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AGGREGATION BY EXPONENTIAL WEIGHTING, SHARP

PAC-BAYESIAN BOUNDS AND SPARSITY

A. DALALYAN AND A.B. TSYBAKOV†

Abstract. We study the problem of aggregation under the squared loss in the
model of regression with deterministic design. We obtain sharp PAC-Bayesian
risk bounds for aggregates defined via exponential weights, under general as-
sumptions on the distribution of errors and on the functions to aggregate. We
then apply these results to derive sparsity oracle inequalities.

1. Introduction

Aggregation with exponential weights is an important tool in machine learning.
It is used for estimation, prediction with expert advice, in PAC-Bayesian settings
and other problems. In this paper we establish a link between aggregation with
exponential weights and sparsity. More specifically, we obtain a new type of oracle
inequalities and apply them to show that the exponential weighted aggregate with
a suitably chosen prior has a sparsity property.

We consider the regression model

(1) Yi = f(xi) + ξi, i = 1, . . . , n,

where x1, . . . , xn are given non-random elements of a set X , f : X → R is an
unknown function, and ξi are i.i.d. zero-mean random variables on a probability
space (Ω,F , P ) where Ω ⊆ R. The problem is to estimate the function f from the
data Dn = ((x1, Y1), . . . , (xn, Yn)).

Let (Λ,A) be a measurable space and denote by PΛ the set of all probability
measures defined on (Λ,A). Assume that we are given a family {fλ, λ ∈ Λ} of
functions fλ : X → R such that the mapping λ 7→ fλ(x) is measurable for all
x ∈ X , where R is equipped with the Borel σ-field. Functions fλ can be viewed
either as weak learners or as some preliminary estimators of f based on a training
sample independent of Y , (Y1, . . . , Yn) and considered as frozen.

We study the problem of aggregation of functions in {fλ, λ ∈ Λ} under the

squared loss. The aim of aggregation is to construct an estimator f̂n based on the
data Dn and called the aggregate such that the expected value of its squared error

‖f̂n − f‖2n ,
1

n

n
∑

i=1

(

f̂n(xi)− f(xi)
)2

is approximately as small as the oracle value infλ∈Λ ‖f − fλ‖2n.
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In this paper we consider aggregates that are mixtures of functions fλ with
exponential weights. For a measure π from PΛ and for β > 0 we set

(2) f̂n(x) ,

∫

Λ

θλ(Y)fλ(x)π(dλ), x ∈ X ,

with

(3) θλ(Y) =
exp

{

− n‖Y − fλ‖2n/β
}

∫

Λ
exp

{

− n‖Y − fw‖2n/β
}

π(dw)

where ‖Y − fλ‖2n , 1
n

∑n
i=1

(

Yi − fλ(xi)
)2

and we assume that π is such that the
integral in (2) is finite.

Note that θλ(Y) = θλ(β, π,Y), so that f̂n depends on two tuning parameters:
the probability measure π and the “temperature” parameter β. They have to be
selected in a suitable way.

Using the Bayesian terminology, π(·) is a prior distribution and f̂n is the posterior
mean of fλ in a “phantom” model

(4) Yi = fλ(xi) + ξ′i

where ξ′i are i.i.d. normally distributed random variables with mean 0 and variance
β/2.

The idea of mixing with exponential weights has been discussed by many au-
thors apparently since 1970-ies (see [38] for an overview of the subject). Most of
the work has been focused on the important particular case where the set of es-
timators is finite, i.e., w.l.o.g. Λ = {1, . . . ,M}, and the distribution π is uniform
on Λ. Procedures of the type (2)–(3) with general sets Λ and priors π came into
consideration quite recently [9, 10, 36, 4, 41, 42, 1, 2], partly in connection with
the PAC-Bayesian approach. For finite Λ, procedures (2)–(3) were independently
introduced for prediction of deterministic individual sequences with expert advice.
Representative work and references can be found in [35, 26, 11, 22, 13]; in this
framework the results are proved for cumulative loss and no assumption is made
on the statistical nature of the data, whereas the observations Yi are supposed to
be uniformly bounded by a known constant.

We mention also related work on cumulative exponential weighting methods:

there the aggregate is defined as the average n−1
∑n

k=1 f̂k. For regression models
with random design, such procedures are introduced and analyzed in [9], [10] and
[37]. In particular, [9] and [10] establish a sharp oracle inequality, i.e., an inequality
with leading constant 1. This result is further refined in [4] and [20]. In addition,
[20] derives sharp oracle inequalities not only for the squared loss but also for general
loss functions. However, these techniques are not helpful in the framework that we
consider here, because the averaging device is not meaningfully adapted to models
with non-identically distributed observations.

For finite Λ, the aggregate f̂n can be computed on-line. This, in particular,

motivated its use for on-line prediction. Papers [20], [21] point out that f̂n and
its averaged version can be obtained as a special case of mirror descent algorithms
that were considered earlier in deterministic minimization. Finally, [12, 20] establish
some links between the results for cumulative risks proved in the theory of prediction
of deterministic sequences and generalization error bounds for the aggregates in the
stochastic i.i.d. case.
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In this paper we obtain sharp oracle inequalities for the aggregate f̂n under the
squared loss, i.e., oracle inequalities with leading constant 1 and optimal rate of
the remainder term. Such an inequality has been pioneered in [25] in a somewhat
different setting. Namely, it is assumed in [25] that Λ is a finite set, the errors ξi are
Gaussian and fλ are estimators constructed from the same sampleDn and satisfying
some strong restrictions (essentially, these should be the projection estimators).
The result of [25] makes use of Stein’s unbiased risk formula, and gives a very precise
constant in the remainder term of the inequality. Inspection of the argument in
[25] shows that it can be also applied in the following special case of our setting:
fλ are arbitrary fixed functions, Λ is a finite set and the errors ξi are Gaussian.

The general line of our argument is to establish some PAC-Bayesian risk bounds
(cf. (8), (10)) and then to derive sharp oracle inequalities by making proper choices
of the probability measure p involved in those bounds (cf. Sections 5, 7).

