
HAL Id: hal-00265653
https://hal.science/hal-00265653v1

Submitted on 19 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On learning machines for engine control
Gérard Bloch, Fabien Lauer, Guillaume Colin

To cite this version:
Gérard Bloch, Fabien Lauer, Guillaume Colin. On learning machines for engine control. D. Prokhorov.
Computational Intelligence in Automotive Applications, Springer-Verlag, pp.126-144, 2008, Studies in
Computational Intelligence (SCI), vol. 132, �10.1007/978-3-540-79257-4_8�. �hal-00265653�

https://hal.science/hal-00265653v1
https://hal.archives-ouvertes.fr


On learning machines for engine control

Gérard Bloch1, Fabien Lauer1, and Guillaume Colin2

1 Centre de Recherche en Automatique de Nancy (CRAN), Nancy-University,
CNRS, CRAN-ESSTIN, 2 rue Jean Lamour, 54519 Vandoeuvre lès Nancy,
France. gerard.bloch@esstin.uhp-nancy.fr,
fabien.lauer@esstin.uhp-nancy.fr
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Summary. The chapter deals with neural networks and learning machines for en-
gine control applications, particularly in modeling for control. In the first section,
some basics on the common features of engine control are recalled, based on a layered
engine management structure. Then the use of neural networks for engine model-
ing, control and diagnosis is briefly described. The need for descriptive models for
model-based control and the link between physical models and black box models are
emphasized at the end of this section by exposing the grey box approach taken in
this chapter. The second section introduces the neural models most used in engine
control, namely, MultiLayer Perceptrons (MLP) and Radial Basis Function (RBF)
networks. A more recent approach, known as Support Vector Regression (SVR), to
build models in kernel expansion form is then presented. The third section is devoted
to examples of application of these models in the context of turbocharged Spark Ig-
nition (SI) engines with Variable Camshaft Timing (VCT). This specific context is
representative of modern engine control problems. In the first example, the airpath
control is studied, where open loop neural estimators are combined with a dynamical
polytopic observer. The second example considers modeling the in-cylinder residual
gas fraction by Linear Programming SVR (LP-SVR), based on a limited amount of
experimental data and a simulator built from prior knowledge. Each example tries
to show that models based on first principles and neural models must be joined
together in a grey box approach to obtain efficient and acceptable results.

1 Introduction

The following gives a short introduction on learning machines in engine con-
trol. For a more detailed introduction on engine control in general, the reader
is referred to [19]. After a description of the common features in engine con-
trol (Sect. 1.1), including the different levels of a general control strategy, an
overview of the use of neural networks in this context is given in Sect. 1.2. Sec-
tion 1 ends with the presentation of the grey box approach considered in this
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chapter. Then, in Section 2, the neural models that will be used in the illus-
trative applications of Section 3, namely, the MultiLayer Perceptron (MLP),
the Radial Basis Function Network (RBFN) and a kernel model trained by
Support Vector Regression (SVR) are exposed. The examples of Section 3 are
taken from a context representative of modern engine control problems, such
as airpath control of a turbocharged Spark Ignition (SI) engine with Variable
Camshaft Timing (VCT) (Sect. 3.2) and modeling of the in-cylinder residual
gas fraction based on very few samples in order to limit the experimental costs
(Sect. 3.3).

1.1 Common features in engine control

The main function of the engine is to ensure the vehicle mobility by providing
the power to the vehicle transmission. Nevertheless, the engine torque is also
used for peripheral devices such as the air conditioning or the power steering.
In order to provide the required torque, the engine control manages the engine
actuators, such as ignition coils, injectors and air path actuators for a gasoline
engine, pump and valve for diesel engine. Meanwhile, over a wide range of
operating conditions, the engine control must satisfy some constraints: driver
pleasure, fuel consumption and environmental standards.

In [12], a hierarchical (or stratified) structure, shown on figure 1, is pro-
posed for engine control. In this framework, the engine is considered as a
torque source [17] with constraints on fuel consumption and pollutant emis-
sion. From the global characteristics of the vehicle, the Vehicle layer controls
driver strategies and manages the links with other devices (gear box, ...). The
Engine layer receives from the Vehicle layer the effective torque set point
(with friction) and translates it into an indicated torque set point (without
friction) for the combustion by using an internal model (often a map). The
Combustion layer fixes the set points for the in-cylinder masses while taking
into account the constraints on pollutant emissions. The Energy layer ensures
the engine load with e.g. the Air to Fuel Ratio (AFR) control and the turbo
control. The lower level, specific for a given engine, is the Actuator layer, which
controls, for instance, the throttle position, the injection and the ignition.

With the multiplication of complex actuators, advanced engine control is
necessary to obtain an efficient torque control. This notably includes the con-
trol of the ignition coils, fuel injectors and air actuators (throttle, Exhaust
Gas Recirculation (EGR), Variable Valve Timing (VVT), turbocharger. . . ).
The air actuator controllers generally used are PID controllers which are dif-
ficult to tune. Moreover, they often produce overshooting and bad set point
tracking because of the system nonlinearities. Only model-based control can
enhance engine torque control.

Several common characteristics can be found in engine control problems.
First of all, the descriptive models are dynamic and nonlinear. They require
a lot of work to be determined, particularly to fix the parameters specific
to each engine type (”mapping”). For control, a sampling period depending
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Fig. 1. Hierarchical torque control adapted from [12]

on the engine speed (very short in the worst case) must be considered. The
actuators present strong saturations. Moreover, many internal state variables
are not measured, partly because of the physical impossibility of measuring
and the difficulties in justifying the cost of setting up additional sensors. At
a higher level, the control must be multi-objective in order to satisfy contra-
dictory constraints (performance, comfort, consumption, pollution). Lastly,
the control must be implemented in on-board computers (Electronic Control
Units, ECU), whose computing power is increasing, but remains limited.

