —kandj > d. Define, recursively fos > 0O,
hi=max{j € Z: |m§7)| > B},

i+1 i i i+1 i i .
x&ﬁ ) = xgl) + Sgr‘(xgh_))(bo - B), mgﬁﬂ) = xgh_)ﬂ- + sgr(xﬁli))bj for j # 0,

as long as; exists. Then we havg” [\ | = [, 3 2P~ = 3 275~ and
jet je jet

i+1 i+1 i+1 7 7 7
S 1 = 12 S (2] < el 4 fbol — B4+ S (2 1+ (i) < 3 ).
JEZ j#0 j#0 JEZ
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If h; does not exist, then we haye,’| < B for all j € Z, and the sequende''”) ez
without the leading and trailing zeros is a waré A* with the desired properties.
Since||z| is finite, we have ., |x§i+1)| <Yjez |x§-i)| only for finitely manyi > O.
In particular, the algorithm terminates after at most — B + 1 steps ifj|b|| < B.!
If [|b]| = Band}_. ., |z (+D) | =2 ez |z | then we have

hi—=1 i
> fay Y = Z ol |+Z|bﬂ| and 3 Y= 3 [l |+Z|b|

j=—o00 j=—o0 j=h;+1 j=h;+1

Assume that; exists for alli > 0. If (h;);>0 has a minimum, then there exists an
increasing sequence of indic@s, ),,>o such that;,, < h, forall ¢ > i,,, m > 0, thus

Tm

hi -1

m—1

hi,, =1 k k
im+1 G —1+1
[ I e I S e o N ST R (R o ) S | )
j=1 j=1

j=—o0 j=—o0

If Zle |b_;| > 0, this is not possible sincgr|| is finite. Similarly, (k;);>0 has no
maximum ifz‘j:l |b;| > 0. Sincez\""Y can differ fromz? onlyforh; —k <j <
h; + d, we haveh; 1 < h; +dforalli > 0. If h; < hy, i < i, then there is therefore
a sequencéin, Jo<m<n, @ < dg < i1 < --- < iy = ¢, With M > (hy — h;)/d
such thath;,, < heforall ¢ € {iy,,im +1,...,7'}, m € {0,...,M}. As above, we
obtain||z|| > (M +1) Zj:l |b_;|, but M can be arbitrarily large ifh;),>0 has neither
m|n|mum nor maX|mum Hence we have shown thatannot exist for alk > 0 if
Zj 11651 >OandZ _11bj/ > 0.

It remains to consider the cagé| = B with k = 0 ord = 0. Assume, w.l.0.g.,
d = 0. Then we haveé, 1 < h;. If h; exists for alli > 0, then bothzj 0 |xh ;| and

Py |xh N ]| are eventually constant. Therefore we must have sog@ith h;: < h;

such thatr ‘rgz /) = ‘T;zi)fk w;f), xgzi//)+1x§zi//)+2 = Ohi’ h1/x2)+lx§1)+2
andxhi :cEL ) = Oforallj > k. This impliesz|”_, ---z}) ~5 0 orghi—"s = 1.

In the first case;cgll?“a:g”)+2 --- without the trailing zeros is a worgl € A* with the
desired properties. In the latter case, eachZ* can be easily transformed into some
y € {—1,0,1}* with y ~5 = and||y|| = ||=||, and the proposition is proved. ]

The following proposition shows slightly more than the existence of a positiee
ger B such that? satisfies (;) wheng is a Pisot number.

Proposition 3.5. For every Pisot numbef, there exists some positive integerand
some word € Z* such thatB ~3 b and||b|| < B.

Proof. If 3 is an integer, then we can chooBe= 3 andb = 1. So letg be a Pisot
number of degred > 2, i.e., s hasd — 1 Galois conjugateg’), 2 < j < d, with
|39)| < 1. For every: € Q(j3) setz\) = P(3W)) if z = P(B), P € Q[X].

IFor the proof of Theorem 3.11, it is sufficient to consider tase||b|| < B. However, Corollary 3.2 is
particularly interesting in the cagg|| = B, and we use it in the following sections f& = 2.
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Let B be a positive integel, = [log B/ log 3], andzix; - - - the greedys-expansion
of 2= 37LB €0,1). Since

k
mh(z) =B () —ap = = e - szﬁk_éa
=1
we have
' Y 3 3 [0 4 LB
‘(Tg(z))(i)‘ — ‘(ﬂ(ﬂ))kz(y) _ Zzew(ﬁ)k—e < ‘5(]>’ ‘Z(J)‘ + m

(=1

forall k > 0and 2< j < d. Setk = max<;<q4[—log|z\)|/log|sV)[]. Thenh(z)is
an element of the finite set
Y =<yez[fYn[0,1): |y(j)|<l+Lj_ for 2<j<dy.
’ -0 "=
For everyy € Y, we can choose @-expansiony = .az - - - a,,. Let W be the maximal
weight of all these expansions anfl(z) = .o} ---a;,. Sincez = .x1...xy + 75(2),
the digitwise addition of; - - - 2 anda - - - a;,, provides a word with b ~3 B and

B log B log B B
I < L)+ w = e || 282 - 208 15+ w = O(log ).

If B is sufficiently large, we have therefojté|| < B. ]
In order to understand the relatiery on A*, A = {1 - B,..., B — 1}, we have to
consider the words € (A — A)* with z ~3 0. Therefore we set

Z5 = {zl---zne (21— B),...,2(B-1)}*

n >0, izjﬁ_j = 0}
j=1

and recall a result from [11]. All the automata considered in this papeegs words
from left to right, that is to say, most significant digit first.

Lemma 3.6([11]). If 5 is a Pisot number, thefs is recognized by a finite automaton.

For convenience, we quickly explain the construction of the automéatarecogniz-

ing Z3. The states ofiz are 0 and alk € Z[3] N (%, %) which are accessible

from 0 by paths consisting of transitions® s’ with e € A — A such that’ = 3s + e.
The state 0O is both initial and terminal. Whenis a Pisot number, then the set of
states is finite. Note thals is symmetric, meaning that if % s is a transition, then

—s = —s' is also a transition. The automatety, is accessible and co-accessible.