The main technical effort is devoted to the proof of the PAC-Bayesian bounds
(Sections 3, 4, 6). The results are valid for general Λ and arbitrary functions
fλ satisfying some mild conditions. Furthermore, we treat non-Gaussian errors
ξi. For this purpose, we suggest three different approaches to prove the PAC-
Bayesian bounds. The first one is based on integration by parts techniques that
generalizes Stein’s unbiased risk formula (Section 3). It is close in the spirit to
[25]. This approach leads to most accurate results but it covers only a narrow
class of distributions of the errors ξi. In Section 4 we introduce another techniques
based on dummy randomization which allows us to obtain sharp risk bounds when
the distributions of errors ξi are n-divisible. Finally, the third approach (Section
6) invokes the Skorokhod embedding and covers the class of all symmetric error
distributions with finite moments of order larger than or equal to 2. Here the price
to pay for the generality of the distribution of errors is in the rate of convergence
that becomes slower if only smaller moments are finite.

In Section 7 we analyze our risk bounds in the important special case where fλ
is a linear combination of M known functions φ1, . . . , φM with the vector of weights

λ = (λ1, . . . , λM ): fλ =
∑M

j=1 λjφj . This setting is connected with the following
three problems.

1.High-dimensional linear regression. Assume that the regression function has
the form f = fλ∗ where λ∗ ∈ R

M is an unknown vector, in other words we have
a linear regression model. During the last years a great deal of attention has been
focused on estimation in such a linear model where the number of variables M is
much larger than the sample size n. The idea is that the effective dimension of the
model is defined not by the number of potential parameters M but by the unknown
number of non-zero components M(λ∗) of vector λ∗ that can be much smaller
than n. In this situation methods like Lasso, LARS or Dantzig selector are used
[17, 8]. It is proved that if M(λ∗) ≪ n and if the dictionary {φ1, . . . , φM} satisfies
certain conditions, then the vector λ∗ and the function f can be estimated with
reasonable accuracy [18, 6, 7, 8, 40, 3]. However, the conditions on the dictionary
{φ1, . . . , φM} required to get risk bounds for the Lasso and Dantzig selector are
quite restrictive. One of the consequences of our results in Section 7 is that a
suitably defined aggregate with exponential weights attains essentially the same
and sometimes even better behavior than the Lasso or Dantzig selector with no
assumption on the dictionary, except for the standard normalization.
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2.Adaptive nonparametric regression. Assume that f is a smooth function, and
{φ1, . . . , φM} are the first M functions from a basis in L2(R

d). If the basis is
orthonormal, it is well-known that adaptive estimators of f can be constructed in

the form
∑M

j=1 λ̂jφj where λ̂j are appropriately chosen data-driven coefficients and

M is a suitably selected integer such that M ≤ n (cf.,e.g., [27, 32]). Our aggregation
procedure suggests a more general way to treat adaptation covering the problems
where the system {φj} is not necessarily orthonormal, even not necessarily a basis,
and M is not necessarily smaller than n. In particular, the situation where M ≫ n
arises if we want to deal with sparse functions f that have very few non-zero scalar
products with functions from the dictionary {φj}, but these non-zero coefficients
can correspond to very high “harmonics”. The results of Section 7 cover this case.

3. Linear, convex or model selection type aggregation. Assume now that φ1,. . . ,φM

are either some preliminary estimators of f constructed from a training sample in-
dependent of (Y1, . . . , Yn) or some weak learners, and our aim is to construct an
aggregate which is approximately as good as the best among φ1, . . . , φM or ap-
proximately as good as the best linear or convex combination of φ1, . . . , φM . In
other words, we deal with the problems of model selection (MS) type aggregation
or linear/convex aggregation respectively [27, 31]. It is shown in [6] that a BIC type
aggregate achieves optimal rates simultaneously for MS, linear and convex aggrega-
tion. This result is deduced in [6] from a sparsity oracle inequality (SOI), i.e., from
an oracle inequality stated in terms of the number M(λ) of non-zero components
of λ. For a discussion of the concept of SOI we refer to [33]. Examples of SOI are
proved in [23, 5, 6, 7, 34, 3] for the Lasso, BIC and Dantzig selector aggregates.
Note that the SOI for the Lasso and Dantzig selector are not as strong as those for
the BIC: they fail to guarantee optimal rates for MS, linear and convex aggrega-
tion unless φ1, . . . , φM satisfy some very restrictive conditions. On the other hand,
the BIC aggregate is computationally feasible only for very small dimensions M .
So, neither of these methods achieves both the computational efficiency and the
optimal theoretical performance.

In Section 7 we propose a new approach to sparse recovery that realizes a com-
promise between the theoretical properties and the computational efficiency. We
first suggest a general technique of deriving SOI from the PAC-Bayesian bounds,

not necessarily for our particular aggregate f̂n. We then show that the exponen-

tially weighted aggregate f̂n with an appropriate prior measure π satisfies a sharp
SOI, i.e., a SOI with leading constant 1. Its theoretical performance is comparable
with that of the BIC in terms of sparsity oracle inequalities for the prediction risk.
No assumption on the dictionary φ1, . . . , φM is required, except for the standard
normalization. Even more, the result is sharper than the best available SOI for
the BIC-type aggregate [6], since the leading constant in the oracle inequality of
[6] is strictly greater than 1. At the same time, similarly to the Lasso and Dantzig
selector, our method is computationally feasible for moderately large dimensionsM .

2. Some notation

In what follows we will often write for brevity θλ instead of θλ(Y). For any
vector z = (z1, . . . , zn)

⊤ ∈ R
n set

‖z‖n =

(

1

n

n
∑

i=1

z2i

)1/2

.
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Denote by P ′
Λ the set of all measures µ ∈ PΛ such that λ 7→ fλ(x) is integrable

w.r.t. µ for x ∈ {x1, . . . , xn}. Clearly P ′
Λ is a convex subset of PΛ. For any

measure µ ∈ P ′
Λ we define

f̄µ(xi) =

∫

Λ

fλ(xi)µ(dλ), i = 1, . . . , n.

We denote by θ · π the probability measure A 7→
∫

A θλ π(dλ) defined on A. With
the above notation, we can write

f̂n = f̄θ·π.