1.2 Neural networks in engine control

Artificial neural networks have been the focus of a great deal of attention dur-
ing the last two decades, due to their capabilities to solve nonlinear problems
by learning from data. Although a broad range of neural network architectures
can be found, MultiLayer Perceptrons (MLP) and Radial Basis Function Net-
works (RBFN) are the most popular neural models, particularly for system
modeling and identification [45]. The universal approximation and flexibility
properties of such models enable the development of modeling approaches, and
then control and diagnosis schemes, which are independent of the specifics of
the considered systems. As an example, the linearized neural model predic-
tive control of a turbocharger is described in [11]. They allow the construction
of nonlinear global models, static or dynamic. Moreover, neural models can
be easily and generically differentiated so that a linearized model can be ex-
tracted at each sample time and used for the control design. Neural systems
can then replace a combination of control algorithms and look-up tables used
in traditional control systems and reduce the development effort and expertise
required for the control system calibration of new engines. Neural networks
can be used as observers or software sensors, in the context of a low number
of measured variables. They enable the diagnosis of complex malfunctions by
classifiers determined from a base of signatures.
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First use of neural networks for automotive application can be traced
back to early 90’s. In 1991, Marko tested various neural classifiers for online
diagnosis of engine control defects (misfires) and proposed a direct control by
inverse neural model of an active suspension system [31]. In [38], Puskorius
and Feldkamp, summarizing one decade of research, proposed neural nets for
various subfunctions in engine control: AFR and idle speed control, misfire
detection, catalyst monitoring, prediction of pollutant emissions. Indeed, since
the beginning of the 90’s, neural approaches have been proposed by numerous
authors, for example, for

• vehicle control. Anti-lock braking system (ABS), active suspension, steer-
ing, speed control;

• engine modeling. Manifold pressure, air mass flow, volumetric efficiency,
indicated pressure into cylinders, AFR, start-of-combustion for Homoge-
neous Charge Compression Ignition (HCCI), torque or power;

• engine control. Idle speed control, AFR control, transient fuel compensa-
tion (TFC), cylinder air charge control with VVT, ignition timing control,
throttle, turbocharger, EGR control, pollutants reduction;

• engine diagnosis. Misfire and knock detection, spark voltage vector recog-
nition systems.

The works are too numerous to be referenced here. Nevertheless, the reader
can consult the recent articles [43, 1, 4] and the references therein, for an
overview.

More recently, Support Vector Machines (SVMs) have been proposed as a
new, though related, approach for nonlinear black box modeling [23, 51, 39]
or monitoring [41] of automotive engines.

1.3 Grey box approach

Let us now focus on the development cycle of engine control, presented in
Figure 2, and the different models that are used in this framework. The design
process is the following:

1. Building of an engine simulator mostly based on prior knowledge,
2. First identification of control models from data provided by the simulator,
3. Control scheme design,
4. Simulation and pre-calibration of the control scheme with the simulator,
5. Control validation with the simulator,
6. Second identification of control models from data gathered on the engine,
7. Calibration and final test of the control with the engine.

This shows that, in current practice, more or less complex simulation environ-
ments based on physical relations are built for internal combustion engines.
The great amount of knowledge that is included is consequently available.
These simulators are built to be accurate, but this accuracy depends on many
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physical parameters which must be fixed. In any case, these simulation mod-
els cannot be used online, contrary to real time control models. Such control
models, e.g. neural models, must be identified first from the simulator and
then re-identified or adapted from experimental data. If the modeling process
is improved, much gain can be expected for the overall control design process.

The relying of the control design on meaningful physical equations has a
clear justification. This partially explains that the fully black box modeling
approach has a difficult penetration in the engine control engineering commu-
nity. Moreover the fully black box (e.g. neural) model based control solutions
have still to practically prove their efficiency in terms of robustness, stabil-
ity and real time applicability. This issue motivates the material presented
in this chapter, which concentrates on developing modeling and control solu-
tions, through several examples, mixing physical models and nonlinear black
box models in a grey box approach. In short, use neural models whenever

needed, i. e. whenever first-principles models are not sufficient. In practice,
this can be expressed under two forms.

• Neural models should be used to enhance – not replace – physical models,
particularly by extending two dimensional static maps or by correcting
physical models when applied to real engines. This is developed in section
3.2.

• Physical insights should be incorporated as prior knowledge into the learn-
ing of the neural models. This is developed in section 3.3.

2 Neural Models

This section provides the necessary background on standard MultiLayer Per-
ceptron (MLP) and Radial Basis Function (RBF) neural models, before pre-
senting kernel models and support vector regression.
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2.1 Two neural networks

As depicted in [45], a general neural model with a single output may be written
as a function expansion of the form

f(ϕ, θ) =

n
∑

k=1

αkgk(ϕ) + α0 , (1)

where ϕ = [ϕ1 . . . ϕi . . . ϕp]
T is the regression vector and θ is the parameter

vector.
The restriction of the multilayer perceptron to only one hidden layer and

to a linear activation function at the output corresponds to a particular choice,
the sigmoid function, for the basis function gk, and to a ”ridge” construction
for the inputs in model (1). Although particular, this model will be called
MLP in this chapter. Its form is given, for a single output fnn, by

fnn(ϕ, θ) =

n
∑

k=1

w2
k g





p
∑

j=1

w1
kjϕj + b1

k



 + b2, (2)

where θ contains all the weights w1
kj and biases b1

k of the n hidden neurons

together with the weights and bias w2
k, b2 of the output neuron, and where

the activation function g is a sigmoid function (often the hyperbolic tangent
g(x) = 2/(1 + e−2x) − 1).

On the other hand, choosing a Gaussian function g(x) = exp
(

−x2/σ2
)

as basis function and a radial construction for the inputs leads to the radial
basis function network (RBFN) [37], of which the output is given by

f(ϕ, θ) =
n

∑

k=1

αkg (‖ϕ − γk‖σk
) + α0 (3)

=

n
∑

k=1

αk exp



−
1

2

p
∑

j=1

(ϕj − γkj)
2

σ2
kj



 + α0 ,

where γk = [γk1 . . . γkp]
T is the ”center” or ”position” of the kth Gaussian

and σk = [σk1 . . . σkp]
T its ”scale” or ”width”, most of the time with σkj =

σk, ∀j, or even σkj = σ, ∀j, k.
The process of approximating nonlinear relationships from data with these

models can be decomposed in several steps:

• determining the structure of the regression vector ϕ or selecting the inputs
of the network, see e.g. [44] for dynamic system identification;

• choosing the nonlinear mapping f or, in the neural network terminology,
selecting an internal network architecture, see e.g. [40] for MLP’s pruning
or [36] for RBFN’s center selection;
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• estimating the parameter vector θ, i.e., (weight) ”learning” or ”training”;
• validating the model.