The redundancy automato(or transducer)Rg is similar to.43. Each transition

s = s’ of Ag is replaced inRs by a set of transitions LA s', with a,b € A and

a — b = e. From Lemma 3.6, one obtains the following lemma.
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Lemma 3.7. The redundancy transduc@&; recognizes the set
{(:rlxn’ylyn) c A* X A* | nz 07 L1 Ly = ylyn}
If 3 is a Pisot number, theR s is finite.

From the redundancy transduc®y, one constructs another transdudgr with
states of the fornis, §), wheres is a state ofRg andé € Z. The transitions are of

the form(s, d) % (s', &) if s % & is a transition iMR andd’ = & + [b| — |a|. The
initial state is(0, 0), and terminal states are of the fo® ¢) with § < 0.

Lemma 3.8. The transducef; recognizes the set

{1 an,y1yn) €A X A" |1 = 1Y, ya-ynll <l an }-

Of course, the transduc@g is not finite, and the core of the proof of the main result
consists in showing that we need only a finite par7gf

We also need the following well-known lemma, and give a proof for it beedhe
construction in the proof will be used in the following sections.

Lemma 3.9. Let H ¢ A* and M = A*\ A*HA*. If H is recognized by a finite
automaton, then so i&/.

Proof. Suppose tha# is recognized by a finite automatdn. Let P be the set of
strict prefixes ofH. We construct the minimal automatow of M as follows. The
set of states oM is the quotientP/= wherep = ¢ if the paths labelled by end in
the same set of statesHi as the paths labelled ky Since is finite, P/= is finite.
Transitions are defined as follows. Lebe in A. If pa is in P, then there is a transition
[p]= % [pa]=. If pais notin H U P, then there is a transitigp]= - [v]= with v in P
maximal in length such thaiz = uv. Every state is terminal. O

Now, we can prove the following theorem. The main result, Theorem 8:illlbe
a special case of it.

Theorem 3.10. Let 8 be a Pisot number an® a positive integer such thgDp)
holds. Then one can construct a finite automaton recognizing the ge¢xjpansions
of minimal weight in{f1 — B,..., B — 1}*.

Proof. Let A = {1 - B,...,B — 1}, x € A* be a strictlys-heavy word and, €

A* be apg-expansion of minimal weight with: ~5 y. Such ay exists because of
Proposition 3.1. Extend, y to wordsz’, 3’ by adding leading and trailing zeros such
thate! = z1--- 2,y =y1---y, and.zy---x,, = .y1---y,. Then there is a path in

x|y,

the transduce?z composed of transitions;_1,0;-1) =~ (s;,9;), 1 < j < n, with
s0=0,00=0,s,=0,0, <O.

We determine bounds far;, 1 < j < n, which depend only on the state= s;.
Choose as-expansion ofs, s = ag---a;.a;+1" - am, and setwys = |lag---ap|. If
d; > ws, thenwe havédy; - - - y;|| > [|x1- - xj||[+ws. Sinces; = (x1—y1) -+ (x;—y;)-
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the digitwise subtraction of @ =70z, ...2,;0m~% and =40, .. .q,, provides
a word which isg-lighter thany, - - - y;, which contradicts the assumption thais a
B-expansion of minimal weight.

Let W = max{w; | sis astate indz}. If 6; < —W — B, then leth < j be such
thatz, # 0,z; = Oforh < i < j. Since|z,| < B, we haved,_1 < 6; + B <
-W < —w,, ,, hencellzy---xp_1| > |ly1-- - yn-1| + ws, ,. Letas---a, be the
word which was used for the definition af;, ,, i.e.,sp_1 = a1---a;-aip1- - am,
ws, , = |la1---an||. Then the digitwise addition of @~ +130)y, ...4, 0™~ and
omaxh—1-i.0), ... q,, provides a word which ig-lighter thanzy - - - zj,_1. Sincez;, #
0, this contradicts the assumption thas strictly 5-heavy.

Let S be the restriction of 3 to the statess, ) with —1W — B < ¢ < w, with some
additional initial and terminal states: Every state which can be reached(@.®) by
a path with input in 0 is initial, and every state with a path {0, ), § < 0, with an
input in O° is terminal. Then the s&i which is recognized by the input automaton
of Sg consists only of3-heavy words and contains all stricththeavy words inA*.
ThereforeM = A*\ A*H A* is the set off-expansions of minimal weight id*, and
M is recognizable by a finite automaton by Lemma 3.9. |

Theorem 3.11. Let 5 be a Pisot number. Then one can construct a finite automaton
recognizing the set gf-expansions of minimal weight.

Proof. Proposition 3.5 shows thdt satisfies (I;) for some positive integeB, and
that nos-expansion of minimal weighy € Z* can contain a digig; with |y;| > B,
since we obtain &-lighter word if we replace3 by b as in the proof of Proposition 3.1.
Therefore Theorem 3.10 implies Theorem 3.11. O

4 Golden Ratio case

In this section we give explicit constructions for the case wiikiethe Golden Ratio
“T‘E. We have 1= .11, hence 2= 10.01 andg satisfies (D), see also Example 1.1.
Corollary 3.2 shows that every € Z[3~1] can be represented byfexpansion of
minimal weight in{—1,0,1}*. For most applications, only these expansions are in-
teresting. Remark that the digits of arbitragyexpansions of minimal weight are in
{-2,-1,0,1,2} by the proof of Theorem 3.11, since=3100.01.

For typographical reasons, we write the digit asl in words and transitions.

4.1 B-expansions of minimal weight for@ = 1+2\/5

Our aim in this section is to construct explicitly the finite automaton recognizing the
(#-expansions of minimal weight id*, A = {—1,0, 1}.

Theorem4.1.1f 5 = HT\E’ then the set of-expansions of minimal weight{r-1,0, 1}*
is recognized by the finite automataris of Figure 1 where all states are terminal.
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Figure 1. AutomatonM g recognizings-expansions of minimal weight fgr = “T‘/E
(left) and a compact representation/ofs (right).