3. A PAC-Bayesian bound based on unbiased risk estimation

In this section we prove our first PAC-Bayesian bound. An important element
of the proof is an extension of Stein’s identity which uses integration by parts. For
this purpose we introduce the function

mξ(x) = −E[ξ11l(ξ1 ≤ x)] = −
∫ x

−∞
z dFξ(z) =

∫ ∞

x

z dFξ(z),

where Fξ(z) = P (ξ1 ≤ z) is the c.d.f. of ξ, 1l(·) denotes the indicator function and
the last equality follows from the assumption E(ξ1) = 0 . Since E|ξ1| < ∞ the
function mξ is well defined, non negative and satisfies mξ(−∞) = mξ(+∞) = 0.
Moreover,mξ is increasing on (−∞, 0], decreasing on [0,+∞) and maxx∈R mξ(x) =
mξ(0) =

1
2E|ξ1|. We will need the following assumption.

(A) E(ξ21) = σ2 < ∞ and the measure mξ(z) dz is absolutely continuous with re-
spect to dFξ(z) with a bounded Radon-Nikodym derivative, i.e., there exists

a function gξ : R → R+ such that ‖gξ‖∞ , supx∈R
gξ(x) < ∞ and

∫ a′

a

mξ(z) dz =

∫ a′

a

gξ(z) dFξ(z), ∀a, a′ ∈ R.

Clearly, Assumption (A) is a restriction on the probability distribution of the errors
ξi. Some examples where Assumption (A) is fulfilled are:

(i) If ξ1 ∼ N (0, σ2), then gξ(x) ≡ σ2.
(ii) If ξ1 is uniformly distributed in the interval [−b, b], then mξ(x) = (b2 −

x2)+/(4b) and gξ(x) = (b2 − x2)+/2.
(iii) If ξ1 has a density function fξ with compact support [−b, b] and such that

fξ(x) ≥ fmin > 0 for every x ∈ [−b, b], then assumption (A) is satisfied with
gξ(x) = mξ(x)/fξ(x) ≤ E|ξ1|/(2fmin).

We now give some examples where (A) is not fulfilled:

(iv) If ξ1 has a double exponential distribution with zero mean and variance σ2,

then gξ(x) = (σ2 +
√
2σ2|x|)/2.

(v) If ξ1 is a Rademacher random variable, then mξ(x) = 1l(|x| ≤ 1)/2, and the
measure mξ(x)dx is not absolutely continuous with respect to the distribu-
tion of ξ1.

The following lemma can be viewed as an extension of Stein’s identity (cf. [24]).

Lemma 1. Let Tn(x,Y) be an estimator of f(x) such that the mapping Y 7→
Tn(Y) , (Tn(x1,Y), . . . , Tn(xn,Y))⊤ is continuously differentiable and let us de-
note by ∂jTn(xi,Y) the partial derivative of the function Y 7→ Tn(Y) with respect
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to the jth coordinate of Y. If Assumption (A) and the following condition

(5)

∫

R

|y|
∫ y

0

|∂iTn(xi, f + z)| dzi dFξ(y) < ∞, i = 1, . . . , n,

or

∂iTn(xi,Y) ≥ 0, ∀Y ∈ R
n, i = 1, . . . , n,

are satisfied where z = (z1, . . . , zn)
⊤, f = (f(x1), . . . , f(xn))

⊤ then

E[r̂n(Y)] = E
(

‖Tn(Y) − f‖2n
)

,

where

r̂n(Y) = ‖Tn(Y) −Y‖2n +
2

n

n
∑

i=1

∂iTn(xi,Y) gξ(ξi)− σ2.

Proof. We have

E
(

‖Tn(Y) − f‖2n
)

= E
[

‖Tn(Y)−Y‖2n +
2

n

n
∑

i=1

ξi(Tn(xi,Y)− f(xi))
]

− σ2

= E
[

‖Tn(Y)−Y‖2n +
2

n

n
∑

i=1

ξiTn(xi,Y)
]

− σ2.(6)

For z = (z1, . . . , zn)
⊤ ∈ R

n write Fξ,i(z) =
∏

j 6=i Fξ(zj). Since E(ξi) = 0 we have

E[ξiTn(xi,Y)] = E
[

ξi

∫ ξi

0

∂iTn(xi, Y1, . . . , Yi−1, f(xi) + z, Yi+1, . . . , Yn) dz
]

=

∫

Rn−1

[

∫

R

y

∫ y

0

∂iTn(xi, f + z) dzi dFξ(y)
]

dFξ,i(z).(7)

Condition (5) allows us to apply the Fubini theorem to the expression in squared
brackets on the right hand side of the last display. Thus, using the definition of mξ

and Assumption (A) we find

∫

R+

y

∫ y

0

∂iTn(xi, f + z) dzi dFξ(y) =

∫

R+

∫ ∞

zi

y dFξ(y) ∂iTn(xi, f + z) dzi

=

∫

R+

mξ(zi) ∂iTn(xi, f + z) dzi

=

∫

R+

gξ(zi) ∂iTn(xi, f + z) dFξ(zi).

Similar equality holds for the integral over R−. Thus, in view of (7), we obtain

E[ξiTn(xi,Y)] = E[∂iTn(xi,Y) gξ(ξi)].

Combining the last display with (6) we get the lemma. �

Based on Lemma 1 we obtain the following bound on the risk of the exponentially

weighted aggregate f̂n.
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Theorem 1. Let π be an element of PΛ such that, for all Y′ ∈ R
n and β > 0, the

mappings λ 7→ θλ(Y
′)f2

λ(xi), i = 1, . . . , n, are π-integrable. If Assumption (A) is

fulfilled then the aggregate f̂n defined by (2) with β ≥ 4‖gξ‖∞ satisfies the inequality

(8) E
(

‖f̂n − f‖2n
)

≤
∫

‖fλ − f‖2n p(dλ) +
βK(p, π)

n
, ∀ p ∈ PΛ,

where K(p, π) stands for the Kullback-Leibler divergence between p and π.

Proof. We will now use Lemma 1 with Tn = f̂n. Accordingly, we write here

f̂n(xi,Y) instead of f̂n(xi). Applying the dominated convergence theorem and
taking into account the definition of θλ(Y) we easily find that the π-integrability

of λ 7→ θλ(Y
′)f2

λ(xi) for all i, Y′ implies that the mapping Y 7→ f̂n(Y) ,

(f̂n(x1,Y), . . . , f̂n(xn,Y))⊤ is continuously differentiable. Simple algebra yields

∂if̂n(xi,Y) =
2

β

{
∫

Λ

f2
λ(xi)θλ(Y)π(dλ) − f̂2

n(xi,Y)

}

=
2

β

∫

Λ

(fλ(xi)− f̂n(xi,Y))2 θλ(Y)π(dλ) ≥ 0.