This approach is similar to the classical one for linear system identification
[28], the selection of the model structure being, nevertheless, more involved.
For a more detailed description of the training and validation procedures, see
[6] or [35].

Among the numerous nonlinear models, neural or not, which can be used
to estimate a nonlinear relationship, the advantages of the one hidden layer
perceptron, as well as those of the radial basis function network, can be sum-
marized as follows: they are flexible and parsimonious nonlinear black box

models, with universal approximation capabilities [5].

2.2 Kernel expansion models and Support Vector Regression

In the past decade, kernel methods [42] have attracted much attention in a
large variety of fields and applications: classification and pattern recognition,
regression, density estimation. . . Indeed, using kernel functions, many linear
methods can be extended to the nonlinear case in an almost straightforward
manner, while avoiding the curse of dimensionality by transposing the focus
from the data dimension to the number of data. In particular, Support Vector
Regression (SVR), stemming from statistical learning theory [50] and based
on the same concepts as the Support Vector Machine (SVM) for classifica-
tion, offers an interesting alternative both for nonlinear modeling and system
identification [15, 32, 52].

SVR originally consists in finding the kernel model that has at most a devi-
ation ε from the training samples with the smallest complexity [46]. Thus, SVR
amounts to solving a constrained optimization problem known as a quadratic
program (QP), where both the ℓ1-norm of the errors larger than ε and the
ℓ2-norm of the parameters are minimized. Other formulations of the SVR
problem minimizing the ℓ1-norm of the parameters can be derived to yield
linear programs (LP) [47, 30]. Some advantages of this latter approach can
be noticed compared to the QP formulation such as an increased sparsity of
support vectors or the ability to use more general kernels [29]. The remaining
of this chapter will thus focus on the LP formulation of SVR (LP-SVR).

Nonlinear mapping and kernel functions

A kernel model is an expansion of the inner products by the N training
samples xi ∈ IRp mapped in a higher dimensional feature space. Defining the
kernel function k(x,xi) = Φ(x)T Φ(xi), where Φ(x) is the image of the point
x in that feature space, allows to write the model as a kernel expansion

f(x) =

N
∑

i=1

αik(x,xi) + b = K(x,XT )α + b , (4)
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where α = [α1 . . . αi . . . αN ]T and b are the parameters of the model, the
data (xi, yi), i = 1, . . . , N , are stacked as rows in the matrix X ∈ IRN×p and
the vector y, and K(x,XT ) is a vector defined as follows. For A ∈ Rp×m and
B ∈ Rp×n containing p-dimensional sample vectors, the “kernel” K(A,B)
maps Rp×m ×Rp×n in Rm×n with K(A,B)i,j = k(Ai,Bj), where Ai and Bj

are the ith and jth columns of A and B. Typical kernel functions are the
linear (k(x,xi) = xTxi), Gaussian RBF (k(x,xi) = exp(−‖x − xi‖

2
2/2σ2) )

and polynomial (k(x,xi) = (xT xi + 1)d) kernels. The kernel function defines
the feature space F in which the data are implicitly mapped. The higher the
dimension of F , the higher the approximation capacity of the function f , up
to the universal approximation capacity obtained for an infinite feature space,
as with Gaussian RBF kernels.

Support Vector Regression by Linear Programming

In Linear Programming Support Vector Regression (LP-SVR), the model com-
plexity, measured by the ℓ1-norm of the parameters α, is minimized together
with the error on the data, measured by the ε-insensitive loss function l,
defined by [50] as

l(yi − f(xi)) =

{

0 if |yi − f(xi)| ≤ ε ,

|yi − f(xi)| − ε otherwise .
(5)

Minimizing the complexity of the model allows to control its generalization
capacity. In practice, this amounts to penalizing non-smooth functions and
implements the general smoothness assumption that two samples close in
input space tend to give the same output.

Following the approach of [30], two sets of optimization variables, in two
positive slack vectors a and ξ, are introduced to yield a linear program solvable
by standard optimization routines such as the MATLAB linprog function. In
this scheme, the LP-SVR problem may be written as

min
(α,b,ξ≥0,a≥0)

1T a + C1T ξ

s.t. −ξ ≤ K(X,XT )α + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a ,

(6)

where a hyperparameter C is introduced to tune the trade-off between the
minimization of the model complexity and the minimization of the error. The
last set of constraints ensures that 1Ta, which is minimized, bounds ‖α‖1. In
practice, sparsity is obtained as a certain number of parameters αi will tend
to zero. The input vectors xi for which the corresponding αi are non-zero are
called support vectors (SVs).
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2.3 Link between Support Vector Regression and RBFNs

For a Gaussian kernel, the kernel expansion (4) can be interpreted as a RBFN
with N neurons in the hidden layer centered at the training samples xi and
with a unique width σk = [σ . . . σ]T , k = 1, . . . , N . Compared to neural
networks, SVR has the following advantages: automatic selection and sparsity
of the model, intrinsic regularization, no local minima (convex problem with
a unique solution), and good generalization ability from a limited amount of
samples.

It seems though that least squares estimates of the parameters or standard
RBFN training algorithms are most of the time satisfactory, particularly when
a sufficiently large number of samples corrupted by Gaussian noise is available.
Moreover, in this case, standard center selection algorithms may be faster
and yield a sparser model than SVR. However, in difficult cases, the good
generalization capacity and the better behavior with respect to outliers of
SVR may help. Even if non-quadratic criteria have been proposed to train [8]
or prune neural networks [49, 24], the SVR loss function is intrinsically robust
and thus allows accommodation to non-Gaussian noise probability density
functions. In practice, it is advised to employ SVR in the following cases.