It is of course possible to follow the proof of Theorem 3.10, but the staitel; are

1 1 ) 1 1 , 1 , 1
, iﬁB, iﬁz, iﬁ, +1, 406, 6%, £4+ & +6+ & +6%2+ 7 +3°%+ &=
thusW = 2 and the transducef; has 160 states. For other baggshe number of
states can be much larger. Therefore we have to refine the technigueedafnot want
computer-assisted proofs. It is possible to show that a large p&y ©f not needed,
e.g. by excluding somg-heavy factors such as 11 from the output, and to obtain
finally the transducer in Figure 2. However, it is easier to prove Theardniby an
indirect strategy, which includes some results which are interesting bystiees.

0

Lemma 4.2. All words in{—1, 0, 1}* which are not recognized by the automatbt);
in Figure 1 ares-heavy.

Proof. The transducer in Figure 2 is a part of the transddtein the proof of Theo-
rem 3.10. This means that every word which is the input of a path (witlofudbshed
transitions) going from0, 0) to (0, —1) is 3-heavy, because the output has the same
value but less weight. Since®heavy word remaing-heavy if we omit the leading
and trailing zeros, the dashed transitions can be omitted. Then the setitsf isip

H =1(0100*1 U 1(0100*0101 U 1(0010)*1 U 1(0010)*01
U 1(0100)*1 U 1(0100*0101 U 1(0010*1 U 1(0010*01
andMg is constructed as in the proof of Lemma 3.9. ]

Similarly to the NAF in base 2, where the expansions of minimal weight aveid th

set{11 11,11, 11}, we show in the next result that, for= “Tﬁ every real number
admits g3-expansion which avoids a certain finite Sét

Proposition 4.3. If 5 = ”Tﬁ’ then every: € R has ap-expansion of the form
Z = Y1+ Yk-Yk+1Ur+2 - With y; € {=1,0,1} such thaty,y,--- avoids the set
X = {11,101,1001 11,101, and their opposites If z € Z[3] = Z[3~1], then this
expansion is unique up to leading zeros.
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Figure 2. Transducer with strictly-heavy words as inputg, = ”T\@

Proof. We determine thig-expansion similarly to the greedsrexpansion in the In-
troduction. Note that the maximal value a@fz, - -- for a sequence;z; - - - avoiding
the elements o is .(1000“ = 32/(3? + 1). If we define the transformation

R -5 B B 2+ 1
T [52+1’52+1 TlErr i) "W e Tt

and sety; = [%ﬂ*l(z) +1/2| forz € [‘52 i ),j > 1, thenz = 1y - - -. If

B2+1° 32+1
_ ; j B _p _[=1 1B
y; = 1 for somej > 1, then we have’(z) € 3 x [[32+1’ [32+1) —-1= [ﬁzﬂ, B2+1)’
. a2 - .
hencey;11 = 0, y;12 = 0, andri*2(2) € [, #), hencey;.5 € {1,0}. This

shows that the given factors are avoided. A similar argumeng;fer —1 shows that
the opposites are avoided as well, hence we have shown the existeneegpémnsion

for z € [[3_2—3’17 ﬁf—il) For arbitraryz € R, the expansion is given by shifting the

expansion o3z, k > 0, to the left.

If we choosey; = 0in caser’~(z) > 8/(3%2+1) = .(0100*, then it is impossible
to avoid the factors 11, 101 and 1001 in the following. If we chogse- 1 in case
771(2) < B/(8%+ 1), thenpri—t(z) — 1 < —1/(3%+ 1) = .(0010), and thus it is
impossible to avoid the factorsl 1101, 11, 101 and100L. Since3/ (3% + 1) ¢ Z[8],
we haver’—1(z) # 3/(8% + 1) for z € Z[3]. Similar relations hold for the opposites,
thus the expansion is unique. O

Remark 4.4. Similarly, the transformation(z) = 3z — |z + 1/2| on [-3/2,3/2)
provides for every: € Z[3] a unique expansion avoiding the factors 11, 101,101,
1001 and their opposites.

Proposition 4.5. If = is accepted by 3, then there existg € {—1,0, 1}* avoiding
X = {11,101,1001,11, 101 and their oppositeswith x ~3 y and||z|| = ||y||. The
transducerVp in Figure 3 realizes the conversion fradz0 to y.
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0]o

Figure 3. Transduces normalizings-expansions of minimal weighti = ”T\@

Proof. SetQo = {(0,0;0), (—1,1), (1,1)} = Q},

Q1=1{(0,0;1), (-1/8,0)}, Q1= {(0,0;10)},

Q10 = {(0,0;10), (-1,0)}, Qo= {(0,0;100)},
Q100 = {(0,0; 100, (-1/8,1)}, Q100 = {(0,0;0), (-1,1)},
Qo1 = {(-1/8,-1), (1/5%,0)}, Q101 = {(0,0; 1)},

and, symmetrically7 = {(0,0;1), (1/5,0)}, Q7 = {0,0; 10}, ... . Then the paths
in A3 with input in 00° lead to the three states @y, the paths with input 01 lead to
the two states i1, and more generally the paths M with input Gz such thatz
is accepted by\ s lead to all states i), or to all states inR!,, whereu labels the
shortest path inV 5 leading to the state reached byIndeed, ifu % v is a transition
in Mg, then we have), % Q, orQ, = Q', and@’, % Q, or @, % Q', where
Q % R means that for every ¢ R there exists a transitiopi rin Nz with ¢ € Q.