Therefore, (5) is fulfilled for Tn = f̂n and we can apply Lemma 1 which yields

E[r̂n(Y)] = E
(

‖f̂n(Y)− f‖2n
)

with

r̂n(Y) = ‖f̂n(Y) −Y‖2n +
2

n

n
∑

i=1

∂if̂n(xi,Y) gξ(ξi)− σ2.

Since f̂n(Y) is the expectation of fλ w.r.t. the probability measure θ · π,

‖f̂n(Y) −Y‖2n =

∫

Λ

{‖fλ −Y‖2n − ‖fλ − f̂n(Y)‖2n} θλ(Y)π(dλ).

Combining these results we get

r̂n(Y) =

∫

Λ

{

‖fλ −Y‖2n −∑n
i=1

(β−4gξ(ξi))(fλ(xi)−f̂n(xi,Y))2

nβ

}

θλ(Y)π(dλ) − σ2

≤
∫

Λ

‖fλ −Y‖2n θλ(Y)π(dλ) − σ2,

where we used that β ≥ 4‖gξ‖∞. By definition of θλ,

−n‖fλ −Y‖2n = β log θλ(Y) + β log
[

∫

Λ

e−n‖Y−fw‖2
n/β π(dw)

]

.

Integrating this equation over θ ·π, using the fact that
∫

Λ θλ(Y) log θλ(Y)π(dλ) =
K(θ · π, π) ≥ 0 and convex duality argument (cf., e.g., [15], p.264, or [10], p.160)
we get

r̂n(Y) ≤ −β

n
log

[
∫

Λ

e−n‖Y−fw‖2
n/β π(dw)

]

− σ2

≤
∫

Λ

‖Y − fw‖2n p(dw) +
βK(p, π)

n
− σ2

for all p ∈ PΛ. Taking expectations in the last inequality we obtain (8). �
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4. Risk bounds for n-divisible distributions of errors

In this section we present a second approach to prove sharp risk bounds of the
form (8). The main idea of the proof consists in an artificial introduction of a
“dummy” random vector ζ ∈ R

n independent of ξ = (ξ1, . . . , ξn) and having the
same type of distribution as ξ. This approach will allow us to cover the class of
distributions of ξi satisfying the following assumption.

(B) There exist i.i.d. random variables ζ1, . . . , ζn defined on an enlargement of
the probability space (Ω,F , P ) such that:

(B1) the random variable ξ1 + ζ1 has the same distribution as (1 + 1/n)ξ1,

(B2) the vectors ζ = (ζ1, . . . , ζn) and ξ = (ξ1, . . . , ξn) are independent.

If ξ1 satisfies (B1), then we will say that its distribution is n-divisible.
We will need one more assumption. Let Lζ : R → R ∪ {∞} be the moment

generating function of the random variable ζ1, i.e., Lζ(t) = E(etζ1), t ∈ R.

(C) There exist a functional Ψβ : P
′
Λ × P

′
Λ → R and a real number β0 > 0

such that






















e(‖f−f̄µ′‖2
n−‖f−f̄µ‖2

n)/β
∏n

i=1 Lζ

(

2(f̄µ(xi)−f̄µ′ (xi))

β

)

≤ Ψβ(µ, µ
′),

µ 7→ Ψβ(µ, µ
′) is concave and continuous in the total

variation norm for any µ′ ∈ P ′
Λ,

Ψβ(µ, µ) = 1,

(9)

for any β ≥ β0.

We now discuss some sufficient conditions for assumptions (B) and (C). Denote by
Dn the set of all probability distributions of ξ1 satisfying assumption (B1). First, it
is easy to see that all the zero-mean Gaussian or double exponential distributions
belong to Dn. Furthermore, Dn contains all the stable distributions. However, since
the non-Gaussian stable distributions do not have second order moments, they do
not satisfy (9). One can also check that the convolution of two distributions from
Dn belongs to Dn. Finally, note that the intersection D = ∩n≥1Dn is included
in the set of all infinitely divisible distributions and is called the L-class (see [29],
Theorem 3.6, p. 102).

However, some basic distributions such as the uniform or the Bernoulli distri-
bution do not belong to Dn. To show this, let us recall that the characteristic
function of the uniform on [−a, a] distribution is given by ϕ(t) = sin(at)/(πat). For
this function, ϕ((n + 1)t)/ϕ(nt) is equal to infinity at the points where sin(nat)
vanishes (unless n = 1). Therefore, it cannot be a characteristic function. Similar
argument shows that the centered Bernoulli and centered binomial distributions do
not belong to Dn.

Assumption (C) can be readily checked when the moment generating function
Lζ(t) is locally sub-Gaussian, i.e., there exists a constant c > 0 such that the

inequality Lζ(t) ≤ ect
2

holds for sufficiently small values of t. Examples include
all the zero-mean distributions with bounded support, the Gaussian and double-
exponential distributions, etc. The validity of Assumption (C) for such distributions
follows from Lemma 4 in the Appendix.

Theorem 2. Let π be an element of PΛ such that, for all Y′ ∈ R
n and β > 0,

the mappings λ 7→ θλ(Y
′)fλ(xi), i = 1, . . . , n, are π-integrable. If assumptions (B)
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and (C) are fulfilled, then the aggregate f̂n defined by (2) with β ≥ β0 satisfies the
inequality

(10) E
(

‖f̂n − f‖2n
)

≤
∫

‖fλ − f‖2n p(dλ) +
βK(p, π)

n+ 1
, ∀ p ∈ PΛ.

Proof. Define the mapping H : P ′
Λ → R

n by

Hµ = (f̄µ(x1)− f(x1), . . . , f̄µ(xn)− f(xn))
⊤, µ ∈ P

′
Λ.