• Few data are available.
• The noise is non-Gaussian.
• The training set is corrupted by outliers.

Finally, the computational framework of SVR allows for easier extensions such
as the one described in this chapter, namely, the inclusion of prior knowledge.

3 Engine control applications

3.1 Introduction

The application treated here, the control of the turbocharged Spark Ignition
engine with Variable Camshaft Timing, is representative of modern engine
control problems. Indeed, such an engine presents for control the common
characteristics mentioned in the introduction 1.1 and comprises several air
actuators and therefore several degrees of freedom for airpath control.

More stringent standards are being imposed to reduce fuel consumption
and pollutant emissions for Spark Ignited (SI) engines. In this context, down-
sizing appears as a major way for reducing fuel consumption while maintaining
the advantage of low emission capability of three-way catalytic systems and
combining several well known technologies [27]. (Engine) downsizing is the
use of a smaller capacity engine operating at higher specific engine loads,
i.e. at better efficiency points. In order to feed the engine, a well-adapted
turbocharger seems to be the best solution. Unfortunately, the turbocharger
inertia involves long torque transient responses [27]. This problem can be
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partially solved by combining turbocharging and Variable Camshaft Timing
(VCT) which allows air scavenging from the intake to the exhaust.

pman

Tman

Sthr

WG

Qcyl

Qthr

VCTexhVCTin

Lambda sensor

turbine

compressor

Manifold

pint

pamb

Tamb

Fig. 3. Airpath of a Turbocharged SI Engine with VCT

The air intake of a turbocharged SI Engine with VCT, represented in
Figure 3, can be described as follows. The compressor (pressure pint) produces
a flow from the ambient air (pressure pamb and temperature Tamb). This air
flow Qth is adjusted by the intake throttle (section Sth) and enters the intake
manifold (pressure pman and temperature Tman). The flow that goes into the
cylinders Qcyl passes through the intake valves, whose timing is controlled by
the intake Variable Camshaft Timing V CTin actuator. After the combustion,
the gases are expelled into the exhaust manifold through the exhaust valve,
controlled by the exhaust Variable Camshaft Timing V CTexh actuator. The
exhaust flow is split into turbine flow and wastegate flow. The turbine flow
powers up the turbine and drives the compressor through a shaft. Thus, the
supercharged pressure pint is adjusted by the turbine flow which is controlled
by the wastegate WG.

The effects of Variable Camshaft Timing (VCT) can be summarized as
follows. On the one hand, cam timing can inhibit the production of nitrogen
oxides (NOx). Indeed, by acting on the cam timing, combustion products
which would otherwise be expelled during the exhaust stroke are retained in
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the cylinder during the subsequent intake stroke. This dilution of the mix-
ture in the cylinder reduces the combustion temperature and limits the NOx

formation. Therefore, it is important to estimate and control the back-flow
of burned gases in the cylinder. On the other hand, with camshaft timing,
air scavenging can appear, that is air passing directly from the intake to the
exhaust through the cylinder. For that, the intake manifold pressure must
be greater than the exhaust pressure when the exhaust and intake valves
are opened together. In that case, the engine torque dynamic behavior is im-
proved, i.e. the settling times decreased. Indeed, the flow which passes through
the turbine is increased and the corresponding energy is transmitted to the
compressor. In transient, it is also very important to estimate and control this
scavenging for torque control.

For such an engine, the following presents the inclusion of neural models
in various modeling and control schemes in two parts: an air path control
based on an in-cylinder air mass observer, and an in-cylinder residual gas
estimation. In the first example, the air mass observer will be necessary to
correct the manifold pressure set point. The second example deals with the
estimation of residual gases for a single cylinder naturally-aspirated engine.
In this type of engine, no scavenging appears, so that estimation of burned
gases and air scavenging of the first example is simplified into a residual gas
estimation.

3.2 Airpath observer based control

Control scheme

The objective of engine control is to supply the torque requested by the driver
while minimizing the pollutant emissions. For a SI engine, the torque is di-
rectly linked to the air mass trapped in the cylinder for a given engine speed
Ne and an efficient control of this air mass is then required. The air path con-
trol, i.e. throttle, turbocharger and variable camshaft timing (VCT) control,
can be divided in two main parts: the air mass control by the throttle and the
turbocharger and the control of the gas mix by the variable camshaft timing
(see [11] for further details on VCT control). The structure of the air mass
control scheme, described in figure 4, is now detailed block by block. The
supervisor, that corresponds to a part of the Combustion layer of figure 1,
builds the in-cylinder air mass set point from the indicated torque set point,
computed by the Engine layer. The determination of manifold pressure set
points is presented at the end of the section. The general control structure
uses an in-cylinder air mass observer discussed below that corrects the errors
of the manifold pressure model. The remaining blocks are not described in
this chapter but an Internal Model Control (IMC) of the throttle is proposed
in [11] and a linearized neural Model Predictive Control (MPC) of the tur-
bocharger can be found in [10, 11]. The IMC scheme relies on a grey box
model, which includes a neural static estimator. The MPC scheme is based
on a dynamical neural model of the turbocharger.
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Observation scheme

Here two nonlinear estimators of the air variables, recirculated gas mass RGM
and in-cylinder air mass mair, are presented. Because these variables are not
measured, data provided by a complex but accurate high frequency engine
simulator [26] are used to build the corresponding models.

Because scavenging and burned gas back-flow correspond to associated
flow phenomena, only one variable, the Recirculated Gas Mass (RGM), is
defined:

RGM =

{

mbg , if mbg > msc

−msc , otherwise,
(7)

where mbg is the in-cylinder burned gas mass and msc is the scavenged air
mass. Note that, when scavenging from the intake to the exhaust occurs, the
burned gases are insignificant. The recirculated gas mass RGM estimator is
a neural model entirely obtained from the simulated data.

Considering in-cylinder air mass observation, a lot of references are avail-
able especially for air-fuel ratio (AFR) control in a classical engine [20]. More
recently, [48] uses an ”input observer” to determine the engine cylinder flow
and [3] uses a Kalman filter to reconstruct the air mass for a turbocharged SI
engine.