Since everyR, and everyQ!, contains a state with a transition of the forny Ok,
(0,0;w), there exists a path with input:0 going from(0, 0; 0) to (0, 0;w) for every
word z accepted by\M 5. By construction, the outpytof this path satisfies ~z y and
llz]| = |ly|l. It can be easily checked that all outputs\df avoid the factors in. O

Proof of Theorem 4.1For everyxz € Z*, by Proposition 3.1 and Lemma 4.2, there
exists as-expansion of minimal weighj accepted byM g with y ~3 =. By Proposi-
tion 4.5, there also exists@expansion of minimal weighy’ € {—1,0, 1}* avoiding

X with y’ ~5 y ~3 x. By Proposition 4.3, the output of; is the same (if we neglect
leading and trailing zeros) for every input’0 such that’ ~z = andz’ is accepted
by M. Thereforg|z’|| = ||y/|| for all thesez’, and the theorem is proved. ]

4.2 Branching transformation

All 3-expansions of minimal weight can be obtained by a branching tranafam.
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Theorem 4.6. Letz = 1 --- 2, € {-1,0,1}* andz =.x1- Ty, = 1+‘/§. Thenz
is a 3-expansion of minimal welght if and only-f-22- < » < -25_ and

5%+1 B7+1
1 if B22+1 <Flr—azj0.< ﬁfﬁl
Oor1l |f62+1<ﬁj—l — 21wy < FA
xj; = 0 ﬁ2+1<63 12 z~~-xj_1.<% forall j, 1<j <n.
—1or0 if52+1<6] lz—z1~~-xj_1.<ﬁ
-1 ifﬁ2+l<ﬁj 1z—ac1---xj,1.<ﬁ§—+21

The sequenc€?’ 1z —z1- -2 1.)1<j<n is atrajectory(77=1(2))1< j<,, where the
branching transformation: z — Sz — 21 with 23 € {—1,0, 1} is given in Figure 4.

2 208
62+1" p2+1

23 B
B2+17 pZ+1

—B8 1
B2+1" p2+1

—23 -8 s _-1
B2+17 241 B2+17 p2+1

-2 —28
B2+1° BZ+1

Figure 4. Branching transformation giving a*l*z‘—@-expansions of minimal weight.

Proof. To see that all words; - - - z,, given by the branching transformation ase
expansions of minimal weight, we have drawn in Figure 5 an automatorevevery
state is labeled by the interval containing all numb#rs—x1 - - - ;. such thatr; - - - z;
labels a path leading to this state. This automaton turns out to be the autamaton
in Figure 1 (up to the labels of the states) which accepts exactly-tagansions of
minimal weight. Recall tha{0010~ = [32+1 and thus1(0100« = Bzﬁl

If the conditions onz andz; are not satisfied, then we have either; - - -z, | >
.1(0100“, orz; = 1 and.xj41-- 2, < .(0010)¥, orz; = —1 and.zj 1---x, >
.(0010« for somey, 1 < j < n. In every case, it is easy to see that - - z,, must
contain a factor in the séf of the proof of Lemma 4.2, heneg - - - z,, is 5-heavy. O

4.3 Fibonacci numeration system

The reader is referred to [18, Chapter 7] for definitions on numeragistems defined
by a sequence of integers. Recall that the linear numeration systemicalhoas-
sociated with the Golden Ratio is the Fibonacci (or Zeckendorf) numeragistem
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C(ooio)“’, .(0001)“’)41_61(0100)% .(1000)“”) .(0100)%, .(1000)%

.(0100)%“, .(0010)% .(1000)%, .1(0100)%

.(0001)%, .(0010)%

.(1000)%, .(0100)%

1

Figure 5. AutomatonM g with intervals as labels.

defined by the sequence of Fibonacci numbets (F,),,>o with F,, = F,,_1+ F,,_»,

Fo, = 1 andF; = 2. Any non-negative integeN < F,, can be represented as
N = Z?:l x;F,—; with the property that ---z, € {0,1}* does not contain the
factor 11. Forwords = z1 -z, € Z*,y = y1- - - ym € Z*, we define a relation

z~py ifandonlyif > aiF, ;= yiFn .
j=1 j=1

The propertiesF’-heavyand F-expansion of minimal weigtdre defined as fop-
expansions, with~r instead of~z. An important difference between the notions
F-heavy and3-heavy is that a word containingfa-heavy factor need not bg-heavy,
e.g. 2 isF-heavy since 2~ 10, but 20 is notF'-heavy. Howeveryxv is F-heavy

if z0'e"9tv) is F-heavy. Therefore we say thate Z* is strongly F-heavyif every
element inz0* is F-heavy. Hence every word containing a stronffhheavy factor is
F-heavy.

The Golden Ratio satisfies ¢gPsince 2= 10.01. For the Fibonacci numbers, the
corresponding relation isi2, = F,, ;1 + F,_», hence 20 ~x 10010*~2 for all n > 2.
Since 20~ 101 and 2~ 10, we obtain similarly to the proof of Proposition 3.1 that
for everyx € Z* there exists somg € {—1,0, 1}* with 2 ~r y and|y|| < |lz|. We
will show the following theorem.

Theorem 4.7. The set of-expansions of minimal weight {r-1, 0, 1}* is equal to the
set of 3-expansions of minimal weight in-1, 0, 1}* for 5 = f5T+1

The proof of this theorem runs along the same lines as the proof of @imed. We
use the unique expansion of integers given by Proposition 4.8 (dueutoeriger [15])
and provide an alternative proof of Heuberger’s result that thepansions aré’-
expansions of minimal weight.

Proposition 4.8([15]). EveryN € Z has a unique representatios = ZZ:l Yiln—j
withy; # Oandy;---y, € {—1,0,1}* avoiding X = {11,101 1001 11,101, and
their opposites.

Proof. Let g,, be the smallest positive integer with Akexpansion of length starting
with 1 and avoidingX, andG,, be the largest integer of this kind. Singg.1 ~r
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1(0010)*/4, G,, ~p (1000™/* and 11010)"/4 ~ 1, we obtaing, 1 — G,, = 1.
(A fractional power(y; ---y;)’/* denotes the wordys - yx)U/  ys -y, 1/a)n-)
Therefore the length of an expansiomiy, - - - y, of N £ 0 with y; # 0 avoidingX is
determined by~,,_1 < |N| < G,,. Sinceg,,— F,,_1 = —G,_3andG,, — F,,_1 = G,_a,
we have-G,, 3 < N — F, 1 < G, _4if y1 =1, hencey, = y3 = 0,y4 # 1, and we
obtain recursively thaV has a unique expansion avoidiig O

010@@#—1&—2) ow],—l) (/ﬂlﬁxﬂ)—CPQ

Figure 6. All inputs of this transducer are stronghrheavy.