For brevity, we will write

hλ = Hδλ = (fλ(x1)− f(x1), . . . , fλ(xn)− f(xn))
⊤, λ ∈ Λ,

where δλ is the Dirac measure at λ (that is δλ(A) = 1l(λ ∈ A) for any A ∈ A).
Since E(ξi) = 0, assumption (B1) implies that E(ζi) = 0 for i = 1, . . . , n. On

the other hand, (B2) implies that ζ is independent of θλ. Therefore, we have

E
(

‖f̄θ·π − f‖2n
)

= βE log exp
{‖f̄θ·π − f‖2n − 2ζ⊤Hθ·π

β

}

= S + S1(11)

where

S = −βE log

∫

Λ

θλ exp
{

− ‖fλ − f‖2n − 2ζ⊤hλ

β

}

π(dλ),

S1 = βE log

∫

Λ

θλ exp
{‖f̄θ·π − f‖2n − ‖fλ − f‖2n + 2ζ⊤(hλ −Hθ·π)

β

}

π(dλ).

The definition of θλ yields

S = −βE log

∫

Λ

exp
{

− n‖Y − fλ‖2n + ‖fλ − f‖2n − 2ζ⊤hλ

β

}

π(dλ)

+ βE log

∫

Λ

exp
{

− n‖Y − fλ‖2n
β

}

π(dλ).(12)

Since ‖Y − fλ‖2n = ‖ξ‖2n − 2n−1ξ⊤hλ + ‖fλ − f‖2n, we get

S = −βE log

∫

Λ

exp
{

− (n+ 1)‖fλ − f‖2n − 2(ξ + ζ)⊤hλ

β

}

π(dλ)

+ βE log

∫

Λ

exp
{

− n‖f − fλ‖2n − 2ξ⊤hλ

β

}

π(dλ)

= βE log

∫

Λ

e−nρ(λ)π(dλ) − βE log

∫

Λ

e−(n+1)ρ(λ)π(dλ),(13)

where we used the notation ρ(λ) = (‖f − fλ‖2n − 2n−1ξ⊤hλ)/β and the fact that
ξ + ζ can be replaced by (1 + 1/n)ξ inside the expectation. The Hölder inequality

implies that
∫

Λ
e−nρ(λ)π(dλ) ≤ (

∫

Λ
e−(n+1)ρ(λ)π(dλ))

n
n+1 . Therefore,

(14) S ≤ − β

n+ 1
E log

∫

Λ

e−(n+1)ρ(λ) π(dλ).

Assume now that p ∈ PΛ is absolutely continuous with respect to π. Denote by
φ the corresponding Radon-Nikodym derivative and by Λ+ the support of p. Using
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the concavity of the logarithm and Jensen’s inequality we get

−E log

∫

Λ

e−(n+1)ρ(λ)π(dλ) ≤ −E log

∫

Λ+

e−(n+1)ρ(λ)π(dλ)

= −E log

∫

Λ+

e−(n+1)ρ(λ)φ−1(λ) p(dλ)

≤ (n+ 1)E

∫

Λ+

ρ(λ) p(dλ) +

∫

Λ+

logφ(λ) p(dλ).

Noticing that the last integral here equals to K(p, π) and combining the resulting
inequality with (14) we obtain

S ≤ βE

∫

Λ

ρ(λ) p(dλ) +
βK(p, π)

n+ 1
.

Since E(ξi) = 0 for every i = 1, . . . , n, we have βE(ρ(λ)) = ‖fλ − f‖2n, and using
the Fubini theorem we find

S ≤
∫

Λ

‖fλ − f‖2n p(dλ) +
βK(p, π)

n+ 1
.(15)

Note that this inequality also holds in the case where p is not absolutely continuous
with respect to π, since in this case K(p, π) = ∞.

To complete the proof, it remains to show that S1 ≤ 0. Let Eξ(·) denote the
conditional expectation E(·|ξ). By the concavity of the logarithm,

S1 ≤ βE log

∫

Λ

θλEξ exp
{‖f̄θ·π − f‖2n − ‖fλ − f‖2n + 2ζ⊤(hλ −Hθ·π)

β

}

π(dλ).

Since fλ = f̄δλ and ζ is independent of θλ, the last expectation on the right hand
side of this inequality is bounded from above by Ψβ(δλ, θ · π). Now, the fact that
S1 ≤ 0 follows from the concavity and continuity of the functional Ψβ(·, θ · π),
Jensen’s inequality and the equality Ψβ(θ · π, θ · π) = 1. �

Another way to read the results of Theorems 1 and 2 is that, if the “phantom”
Gaussian error model (4) with variance taken larger than a certain threshold value

is used to construct the Bayesian posterior mean f̂n, then f̂n is close on the average
to the best prediction under the true model, even when the true data generating
distribution is non-Gaussian.

We now illustrate application of Theorem 2 by an example. Assume that the
errors ξi are double exponential, that is the distribution of ξi admits a density with
respect to the Lebesgue measure given by

fξ(x) =
1√
2σ2

e−
√
2|x|/σ, x ∈ R.

Aggregation under this assumption is discussed in [39] where it is recommended to
modify the weights (3) matching them to the shape of fξ. For such a procedure
[39] proves an oracle inequality with leading constant which is greater than 1. The
next proposition shows that sharp risk bounds (i.e., with leading constant 1) can
be obtained without modifying the weights (3).

Proposition 1. Assume that supλ∈Λ ‖f−fλ‖n ≤ L < ∞ and supi,λ |fλ(xi)| ≤ L̄ <

∞. Let the random variables ξi be i.i.d. double exponential with variance σ2 > 0.



AGGREGATION AND SPARSITY 11

Then for any β larger than

max

((

8 +
4

n

)

σ2 + 2L2, 4σ

(

1 +
1

n

)

L̄

)

the aggregate f̂n satisfies inequality (10).

Proof. We apply Theorem 2. The characteristic function of the double exponential
density is ϕ(t) = 2/(2 + σ2t2). Solving ϕ(t)ϕζ (t) = ϕ((n + 1)t/n) we get the
characteristic function ϕζ of ζ1. The corresponding Laplace transform Lζ in this
case is Lζ(t) = ϕζ(−it), which yields

Lζ(t) = 1 +
(2n+ 1)σ2t2

2n2 − (n+ 1)2σ2t2
.

Therefore

logLζ(t) ≤ (2n+ 1)(σt/n)2, |t| ≤ n

(n+ 1)σ
.