A novel observer for the in-cylinder air mass mair is presented below.
Contrary to the references above, it takes into account a non measured phe-
nomenon (scavenging), and can thus be applied with advanced engine tech-
nology (turbocharged VCT engine). Moreover, its on-line computational load
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is low. As presented in Figure 5, this observer combines open loop nonlin-
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ear neural based statical estimators of RGM and mair, and a ”closed loop”
polytopic observer. The observer is built from the Linear Parameter Varying
model of the intake manifold and dynamically compensates for the residual
error ∆Qcyl committed by one of the estimators, based on a principle similar
to the one presented in [2].

Open loop estimators

Recirculated gas mass model

Studying the RGM variable (7) is complex because it cannot be measured
on-line. Consequently, a static model is built from data provided by the engine
simulator. The perceptron with one hidden layer and a linear output unit (2)
is chosen with a hyperbolic tangent activation function g.

The choice of the regressors ϕj is based on physical considerations and the

estimated Recirculated Gas Mass R̂GM is given by

R̂GM = fnn(pman, Ne, V CTin, V CTexh), (8)

where pman is the intake manifold pressure, Ne the engine speed, V CTin the
intake camshaft timing, and V CTexh the exhaust camshaft timing.

Open loop air mass estimator

The open loop model mair OL of the in-cylinder air mass is based on the
volumetric efficiency equation:
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mair OL = ηvol

pambVcyl

rTman

, (9)

where Tman is the manifold temperature, pamb the ambient pressure, Vcyl the
displacement volume, r the perfect gas constant, and where the volumetric
efficiency ηvol is described by the static nonlinear function f of four variables:
pman, Ne, V CTin and V CTexh.

In [14], various black box models, such as polynomial, spline, MLP
and RBFN models, are compared for the static prediction of the volu-
metric efficiency. In [9], three models of the function f , obtained from
engine simulator data, are compared: a polynomial model linear in man-
ifold pressure proposed by Jankovic [22] f1(Ne, V CTin, V CTexh)pman +
f2(Ne, V CTin, V CTexh), where f1 et f2 are 4th order polynomials, complete
with 69 parameters, then reduced by stepwise regression to 43 parameters;
a standard 4th order polynomial model f3(pman, Ne, V CTin, V CTexh), com-
plete with 70 parameters then reduced to 58 parameters; and a MLP model
with 6 hidden neurons (37 parameters)

ηvol = fnn(pman, Ne, V CTin, V CTexh) . (10)

Training of the neural model has been performed by minimizing the mean
squared error, using the Levenberg-Marquardt algorithm. The behavior of
these models is similar, and the most important errors are committed at the
same operating points. Nevertheless, the neural model, that involves the small-
est number of parameters and yields slightly better approximation results, is
chosen as the static model of the volumetric efficiency. These results illustrate
the parsimony property of the neural models.

Air mass observer

Principle

The air mass observer is based on the flow balance in the intake manifold.
As shown in figure 3.2, a flow Qth enters the manifold and two flows leave
it: the flow that is captured in the cylinder Qcyl and the flow scavenged from
the intake to the exhaust Qsc. The flow balance in the manifold can thus be
written as

ṗman(t) =
rTman(t)

Vman

(Qth(t) − Qcyl(t) − ∆Qcyl(t) − Qsc(t)) , (11)

where, for the intake manifold, pman is the pressure to be estimated (in Pa),
Tman is the temperature (K), Vman is the volume (m3), supposed to be con-
stant and r is the ideal gas constant. In (11), Qth can be measured by an
air flow meter (kg/s). On the other hand, Qsc (kg/s) and Qcyl (kg/s) are

respectively estimated by differentiating the Recirculated Gas Mass R̂GM
(8):
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Fig. 6. Intake manifold and cylinder. From the intake manifold, the throttle air
flow Qth is divided into in-cylinder air flow Qcyl and air scavenged flow Qsc

Q̂sc = min(−R̂GM, 0)/ttdc, (12)

where ttdc = 2×60
Ne ncyl

is the variable sampling period between two intake top

dead center (TDC), and by

Q̂cyl(t) = ηvol(t)
pamb(t) Vcyl Ne(t) ncyl

rTman(t)2 × 60
, (13)

where ηvol is given by the neural model (10), pamb (Pa) is the ambient pres-
sure, Vcyl (m3) is the displacement volume, Ne (rpm) is the engine speed and
ncyl is the number of cylinders. The remaining term in (11), ∆Qcyl, is the
error made by the model (13).

Considering slow variations of ∆Qcyl, i.e. ∆̇Qcyl(t) = 0, and after dis-
cretization at each top dead center (TDC), thus with a variable sampling
period ttdc(k) = 2×60

Ne(k) ncyl
, the corresponding state space representation can

be written as
{

xk+1 = A xk + B uk

yk = C xk ,
(14)

where

xk =

[

pman(k)
∆Qcyl(k)

]

, uk =





Qth(k)
Qcyl(k)
Qsc(k)



 , yk = pman(k), (15)

and, defining ρ(k) = − r Tman(k)
Vman

ttdc(k), where

A =

[

1 ρ(k)
0 1

]

, B =

[

−ρ(k) ρ(k) ρ(k)
0 0 0

]

. (16)

Note that this system is Linear Parameter Varying (LPV), because the ma-
trices A and B depend linearly on the (measured) parameter ρ(k), which
depends on the manifold temperature Tman(k) and the engine speed Ne(k).

The state reconstruction for system (14) can be achieved by resorting to
a so-called polytopic observer of the form
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{

x̂k+1 = A(ρk)x̂k + B(ρk)uk + K(yk − ŷk)
ŷk = Cx̂k ,

(17)

with a constant gain K.
This gain is obtained by solving a Linear Matrix Inequality (LMI). This

LMI ensures the convergence towards zero of the reconstruction error for the
whole operating domain of the system based on its polytopic decomposition.
This ensures the global convergence of the observer. See [34], [33] and [13] for
further details.