Proof of Theorem 4.7Letay - --a, € Z*, z = Z}Ll a;f"I, N = Z?:l ajF,_;. By
using the equationg® = -1 + gF2 andF, = F,_1 + F,_», we obtain integers
mg andms such that: = m18 + mg and N = m1F1 + moFo = 2my + mg. Clearly,

z = 0 impliesm; = mg = 0 and thusV = 0, but the converse is not trug’ = 0 only
impliesmg = —2mgy, i.e.,z = —ml/ﬂz. Therefore we have, - -z, ~p y1---yp If
and only if (z1 — y1) - - - (zn, — yn). = m/ [ for somem € Z, hence the redundancy
transducermR » for the Fibonacci numeration system is similarR@, except that all
statesn/3?, m € Z, are terminal.

The transducer in Figure 6 shows that all strigiiheavy words inf—1,0,1}* are
strongly F-heavy. Therefore all words which are not accepted\dy are F-heavy.
Let V= be asV, except that the statés-1/32, 0) are terminal. Every se, and@’,
contains a state of the for®, 0;w) or (+1/52,0). If x is accepted byj, then Nz
transforms thereforex0into a wordy avoiding the factors given in Proposition 4.8.
Hencex is an F-expansion of minimal weight. O

Remark 4.9. If we consider only expansions avoiding the factors 11, 11,101,
1001, then the difference between the largest integer with expansion of lesgith the
smallest positive integer with expansion of length- 1 is 2 if n is a positive multiple
of 3. Therefore there exist integers without an expansion of this kigd, & = 4.
However, a small modification provides another “nice” seFeéxpansions of minimal

v # 0,41y, € {1,0,1}* avoiding the factors 111,101,11,11 101,101 1001
andy;_»y;_1y; = 101 ory;_3---y; = 1001 only ifj = n.
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4.4 \Weight of the expansions

In this section, we study the average weighttoéxpansions of minimal weight. For
every N € Z, let |N|| ¢ be the weight of a correspondirfg-expansion of minimal
weight, i.e.,[|N ||z = ||z| if 2 is anF-expansion of minimal weight witlt ~» N.

Theorem 4.10. For positive integerd/, we have, as/ — oo,

1 logM
2M—|—1 Z ||F——T+2ﬁ+o(1)-

Proof. Consider firstM = G,, for somen > 0, whereG,, is defined as in the proof of
Proposition 4.8, and Iét/,, be the set of words = 27 ---z,, € {—1,0, 1}" avoiding
11,101, 1001 11, 101, and their opposites. Then we have

1 Gn
mN;G ||F—#W > lall = ZEX],

zeW,
whereE X is the expected value of the random vanakﬂpdefmed by
#ar- -z, € Wy, 12 # 0} o C #arw, €Wy ia; =0}
#W, X =0 = WV,

Instead of(X;)1<,<,, We consider the sequence of random variab¥§g,<;<,, de-
fined by

Pr[Xj = 1] =

PY1 = y1yoys, . .., Y = yjyj41Y512]
=#{x1- xp2 € W00 21 xjq0 = y1- - yjp2} /W,
PY,_1 = ayz,Y; =2'y'2'| =0if 2’ # yory # 2. Itis easy to see thdl;)1<;<,, iS
a Markov chain, where the non-trivial transition probabilities are given b
Gn—j—2—Gn—j-3

1— PrYj.; = 000 Y; = 100 = PrY;;; = 001 | ¥; = 100 =

Gn—j+1 - anj '
2G,_—3+1
and the opposite relations. Sin€g, = ¢3" + O(1) (with g = = (%/5), the

transition probabilities satisfy Bfj,1 = v | Y; = u] = pu,» + O(ﬂ ”*J) with

o o o

(pu,v)u,ve{10Q01Q00Looqooioio,ooi} =

O OO ook o

0
0
1
0
0
0
0

[\
o oYy
N
R

iy
@)
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The eigenvalues of this matrix are 3 ii, 1i2iﬁ\/§, [—35 The stationary distribution
vector (given by the left eigenvector to the eigenvalue 1)d4s &, L 2 L L L)

10’ 10’ 57 10’ 10’ 10
thus we have
E X; = PY; = 100 + PrY; = 100 = 1/5+ O(g~mn:n=a)),

cf. [8]. This proves the theorem far = G,,.
If G, < M <G,y1,thenwe havéN||p =1+ ||N — F,||rif G, < N <M, and
a similar relation for-M < N < —-G,,. WithG,, +1 - F,, = —G,,_», we obtain

M G M—Fy, Gn2
Do INIeE= Y INle+ D> @FINIE) A+ Y A+ N]R)
N=—M N=—Gp N=—Gn_» N=F,—M
G G2 |M—Fy|
= Y INlr+ D> IINlp+sgqM—F,) >  |[N|r+O(M)
N=—Gp N=—Gp_> N=—|M—F,|
2M log M
= F, logM M — F,)log|M — F, M)= ———— M
Slogs ([ 109 M + (M — Fu) log| nl) +OM) = =giog + O
by induction on: and using®== log | X2 | = O(1). O

Remark 4.11. As in [8], a central limit theorem for the distribution ¢iV||» can be
proved, even if we restrict the numbeé¥sto polynomial sequences or prime numbers.

Remark 4.12. If we patrtition the mterval[ where the transformation :

[32+1’ ﬁil)
z — Bz — [ﬁ 2 4+ 1/2] of the proof of Proposition 4.3 is defined, into intervals

S 5 -1 -8 15 18
Ti00 = [62+1 21 ) Tozo = [62+1’ 62+1) Toor = [62+1’ 52+1) Tooo = [6211’ 62+1)’
Too1 = [ﬁlz/fl 27), lowo = [m, ﬁ) T100 = [52’117 62+1) then we have, ., =
A7(L,) N 1,)/\(7(1,)), whereX denotes the Lebesgue measure.