We now use this inequality to check assumption (C). Let β be larger than 4σ
(

1 +

1/n
)

L̄. Then for all µ, µ′ ∈ PΛ we have

2
∣

∣f̄µ(xi)− f̄µ′(xi)
∣

∣

β
≤ 4L̄

β
≤ n

(n+ 1)σ
, i = 1, . . . , n,

and consequently

logLζ

(

2
∣

∣f̄µ(xi)− f̄µ′(xi)
∣

∣/β

)

≤ 4σ2(2n+ 1)(f̄µ(xi)− f̄µ′(xi))
2

n2β2
.

This implies that

exp
(‖f − f̄µ′‖2n − ‖f − f̄µ‖2n

β

)

n
∏

i=1

Lζ

(2(f̄µ(xi)− f̄µ′(xi))

β

)

≤ Ψβ(µ, µ
′),

where

Ψβ(µ, µ
′) = exp

(‖f − f̄µ′‖2n − ‖f − f̄µ‖2n
β

+
4σ2(2n+ 1)‖f̄µ − f̄µ′‖2n

nβ2

)

.

This functional satisfies Ψβ(µ, µ) = 1, and it is not hard to see that the mapping
µ 7→ Ψβ(µ, µ

′) is continuous in the total variation norm. Finally, this mapping is
concave for every β ≥ (8 + 4/n)σ2 + 2 supλ ‖f − fλ‖2n by virtue of Lemma 4 in
the Appendix. Therefore, assumption (C) is fulfilled and the desired result follows
from Theorem 2.

�

An argument similar to that of Proposition 1 can be used to deduce from Theo-
rem 2 that if the random variables ξi are i.i.d. Gaussian N (0, σ2), then inequality
(10) holds for every β ≥ (4 + 2/n)σ2 + 2L2 (cf. [14]). However, in this Gaussian
framework we can also apply Theorem 1 that gives better result: essentially the
same inequality (the only difference is that the Kullback divergence is divided by
n and not by n+ 1) holds for β ≥ 4σ2, with no assumption on the function f .
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5. Model selection with finite or countable Λ

Consider now the particular case where Λ is countable. W.l.o.g. we suppose that
Λ = {1, 2, . . .}, {fλ, λ ∈ Λ} = {fj}∞j=1 and we set πj , π(λ = j). As a corollary of
Theorem 2 we get the following sharp oracle inequalities for model selection type
aggregation.

Theorem 3. Let either assumptions of Theorem 1 or those of Theorem 2 be sat-

isfied and let Λ be countable. Then for any β ≥ β0 the aggregate f̂n satisfies the
inequality

E
(

‖f̂n − f‖2n
)

≤ inf
j≥1

(

‖fj − f‖2n +
β log π−1

j

n

)

where β0 = 4‖gξ‖∞ when Theorem 1 is applied. In particular, if πj = 1/M ,
j = 1, . . . ,M , we have, for any β ≥ β0,

(16) E
(

‖f̂n − f‖2n
)

≤ min
j=1,...,M

‖fj − f‖2n +
β logM

n
.

Proof. For a fixed integer j0 ≥ 1 we apply Theorems 1 or 2 with p being the Dirac
measure: p(λ = j) = 1l(j = j0), j ≥ 1. This gives

E
(

‖f̂n − f‖2n
)

≤ ‖fj0 − f‖2n +
β log π−1

j0

n
.

Since this inequality holds for every j0, we obtain the first inequality of the propo-
sition. The second inequality is an obvious consequence of the first one. �

Theorem 3 generalizes the result of [25] where the case of finite Λ and Gaussian
errors ξi is treated. For this case it is known that the rate of convergence (logM)/n
in (16) cannot be improved [31, 6]. Furthermore, for the examples (i) – (iii) of
Section 3 (Gaussian or bounded errors) and finite Λ, inequality (16) is valid with
no assumption on f and fλ. Indeed, when Λ is finite the integrability conditions are
automatically satisfied. Note that, for bounded errors ξi, oracle inequalities of the
form (16) are also established in the theory of prediction of deterministic sequences
[35, 26, 11, 22, 13]. However, those results require uniform boundedness not only
of the errors ξi but also of the functions f and fλ. What is more, the minimal
allowed values of β in those works depend on an upper bound on f and fλ which
is not always available. The version of (16) based on Theorem 1 is free of such a
dependence.

6. Risk bounds for general distributions of errors

As discussed above, assumption (B) restricts the application of Theorem 2 to
models with n-divisible errors. We now show that this limitation can be dropped.
The main idea of the proof of Theorem 2 was to introduce a dummy random vector
ζ independent of ξ. However, the independence property is stronger than what
we really need in the proof of Theorem 2. Below we come to a weaker condition
invoking a version of the Skorokhod embedding (a detailed survey on this subject
can be found in [28]).

For simplicity we assume that the errors ξi are symmetric, i.e., P (ξi > a) =
P (ξi < −a) for all a ∈ R. The argument can be adapted to the asymmetric case as
well, but we do not discuss it here.
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First, we describe a version of Skorokhod’s construction that will be used below,
cf. [30, Proposition II.3.8].

Lemma 2. Let ξ1, . . . , ξn be i.i.d. symmetric random variables on (Ω,F , P ). Then
there exist i.i.d. random variables ζ1, . . . , ζn defined on an enlargement of the prob-
ability space (Ω,F , P ) such that

(a) ξ + ζ has the same distribution as (1 + 1/n)ξ.
(b) E(ζi|ξ) = 0, i = 1, . . . , n,
(c) for any λ > 0 and for any i = 1, . . . , n, we have

E(eλζi |ξ) ≤ e(λξi)
2(n+1)/n2

.

Proof. Define ζi as a random variable such that, given ξi, it takes values ξi/n or
−2ξi − ξi/n with conditional probabilities P (ζi = ξi/n|ξi) = (2n+ 1)/(2n+ 2) and
P (ζi = −2ξi − ξi/n|ξi) = 1/(2n+ 2). Then properties (a) and (b) are straightfor-
ward. Property (c) follows from the relation

E(eλζi |ξi) = e
λξi
n

(

1 +
1

2n+ 2

(

e−2λξi(1+1/n) − 1
)

)

and Lemma 3 in the Appendix with x = λξi/n and α0 = 2n+ 2. �

We now state the main result of this section.