Then, the state ∆Qcyl is integrated (i.e. multiplied by ttdc) to give the air
mass bias

∆mair = ∆Qcyl × ttdc . (18)

Finally, the in-cylinder air mass can be estimated by correcting the open loop
estimator (9) with this bias as

m̂air cyl = mair OL + ∆mair . (19)

Results

Some experimental results, normalized between 0 and 1, obtained on a 1.8
Liter turbocharged 4 cylinder engine with Variable Camshaft Timing are given
in figure 7. A measurement of the in-cylinder air mass, only valid in steady
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Fig. 7. Air mass observer results (mg) vs. time (s) on an engine test bench
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state, can be obtained from the measurement of Qth by an air flow meter.
Indeed, in steady state with no scavenging, the air flow that gets into the
cylinder Qcyl is equal to the flow that passes through the throttle Qth (see
Figure 3.2). In consequence, this air mass measurement is obtained by inte-
grating Qth (i.e. multiplying by ttdc). Figure 7 compares this measurement,
the open loop neural estimator ((9) with a neural model (10)), an estimation
not based on this neural model (observer (17) based on model (11) but with
Qcyl = Qsc = 0), the proposed estimation ((19) combining the open loop neu-
ral estimator (9) and the polytopic observer (17) based on model (11) with
Qcyl given by (13) using the neural model (10) and Qsc given by (12) using
(8)).

For steps of air flow, the open loop neural estimator tracks very quickly the
measurement changes, but a small steady state error can be observed (see for
example between 32 s and 34 s). Conversely, the closed loop observer which
does not take into account this feedforward estimator involves a long transient
error while guarantying the convergence in steady state. Finally, the proposed
estimator, including feedforward statical estimators and a polytopic observer,
combines both the advantages: very fast tracking and no steady state error.
This observer can be used to design and improve the engine supervisor of
figure 5 by determining the air mass set points.

Computing the manifold pressure set points

To obtain the desired torque of a SI engine, the air mass trapped in the
cylinder must be precisely controlled. The corresponding measurable variable
is the manifold pressure. Without Variable Camshaft Timing (VCT), this
variable is linearly related to the trapped air mass, whereas with VCT, there
is no more one-to-one correspondence. Figure 8 shows the relationship between
the trapped air mass and the intake manifold pressure at three particular VCT
positions for a fixed engine speed.

Thus, it is necessary to model the intake manifold pressure pman. The
chosen static model is a perceptron with one hidden layer (2). The regressors
have been chosen from physical considerations: air mass mair (corrected by
the intake manifold temperature Tman), engine speed Ne, intake V CTin and
exhaust V CTexh camshaft timing. The intake manifold pressure model is thus
given by

pman = fnn (mair, Ne, V CTin, V CTexh) . (20)

Training of the neural model from engine simulator data has been performed
by minimizing the mean squared error, using the Levenberg-Marquardt algo-
rithm.

The supervisor gives an air mass set point mair sp from the torque set
point (figure 4). The intake manifold pressure set point, computed by model
(20), is corrected by the error ∆mair (18) to yield the final set point pman sp

as
pman sp = fnn (mair sp − ∆mair sp, Ne, V CTin, V CTexh) . (21)
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trapped (in mg) for a SI engine with VCT at 2000 rpm

Engine test bench results

The right part of figure 9 shows an example of results for air mass control, in
which the VCT variations are not taken into account. Considerable air mass
variations (nearly ±25% of the set point) can be observed. On the contrary,
the left part shows the corresponding results for the proposed air mass control.
The air mass is almost constant (nearly ±2% of variation), illustrating that the
manifold pressure set point is well computed with (21). This allows to reduce
the pollutant emissions without degrading the torque set point tracking.

3.3 Estimation of in-cylinder residual gas fraction

The application deals with the estimation of residual gases in the cylinders of
Spark Ignition (SI) engines with Variable Camshaft Timing (VCT) by Support
Vector Regression (SVR) [7]. More precisely, we are interested in estimating
the residual gas mass fraction by incorporating prior knowledge in the SVR
learning with the general method proposed in [25]. Knowing this fraction
allows to control torque as well as pollutant emissions. The residual gas mass
fraction χres can be expressed as a function of the engine speed Ne, the
ratio pman/pexh, where pman and pexh are respectively the (intake) manifold
pressure and the exhaust pressure, and an overlapping factor OF (in ◦/m)
[16], related to the time during which the valves are open together.

The available data are provided, on one hand, from the modeling and simu-
lation environment Amesim [21], which uses a high frequency zero-dimensional
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Fig. 9. Effect of the variation of VCT’s on air mass with the proposed control
scheme (left) and without taking into account the variation of VCT’s in the control
scheme (right)

thermodynamic model and, on the other hand, from off line measurements,
which are accurate, but complex and costly to obtain, by direct in-cylinder
sampling [18]. The problem is this. How to obtain a simple, embeddable, black
box model with a good accuracy and a large validity range for the real engine,
from precise real measurements as less numerous as possible and a represen-
tative, but possibly biased, prior simulation model? The problem thus posed,
although particular, is very representative of numerous situations met in en-
gine control, and more generally in engineering, where complex models, more
or less accurate, exist and where the experimental data which can be used for
calibration are difficult or expensive to obtain.

The simulator being biased but approximating rather well the overall shape
of the function, the prior knowledge will be incorporated in the derivatives.
Prior knowledge of the derivatives of a SVR model can be enforced in the
training by noticing that the kernel expansion (4) is linear in the parameters
α, which allows to write the derivative of the model output with respect to
the scalar input xj as

∂f(x)

∂xj
=

N
∑

i=1

αi

∂k(x,xi)

∂xj
= rj(x)T α , (22)

where rj(x) = [∂k(x,x1)/∂xj . . . ∂k(x,xi)/∂xj . . . ∂k(x,xN )/∂xj]T is of
dimension N . The derivative (22) is linear in α. In fact, the form of the
kernel expansion implies that the derivatives of any order with respect to any
component are linear in α. Prior knowledge of the derivatives can thus be
formulated as linear constraints.