5 Tribonacci case

In this section, let3 > 1 be the Tribonacci numbef® = 32 + 5 + 1 (5 ~ 1.839).
Since 1= .111, we have 2= 10.001 andg3 satisfies (). Here, the digits of arbitrary
(#-expansions of minimal weight are {#-5, . . ., 5} since 6= 10000010101. We have
5=101100011 and we will show that 101100011 is-expansion of minimal weight,
thus 5 is also @-expansion of minimal weight.

The proofs of the results in this section run along the same lines as in thenGolde
Ratio case. Therefore we give only an outline of them.

5.1 B-expansions of minimal weight

All words which are not accepted by the automatety in Figure 7, where all states
are terminal, argl-heavy since they contain a factor which is accepted by the input
automaton of the transducer in Figure 8 (without the dashed arrows).
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Figure 7. AutomataMg, 3% = 32 + 3 + 1, andMr.

Proposition 5.1. If 5 > 1 is the Tribonacci number, then everye R has agj-
expansion of the form= y; - - - y..yx11yx12 - - - Withy; € {—1,0,1} such that,y, - - -
avoids the seX = {11,101 11, and their opposites If » € Z[3] = Z[3~1], then this
expansion is unique up to leading zeros.

The expansion in Proposition 5.1 is given by the transformation

) A =6 _B N g+1 1
T' [5+175+1)_)[5+1’6+1>’ T(z)_ﬁzﬂTHzJ.

Note that the word avoiding’ with maximal value i100)*, .(100)« = %.

Remark 5.2. The transformation(z) = 8z — | £22 4+ 1| on [ 7%, 5#1) provides

a unique expansion avoiding the factors 11, 101 and their opposites.

Proposition 5.3. The conversion of an arbitrary expansion accepted by the automaton
M in Figure 7 into the expansion avoiding = {11,101 11, and their oppositesis
realized by the transduceY in Figure 9 and does not change the weight.

Theorem 5.4. If 3 is the Tribonacci number, then the set®é&xpansions of minimal
weight in{—1,0,1}* is recognized by the finite automatav 3 of Figure 7 where all
states are terminal.

5.2 Branching transformation

Contrary to the Golden Ratio case, we cannot obtainsakpansions of minimal
weight by the help of a piecewise linear branching transformation:=.01(001)",
then we have n@-expansion of minimal weight of the form= .1lx,z3- - -, whereas
z" = .0011 has the expansiofil, andz’ < z. On the other hand; = .1(100)"11 has
no s-expansion of minimal weight of the form= .1xzpz3--- (since 1100)"11 is 3-
heavy but(100)"11 is not3-heavy), whereas’ = .1101 is a3-expansion of minimal
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Figure 8. The relevant part afs, 5% = 32 + 5 + 1, andSr.

weight, andz’ > 2. Hence the maximal interval for the digit 1[i$010)~,.1(100)“],

with .(010“ = 773 = 4 and.1(100~ = ﬁz(gjll) The corresponding branching

transformation and the possible expansions are given in Figure 10.

5.3 Tribonacci numeration system

The linear numeration system canonically associated with the Tribonaodberuis
the Tribonacci numeration system defined by the sequéneg7},),,>o with 7o = 1,
Th=2"T,=4,andl,, =T, 1+ T, »+ T,_3forn > 3. Any non-negative integer
N < T, has a representatioN’ = >>"_; ;T,; with the property that; - --z,, €
{0, 1}* does not contain the factor 111. The relation and the propertie$-heavy
T-expansion of minimal weigt#nd strongly 7-heavyare defined analogously to the
Fibonacci numeration system. We have’ 20, 10001¢ 2 for n > 3, 200~ 1001,
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Figure 9. Normalizing transduceN, 5% = 5%+ 3 + 1.

20 ~7 100 and 2~1 10, therefore for every € Z* there exists somg € {-1,0,1}*
with z ~7 y and ||y|| < ||lz|. Since the difference of (010)"/3 and (100)"/2 is
1(110)"/2 ~7 1, we obtain the following proposition.

Proposition 5.5. Every N € Z has a unique representatiol = Z;;l y;Tn—; With
y1 # 0andy; - -y, € {—1,0,1}* avoiding X = {11,101 11, and their opposites

If 2z =a1---a,. = momimg., thenN = Z?:l a;Tn_; = 4my +2my+mo =0

if and only if mg = 2mg andmy = —2mp — mg, i.e., 2z = —mga/B% + m6/63,
hence all states = m /3% + m//3% with somem, m’ € 7Z are terminal states in the
redundancy transduc&,. The transduces,, which is given by Figure 8 includ-
ing the dashed arrows except that the stétes/3, —3) are not terminal, shows that
all strictly g-heavy words in{—1,0,1}* are strongly’'-heavy, but that some other
x € {-1,0,1}* are T-heavy as well. Thus th&-expansions of minimal weight
are a subset of the set recognized by the automatonin Figure 7. Every se),,
and@.,, u € {0,1,10,11}, contains a terminal stai®, O;w) or (1 — 1/43,0), hence
the words labelling paths ending in these statesTaexpansions of minimal weight.
The setsR,, and@’,, v € {11,110,111,110,1101}, contain stateg+1/3%, —1;w),
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<2+1/a 2841 ) }
BB+ BB+ { L(001)¥, .(010)“ } 1 (100)¥, .1(100)%
( 26+1 38 ) L

/
g
&0
]

!
?
N———
—

251 5
B(B+1)’ p+1

S
“2-1/8 _2p.1 .1(100)%, .(100)%
B(B+1) ' B(B+1)

(-0« .(00n)*)

Figure 10. Branching transformation, corresponding automafins= 52 + 3 + 1.

(£1/8%, —1;w), (£(1 — 1/8), —2), hence the words labelling paths ending in these
states ar@-heavy, and we obtain the following theorem.