Theorem 4. Fix some α > 0 and assume that supλ∈Λ ‖f − fλ‖n ≤ L for a finite
constant L. If the errors ξi are symmetric and have a finite second moment E(ξ2i ),
then for any β ≥ 4(1 + 1/n)α+ 2L2 we have

(17) E
(

‖f̂n − f‖2n
)

≤
∫

Λ

‖fλ − f‖2n p(dλ) +
βK(p, π)

n+ 1
+Rn, ∀ p ∈ PΛ,

where the residual term Rn is given by

Rn = E∗
(

sup
λ∈Λ

n
∑

i=1

4(n+ 1)(ξ2i − α)(fλ(xi)− f̄θ·π(xi))
2

n2β

)

and E∗ denotes the expectation with respect to the outer probability.

Proof. We slightly modify the proof of Theorem 2. We now consider a dummy
random vector ζ = (ζ1, . . . , ζn) as in Lemma 2. Note that for this ζ relation (11)
remains valid: in fact, it suffices to condition on ξ, to use Lemma 2(b) and the fact
that θλ is measurable with respect to ξ. Therefore, with the notation of the proof

of Theorem 2, we have E(‖f̂n − f‖2n) = S + S1. Using Lemma 2(a) and acting
exactly as in the proof of Theorem 2 we get that S is bounded as in (15). Finally,
as shown in the proof of Theorem 2 the term S1 satisfies

S1 ≤ βE log

∫

Λ

θλEξ exp
{‖f̄θ·π − f‖2n − ‖fλ − f‖2n + 2ζ⊤(hλ −Hθ·π)

β

}

π(dλ).

According to Lemma 2(c),

Eξ

(

e2ζ
T (hλ−Hθ·π)/β

)

≤ exp

{ n
∑

i=1

4(n+ 1)(fλ(xi)− f̄θ·π(xi))
2ξ2i

n2β2

}

.

Therefore, S1 ≤ S2 + Rn, where

S2 = βE log

∫

Λ

θλexp
(4α(n+ 1)‖fλ − f̄θ·π‖2n

nβ2
− ‖f − fλ‖2n − ‖f − f̄θ·π‖2n

β

)

π(dλ).
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Finally, we apply Lemma 4 (cf. Appendix) with s2 = 4α(n + 1) and Jensen’s
inequality to get that S2 ≤ 0. �

In view of Theorem 4, to get the bound (10) it suffices to show that the remainder
term Rn is non-positive under some assumptions on the errors ξi. More generally,
we may derive somewhat less accurate inequalities than (10) by proving that Rn is
small enough. This is illustrated by the following corollaries.

Corollary 1. Let the assumptions of Theorem 4 be satisfied and let |ξi| ≤ B almost

surely where B is a finite constant. Then the aggregate f̂n satisfies inequality (10)
for any β ≥ 4B2(1 + 1/n) + 2L2.

Proof. It suffices to note that for α = B2 we get Rn ≤ 0. �

Corollary 2. Let the assumptions of Theorem 4 be satisfied and suppose that
E(et|ξi|

κ

) ≤ B for some constants t > 0, κ > 0, B > 0. Then for any n ≥ e1/κ and
any β ≥ 4(1 + 1/n)(2(logn)/t)2/κ + 2L2 we have

E
(

‖f̂n − f‖2n
)

≤
∫

Λ

‖fλ − f‖2n p(dλ) +
βK(p, π)

n+ 1
(18)

+
16BL2(n+ 1)(2 logn)2/κ

n2β t2/κ
, ∀ p ∈ PΛ.

In particular, if Λ = {1, . . . ,M} and π is the uniform measure on Λ we get

E
(

‖f̂n − f‖2n
)

≤ min
j=1,...,M

‖fj − f‖2n +
β logM

n+ 1
(19)

+
16BL2(n+ 1)(2 logn)2/κ

n2β t2/κ
.

Proof. Set α = (2(logn)/t)2/κ and note that

Rn ≤ 4(n+ 1)

nβ
sup

λ∈Λ,µ∈P′
Λ

‖fλ − f̄µ‖2n
n
∑

i=1

E(ξ2i − α)+(20)

≤ 16L2(n+ 1)

β
E(ξ21 − α)+

where a+ = max(0, a). For any x ≥ (2/(tκ))1/κ the function x 7→ x2e−txκ

is

decreasing. Therefore, for any n ≥ e1/κ we have x2e−txκ ≤ αe−tακ/2

= α/n2, as
soon as x2 ≥ α. Hence, E(ξ21−α)+ ≤ Bα/n2 and the desired inequality follows. �

Corollary 3. Assume that supλ∈Λ ‖f − fλ‖∞ ≤ L and the errors ξi are symmetric
with E(|ξi|s) ≤ B for some constants s ≥ 2, B > 0. Then for any α0 > 0 and any
β ≥ 4(1 + 1/n)α0n

2/(s+2) + 2L2 we have

E
(

‖f̂n − f‖2n
)

≤
∫

Λ

‖fλ − f‖2n p(dλ) +
βK(p, π)

n+ 1
+ C̄n−s/(s+2) , ∀ p ∈ PΛ.

where C̄ > 0 is a constant that depends only on s, L,B and α0.

Proof. Set α = α0n
2/(s+2). In view of the inequality (fλ(xi)−f̄θ·π(xi))

2 ≤ 4 supλ∈Λ ‖f−
fλ‖2∞, the remainder term of Theorem 4 can be bounded as follows:

Rn ≤ 16L2(n+ 1)

n2β

n
∑

i=1

E(ξ2i − α)+ ≤ 4L2

α
E(ξ21 − α)+.
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To complete the proof, it suffices to notice that E(ξ21 − α)+ = E(ξ211l(ξ
2
1 > α)) ≤

E(|ξ1|s)/αs/2−1 by the Markov inequality. �

Corollary 2 shows that if the tails of the distribution of errors have exponential
decay and if β is of the order (logn)2/κ, then the rate of convergence in the bound

(19) is of the order (log n)
2
κ (logM)/n. The residual Rn in Corollary 2 is of a

smaller order than this rate and can be made even further smaller by taking α =
(u(logn)/t)2/κ with u > 2. For κ = 1, comparing Corollary 2 with the risk bounds
obtained in [9, 20] for an averaged algorithm in i.i.d. random design regression, we
see that an extra lognmultiplier appears. It is noteworthy that this deterioration of
the convergence rate does not occur if only the existence of finite (power) moments
is assumed. In this case, the result of Corollary 3 provides the same rates of
convergence as those obtained under the analogous moment conditions for model
selection type aggregation in the i.i.d. case, cf. [20, 2].