The proposed model is trained by a variant of algorithm (6) with additional
constraints on the derivatives at the points x̃p of the simulation set. In the
case where the training data do not cover the whole input space, extrapolation
occurs, which can become a problem when using local kernels such as the
RBF kernel. To avoid this problem, the simulation data x̃p, p = 1, . . . , Npr,
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are introduced as potential support vectors (SVs). The resulting global model
is now

f(x) = K(x, [XT X̃
T
])α + b , (23)

where α ∈ IRN+Npr

and [XT X̃
T
] is the concatenation of the matrices XT =

[x1 . . . xi . . . xN ], containing the real data, and X̃
T

= [x̃1 . . . x̃p . . . x̃Npr ],
containing the simulation data. Defining the Npr × (N + Npr)-dimensional

matrix R(X̃
T
, [XT X̃

T
]) = [r1(x̃1) . . . r1(x̃p) . . . r1(x̃Npr)]T , where r1(x)

corresponds to the derivative of (23) with respect to the input x1 = pman/pexh,
the proposed model is obtained by solving

min
(α,b,ξ,a,z)

1

N + Npr
1Ta +

C

N
1T ξ +

λ

Npr
1T z

s.t. −ξ ≤ K(XT , [XT X̃
T
])α + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

−z ≤ R(X̃
T
, [XT X̃

T
])α − y′ ≤ z ,

(24)

where y′ contains the Npr known values of the derivative with respect to
the input pman/pexh, at the points x̃p of the simulation set. In order to

be able to evaluate these values, a prior model, f̃(x) =
∑Npr

p=1 α̃pk(x, x̃p) +

b̃, is first trained on the Npr simulation data (x̃p, ỹp), p = 1, . . . , Npr,
only. This prior model is then used to provide the prior derivatives y′ =
[∂f̃(x̃1)/∂x̃1 . . . ∂f̃(x̃p)/∂x̃1 . . . ∂f̃(x̃Npr)/∂x̃1]T .

Note that the knowledge of the derivatives is included by soft constraints,
thus allowing to tune the trade-off between the data and the prior knowledge.
The weighting hyperparameters are set to C/N and λ/Npr in order to main-
tain the same order of magnitude between the regularization, error and prior
knowledge terms in the objective function. This allows to ease the choice of C
and λ based on the application goals and confidence in the prior knowledge.
Hence, the hyperparameters become problem independent.

The method is now evaluated on the in-cylinder residual gas fraction ap-
plication. In this experiment, three data sets are built from the available data
composed of 26 experimental samples plus 26 simulation samples:

• the training set (X,y) composed of a limited amount of real data (N
samples),

• the test set composed of independent real data (26 − N samples),
• the simulation set (X̃, ỹ) composed of data provided by the simulator

(Npr = 26 samples).

The test samples are assumed to be unknown during the training and are
retained for testing only. It must be noted that the inputs of the simulation
data do not exactly coincide with the inputs of the experimental data as shown
in Figure 3.3 for N = 3.
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experimental data are represented by plus signs (+) with a superposed circle (⊕) for
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The comparison is performed between four models.

• The experimental model trained by (6) on the real data set (X,y) only,
• the prior model trained by (6) on the simulation data (X̃, ỹ) only,
• the mixed model trained by (6) on the real data set simply extended with

the simulation data ([XT X̃
T
]T , [yT ỹT ]T ) (the training of this model is

close in spirit to the virtual sample approach, where extra data are added
to the training set),

• the proposed model trained by (24) and using both the real data (X,y)
and the simulation data (X̃, ỹ).

These models are evaluated on the basis of three indicators: the root mean
square error (RMSE) on the test set (RMSE test), the RMSE on all exper-
imental data (RMSE) and the maximum absolute error on all experimental
data (MAE).
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Before training, the variables are normalized with respect to their mean
and standard deviation. The different hyperparameters are set according to
the following heuristics. One goal of the application is to obtain a model that
is accurate on both the training and test samples (the training points are part
of the performance index RMSE). Thus C is set to a large value (C = 100) in
order to ensure a good approximation of the training points. Accordingly, ε is
set to 0.001 in order to approximate the real data well. The trade-off parameter
λ of the proposed method is set to 100, which gives as much weight to both
the training data and the prior knowledge. Since all standard deviations of
the inputs are equal to 1 after normalization, the RBF kernel width σ is set
to 1.

Table 1. Errors on the residual gas mass fraction with the number of real and
simulation data used for training. ’–’ appears when the result is irrelevant (model
mostly constant).

Model # of real
data N

# of simula-
tion data Npr

RMSE test RMSE MAE

experimental model 6 6.84 6.00 15.83
prior model 26 4.86 4.93 9.74
mixed model 6 26 4.85 4.88 9.75
proposed model 6 26 2.44 2.15 5.94

experimental model 3 – – –
prior model 26 4.93 4.93 9.74
mixed model 3 26 4.89 4.86 9.75
proposed model 3 26 2.97 2.79 5.78

Two sets of experiments are performed for very low numbers of training
samples N = 6 and N = 3. The results in Table 1 show that both the exper-

imental and the mixed models cannot yield a better approximation than the
prior model with so few training data. Moreover, for N = 3, the experimental

model yields a quasi-constant function due to the fact that the model has
not enough free parameters (only 3 plus a bias term) and thus cannot model
the data. In this case, the RMSE is irrelevant. On the contrary, the proposed

model does not suffer from a lack of basis functions, thanks to the inclusion
of the simulation data as potential support vectors. This model yields good
results from very few training samples. Moreover, the performance decreases
only slightly when reducing the training set size from 6 to 3. Thus, the pro-
posed method seems to be a promising alternative to obtain a simple black
box model with a good accuracy from a limited number of experimental data
and a prior simulation model.
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4 Conclusion

The chapter exposed learning machines for engine control applications. The
two neural models most used in modeling for control, the MultiLayer Per-
ceptron and the Radial Basis Function network, have been described, along
with a more recent approach, known as Support Vector Regression. The use
of such black box models has been placed in the design cycle of engine control,
where the modeling steps constitute the bottleneck of the whole process. Ap-
plication examples have been presented for a modern engine, a turbocharged
Spark Ignition engine with Variable Camshaft Timing. In the first example,
the airpath control was studied, where open loop neural estimators are com-
bined with a dynamical polytopic observer. The second example considered
modeling a variable which is not measurable on-line, from a limited amount
of experimental data and a simulator built from prior knowledge.