Theorem 5.6. The T-expansions of minimal weight if1,0,1}* are exactly the
words which are accepted bytr, which is the automaton in Figure 7 where only the
states with a dashed outgoing arrow are terminal. The words given byoBitgn 5.5
are T-expansions of minimal weight.

5.4 Weight of the expansions

Let W, be the set of words = 1 --- 2z, € {—1,0,1}" avoiding the factors 11, 101,
11, and their opposites. Then the sequence of random varighles: ;<,, defined by

#{xl...xn+1€WnO: :rl...zj+1:y1...yj+l}
#W,

PriY1 = y1y2,....Y; = yjyj1] =

is Markov with transition probabilities Pr; 1 = v | Y; = u] = p,,, + O(87"17),

0O O 72 % 0
1 0 0 0 O
(Pu,v)u,ue{lo,m,oo,oI,IO}: 0 52_—61 % ﬁz—_@l of-
0O O 0 0 1
2
0 % &= 0 0

The eigenvalues of this matrix are-41, % W and the stationary distri-

i in 6522 B2 g 52 B2 i
bution vector of the Markov chain i 5T BT BT BT m). We obtain the

following theorem (with;£"; = (0011010109 ~ 0.28219).
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Theorem 5.7. For positive integers//, we have, a3/ — oo,

1 M 6% logM
2M+1N;MHNHT_ 3+ 1 logj +0()-

6 Smallest Pisot number case

The smallest Pisot numb@r~ 1.325 satisfies® = 5 + 1. Since 1= .011= .10001

implies 2= 10000001 as well as 2 10000001, (D,) holds. We have furthermore
3 = % — 579, thus all3-expansions of minimal weight have digitsfn-2,...,2}.

6.1 (B-expansions of minimal weight

Figure 11. AutomataMg, 5% = 3 + 1, and M.

Let M3 be the automaton in Figure 11 without the dashed arrows where all states

are terminal. Then itis a bit more difficult than in the Golden Ration and th@mabci
cases to see that all words which are not acceptetithyare-heavy, not only because
the automata are larger but also because some inputs of the transdticere13 are
not strictly 3-heavy (but of course stilt-heavy). We refer to [13] for details.

Proposition 6.1. If 5 is the smallest Pisot number, then every R has as-expansion
ofthe formz = y1 - - - yg-Yp+1yr+2 - - - Withy; € {—1,0, 1} such thaty1y» - - - avoids the
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04102, 02104, 107 107

03102, 03103

03102, 03103

107 04102, 02104, 107

Figure 12. Compact representation g .

setX = {10°1,10°1,10°1,0 < k < 5, and their opposites If = € Z[3] = Z[3~Y,
then this expansion is unique up to leading zeros.

The expansion in Proposition 6.1 is given by the transformation

[P - R )

52+1’52+1)’ T(m):ﬁ“’_t 232 2

) " 3 4 .
sincer [, ) = [48 — 1 Aq — 1) = [~ %2 %77). The word avoiding¥
with maximal value i107)*, .(107)* = 57/(5% — 1) = 3%/(3% + 1).

Remark 6.2. The transformation(z) = 3z — |4z + 3] on [ - %2, %2) provides a
unique expansion avoiding 4Dinstead of 161.

Proposition 6.3. The conversion of an arbitrary expansion accepted\y into the
expansion avoidingl = {10P1,101,10°1,0 < k < 5, and their oppositesis real-
ized by the transduceX/; in Figure 14 and does not change the weight.

Theorem 6.4.If 5 is the smallest Pisot number, then the set-afkpansions of minimal
weight in{—1,0, 1}* is recognized by the finite automatgriz of Figure 11 (without
the dashed arrows) where all states are terminal.

6.2 Branching transformation

In the case of the smallest Pisot numiggrthe maximal interval for the digit 1 is
2

[(010°)%, .1(0°10P)“], with .(01C%) = £ and 1(0°10%)~ = £:12. The corre-

sponding branching transformation and expansions are given ineFldur
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Figure 13. The relevant part afs, 3° = 5 + 1.

6.3 Integer expansions

Let (S,)n>0 be a linear numeration system associated with the smallest Pisot number
6 which is defined as follows:

So=1 6561=2 5,=3,5=4, S,=S5,_2+5,_3 forn>4

Note that we do not choose the canonical numeration system associtht¢idersmall-
est Pisot number, which is defined by = 1,U; = 2,U, = 3, U3 = 4,Us = 5,U,, =
U,_1+U,_sforn > 5, sincel/,, = U,_» + U,,_3 holds only forn = 1 mod 3,n > 4.
For everyz € Z*, there existyy € {—1,0,1}* with z ~g y, |ly]| < |z, since
2 ~g 10, 20~5 1000, 200~¢ 1010, 2§ ~5 10100, 26 ~5 100100, 28 ~5 1010,
20" ~g 10°10"> for n > 6.
Proposition 6.5. Every N € Z has a unique representatiaN = Z;;l Y Sn—; with
y1# 0andy; - - -y, € {—1,0,1}* avoiding the seX = {10°1,10°1,10°1,0 < k < 5,
and their oppositels with the exception thdt0°1, 10°1, 10°1, 10*1 and their opposites
are possible suffixes gf - - - y,,.

As for the Fibonacci numeration system, Proposition 6.5 is proved bgidering
gn, the smallest positive integer with an expansion of lengsitarting with 1 avoiding
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Figure 14. Transduce; normalizings-expansions of minimal weight® = 5 + 1.

these factors, andy,, the largest integer of this kind. The representationg,of
andG,,, n > 1, depending on the congruence classiohodulo 8 are given by the
following table.

n=jmod 8 In+1 Gn Ini1— Gn
1,2,3,4 1(0°10)"/8 (107)"/8 1101 ~g 1
5 1(0610)("=5)/8041 | (107)(n—5)/810F 110001 ~g 1
6 1(0610)("—6)/8051 | (107)("=6)/81¢F | 110000 ~g 11 ~g 1
7 1(0610)("~7)/8051 | (107)("~7)/81F1 | 110000@ ~g 102 ~g 1
0 1(0510)"/8 (107)"/8-110f1 | 1100001 ~g 1011 ~g 1

For the calculation of,, ;1 — G,, we have used,, — S,,_1 — S,_7=S5,_gforn > 9.

SinceS,, = S,,_» — S,,_3 holds only forn > 4 and not fom = 3, determining when
x ~g y is more complicated than forr and~7. If 2 = a1 ---a,. = mamomaa,.,
then we haveV = >~"  a;S,_; = 4m3 + 3m2 + 2m1 + a,. We have to distinguish
between different vaiues af,.

e If a, =0, thenN = 0 if and only if my = 2m), m1 = —2mg — 3m), hence
z =mg(B% — 28) + mh(26° — 38) = —ma/B* — mh(1/8% + 1/87).

In particular,m), = 0,m3 € {0, +1} impliesN = 0if z € {0, +1/3%}.
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B+1/8% p2+1/8
B62+1 ° B2+1

.1(0°102)w, .1(0%102)%

2 2
_ 52 3 BiA1/B  1/57
([ﬂil’ ;éil) ( B2+1 ' BZ+1

_g2_ 182 5% —1/p3
<7‘;2+11/ﬁ, ﬁlz/fl ) (B2+1’ B2+1 )

-B-1/8%2 -p2-1/8 010%, 0108 0105, 0106
g2+1 7 B2+l

Figure 15. Branching transformation and corresponding automaién; 3 + 1.

s If a,, =1, thenN = 0if and only ifmy = 2m) — 1, m; = —2mgz — 3m) + 1,
2 = mg(—28)+my(26°—38)— F°+B+1 = —ma/B*—mj(1/8*+1/57)+1/ 3.
In particular,mamj € {00,11,01} providesN = 0if z € {1/42,1/33,1/35}.

« If a,, = 2, thenmamams € {001, 101} providesN = 01if z € {2 — 3, 1}.

We haver; - - -z, ~g y1-- -y, if the corresponding path iR 3 ends in a state corre-
sponding taz,, = =, — ¥, (orin —z, a,, = y,, — z,,) and obtain the following theorem.

Theorem 6.6. The set of5-expansions of minimal weight in-1, 0, 1}* is recognized
by Mg, which is the automaton in Figure 11 including the dashed arrows. Thesvord
given by Proposition 6.5 ar§-expansions of minimal weight.

For details on the proof of Theorem 6.6, we refer again to [13].

6.4 Weight of the expansions

Let W, be the set of words = z;-- -z, € {—1,0,1}" avoiding the factors given by

Proposition 6.5. Then the sequence of random varighlgs< <, defined by
Pr[leyl"'yL---v}/j :y]y]+6]

=#a1 Tnre € W0 w1 2jh6 = y1- - Y6} HW,
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is Markov with transition probabilities Pr; 1 = v | Y; = u] = p,,, + O(87"17),

O --- --- 0 % % O -.- 0
1 0 O
0
1 0 0 O
(Puv)u,ve(106,...001,07,00%,.. 10} = | 0 ?%5 % ﬂls 0
0O 0 o0 1
0
: : 0O 0 : 1
0O --- 0 % % O .-~ --- 0

The left eigenvector to the eigenvalue 1 of this matri;l(l'ré@ (1,...,1,46%,1,...,1),
and we obtain the following theorem (wiggé—ﬁ2 ~ 0.09515).

Theorem 6.7. For positive integers/, we have, a3/ — oo,

1 M 1 logM
2M+1N:Z_M”N”S_ 7+ 232 logp3

+0(1).

7 Concluding remarks

Another example of a numbet < 2 of small degree satisfying @) which is not
studied in this article, is the Pisot number satisfyiifg= 5% + 1, with 2= 1000000L.

A question which is not approached in this paper concgragpansions of minimal
weight in{1 — B,..., B — 1}* when 3 does not satisfy (B), in particular minimal
weight expansions on the alphaljetl, 0,1} whens < 3 and (B}) does not hold.

In view of applications to cryptography, we present a summary of theage min-
imal weight of representations of integers in linear numeration systeis,>o asso-
ciated with different3, with digitsin A = {0,1} orin A = {-—1,0, 1}.

U.| A | 3 | average|N ||y for N € {~M,..., M}
2" {0,1} 2 (log, M) /2

2 | {~1,0,1} 2 (log, M)/3

F,| {01} Liy/5 (log, M) /(52 + 1) ~ 0.398 log, M

F, | {-1,0,1} Lty (log; M) /5 ~ 0.288 log, M

T, | {-1,0,1} | =2+ B+ 1] (log, M)P/(5° + 1) ~ 0.321log, M
S, [ {-1,0,1} | pB¥=p5+1 (logs M) /(7 + 26?) ~ 0.235log, M
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If we want to compute a scalar multiple of a group element, e.g. a @goio an
elliptic curve, we can choose a representaildor- Z?:o z;U; of the scalar, compute
U;P,0 < j <n,byusing the recurrence dfand finallyN P = Z?:o zj(U;P). Inthe
cases which we have considered, this amountsttd V|| additions (or subtractions).
Sincen ~ log, N is larger than|N||y, the smallest number of additions is usually
given by a 2-expansion of minimal weight. (We havedggrs)/zN ~ 1l.44log, N,
log; N ~ 1.137log, M for the Tribonacci number, logV ~ 2.465log, N for the
smallest Pisot number.)

If however we have to compute several multiplé® with the same” and different
N e {—M,..., M}, then it suffices to compute; P for0 < j < n = Iogﬁ M once,
and do| N||y additions for eachv. Starting from 10 multiples of the sant, the
Fibonacci numeration system is preferable to base 2 ¢ih¢€l0/5) Iog(l+\@)/2 M =~
4321log, M < (1+ 10/3)log, M. Starting from 20 multiples of the sante, S-
expansions of minimal weight are preferable to the Fibonacci numersyistem since
(14-20/(7425?)) logg M ~ 7.156log, M < 7.202log, M ~ (1+20/5) 1091, y5),2 M-
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