The neural black box approach for modeling and control allows to develop
generic, application independent, solutions. The price to pay is the loss of the
physical interpretability of the resulting models. Moreover, the fully black box
(e.g. neural) model based control solutions have still to practically prove their
efficiency in terms of robustness or stability. On the other hand, models based
on first principles (white box models) are completely meaningful and many
control approaches with good properties have been proposed, which are well
understood and accepted in the engine control community. However, these
models are often inadequate, too complex or too difficult to parametrize, as
real time control models. Therefore, intermediate solutions, involving grey box
models, seem to be preferable for engine modeling, control and, at a higher
level, optimization. In this framework, two approaches can be considered.
First, beside first principles models, black box neural sub-models are chosen
for variables difficult to model (e.g. volumetric efficiency, pollutant emissions).
Secondly, black box models can be enhanced thanks to physical knowledge.
The examples presented in this chapter showed how to implement these grey
box approaches in order to obtain efficient and acceptable results.
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17. J. Gerhardt, H. Hönniger, and H. Bischof. A new approach to functionnal
and software structure for engine management systems - BOSCH ME7. SAE
Technical Papers, (980801), 1998.

18. P. Giansetti, G. Colin, P. Higelin, and Y. Chamaillard. Residual gas frac-
tion measurement and computation. International Journal of Engine Research,
8(4):347–364, 2007.

19. L. Guzzella and C.H. Onder. Introduction to Modeling and control of Internal
Combustion Engine Systems. Springer, 2004.

20. E. Hendricks and J. Luther. Model and observer based control of internal com-
bustion engines. In Proc. of the 1st Int. Workshop on Modeling Emissions and
Control in Automotive Engines (MECA), Salerno, Italy, pages 9–20, Salerno,
Italy, 2001.

21. Imagine. Amesim web site. www.amesim.com, 2006.
22. M. Jankovic and S.W. Magner. Variable Cam Timing : Consequences to Au-

tomotive Engine Control Design. In Proc. of the 15th Triennial IFAC World
Congress, Barcelona, Spain, 2002.



On learning machines for engine control 25

23. I. Kolmanovsky. Support vector machine-based determination of gasoline direct-
injected engine admissible operating envelope. SAE Technical Papers, (2002-01-
1301), 2002.

24. M. Lairi and G. Bloch. A neural network with minimal structure for maglev
system modeling and control. In Proc. of the IEEE Int. Symp. on Intelligent
Control / Intelligent Systems & Semiotics, Cambridge, MA, USA, pages 40–45,
1999.

25. F. Lauer and G. Bloch. Incorporating prior knowledge in support vector regres-
sion. Machine Learning, 2007. doi:10.1007/s10994-007-5035-5.

26. F. Le Berr, M. Miche, G. Colin, G. Le Solliec, and F. Lafossas. Modelling of
a Turbocharged SI Engine with Variable Camshaft Timing for Engine Control
Purposes. SAE Technical Paper, (2006-01-3264), 2006.

27. B. Lecointe and G. Monnier. Downsizing a Gasoline Engine Using Turbocharg-
ing with Direct Injection. SAE Technical Paper, (2003-01-0542), 2003.

28. L. Ljung. System identification: Theory for the user. Prentice-Hall Inc., 2nd
edition, 1999.

29. O. Mangasarian. Generalized support vector machines. In A. Smola, P. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers,
pages 135–146. MIT Press, 2000.

30. O. L. Mangasarian and D. R. Musicant. Large scale kernel regression via linear
programming. Machine Learning, 46(1-3):255–269, 2002.

31. K.A. Marko. Neural network application to diagnostics and control of vehicle
control systems. In R. Lippmann, J. E. Moody, and D. S. Touretzky, editors,
Advances in Neural Information Processing Systems, volume 3, pages 537–543.
Morgan Kaufmann, 1991.

32. D. Mattera and S. Haykin. Support vector machines for dynamic reconstruction
of a chaotic system. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors,
Advances in kernel methods: support vector learning, pages 211–241. MIT Press,
1999.

33. G. Millérioux, F. Anstett, and G. Bloch. Considering the attractor structure
of chaotic maps for observer-based synchronization problems. Mathematics and
Computers in Simulation, 68(1):67–85, February 2005.

34. G. Millérioux, L. Rosier, G. Bloch, and J. Daafouz. Bounded state reconstruc-
tion error for LPV systems with estimated parameters. IEEE Trans. on Auto-
matic Control, 49(8):1385–1389, August 2004.

35. O. Nelles. Nonlinear System Identification: From Classical Approaches to Neural
Networks and Fuzzy Models. Springer-Verlag, Berlin, Germany, 2001.

36. M. J. L. Orr. Recent advances in radial basis function networks. Technical
report, Edinburgh University, UK, 1999.

37. T. Poggio and F. Girosi. Networks for approximation and learning. Proc. IEEE,
78(10):1481–1497, 1990.

38. G. V. Puskorius and L. A. Feldkamp. Parameter-based kalman filter training:
theory and implementation. In S. Haykin, editor, Kalman filtering and neural
networks, chapter 2, pages 23–67. Wiley, 2001.

39. A. Rakotomamonjy, R. Le Riche, D. Gualandris, and Z. Harchaoui. A com-
parison of statistical learning approaches for engine torque estimation. Control
Engineering Practice, 2007.

40. R. Reed. Pruning algorithms – a survey. IEEE Trans. on Neural Networks,
4:740–747, 1993.



26 G. Bloch, F. Lauer, G. Colin

41. M. Rychetsky, S. Ortmann, and M. Glesner. Support vector approaches for
engine knock detection. In Proc. of the Int. Joint Conf. on Neural Networks
(IJCNN), Washington, DC, USA, volume 2, pages 969–974, 1999.

42. B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, USA,
2001.

43. P. J. Shayler, M. S. Goodman, and T. Ma. The exploitation of neural networks in
automotive engine management systems. Engineering Applications of Artificial
Intelligence, 13(2):147–157, 2000.
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