7. Sparsity oracle inequalities with no assumption on the dictionary

In this section we assume that fλ is a linear combination of M known functions
φ1, . . . , φM , where φj : X → R, with the vector of weights λ = (λ1, . . . , λM ) that
belongs to a subset Λ of RM :

fλ =

M
∑

j=1

λjφj .

The set of functions {φ1, . . . , φM} is called the dictionary.
Our aim is to obtain sparsity oracle inequalities (SOI) for the aggregate with

exponential weights f̂n. The SOI are oracle inequalities bounding the risk in terms
of the number M(λ) of non-zero components (sparsity index) of λ or similar char-
acteristics. As discussed in Introduction, the SOI is a powerful tool allowing one
to solve simultaneously several problems: sparse recovery in high-dimensional re-
gression models, adaptive nonparametric regression estimation, linear, convex and
model selection type aggregation.

For λ ∈ R
M denote by J(λ) the set of indices j such that λj 6= 0, and set

M(λ) , Card(J(λ)). For any τ > 0, 0 < L0 ≤ ∞, define the probability densities

q0(t) =
3

2(1 + |t|)4 , ∀t ∈ R,(21)

q(λ) =
1

C0

M
∏

j=1

τ−1 q0
(

λj/τ
)

1l(‖λ‖ ≤ L0), ∀λ ∈ R
M ,(22)

where C0 = C0(τ,M,L0) is a normalizing constant such that q integrates to 1, and
‖λ‖ stands for the Euclidean norm of λ ∈ R

M .
In this section we choose the prior π in the definition of fλ as a distribution

on R
M with the Lebesgue density q: π(dλ) = q(λ)dλ. We will call it the sparsity

prior.
Let us now discuss this choice of the prior. Assume for simplicity that L0 = ∞

which implies C0 = 1. Then the aggregate f̂n based on the sparsity prior can be

written in the form f̂n = fλ̂, where λ̂ = (λ̂1, . . . , λ̂M ) is the posterior mean in the
“phantom” parametric model (4):

λ̂j =

∫

RM

λjθn(λ)dλ, j = 1, . . . ,M,
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with the posterior density

θn(λ) = C exp
{

− n‖Y − fλ‖2n/β + log q(λ)
}

(23)

= C′ exp
{

− n‖Y − fλ‖2n/β − 4

M
∑

j=1

log(1 + |λj |/τ)
}

.

Here C > 0, C′ > 0 are normalizing constants, such that θn(·) integrates to 1. To
compare our estimator with those based on the penalized least squares approach
(BIC, Lasso, bridge), we consider now the posterior mode λ̃ of θn(·) (the MAP

estimator) instead of the posterior mean λ̂. It is easy to see that λ̃ is also a penalized
least squares estimator. In fact, it follows from (23) that the MAP estimator is a
solution of the minimization problem

λ̃ = arg min
λ∈RM

{

‖Y − fλ‖2n +
4β

n

M
∑

j=1

log(1 + |λj |/τ)
}

.(24)

Thus, the MAP “approximation” of our estimator suggests that it can be heuris-
tically associated with the penalty which is logarithmic in λj . In the sequel, we
will choose τ very small (cf. Theorems 5 and 6 below). For such values of τ the
function λj 7→ log(1 + |λj |/τ) is very steep near the origin and can be viewed as
a reasonable approximation for the BIC penalty function λj 7→ 1l(λj 6= 0). The
penalty log(1 + |λj |/τ) is not convex in λj , so that the computation of the MAP
estimator (24) is problematic, similarly to that of the BIC estimator. On the other

hand, our posterior mean f̂n is efficiently computable. Thus, the aggregate f̂n with
the sparsity prior can be viewed as a computationally feasible approximation to
the logarithmically penalized least squares estimator or to the closely related BIC

estimator. Interestingly, the results that we obtain below for the estimator f̂n are
valid under weaker conditions than the analogous results for the Lasso and Dantzig
selector proved in [3, 7] and are sharper than those for the BIC [6] since we get
oracle inequalities with leading constant 1 that are not available for the BIC.

Note that if we redefine q0 as the double exponential density, the corresponding
MAP estimator is nothing but the penalized least squares estimator with the Lasso

penalty ∼ ∑M
j=1 |λj |. More generally, if q0(t) ∼ exp(−|t|γ) for some 0 < γ < 2,

the corresponding MAP solution is a bridge regression estimator, i.e., the penalized

least squares estimator with penalty ∼ ∑M
j=1 |λj |γ [19]. The argument that we

develop below can be easily adapted for these priors, but the resulting SOI are not
as accurate as those that we obtain in Theorems 5 and 6 for the sparsity prior (21),
(22). The reason is that the remainder term of the SOI is logarithmic in λj when
the sparsity prior is used, whereas it increases polynomially in λj for the above
mentioned priors.

We first prove a theorem that provides a general tool to derive the SOI from the
PAC-Bayesian bound (8). Then we will use it to get the SOI in more particular

contexts. Note that in this general theorem f̂n is not necessarily an exponentially

weighted aggregate defined by (2). It can be any f̂n satisfying (8). The result of
the theorem obviously extends to the case where a remainder term as Rn (cf. (17))
is added to the basic PAC-Bayesian bound (8).

Theorem 5. Let f̂n satisfy (8) with π(dλ) = q(λ) dλ and τ ≤ δL0/
√
M where

0 < L0 ≤ ∞, 0 < δ < 1. Assume that Λ contains the ball {λ ∈ R
M : ‖λ‖ ≤ L0}.
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Then for all λ∗ such that ‖λ∗‖ ≤ (1− δ)L0 we have

E
(

‖f̂n − f‖2n
)

≤ ‖fλ∗ − f‖2n +
4β

n

∑

j∈J(λ∗)

log(1 + τ−1|λ∗
j |) +R(M, τ, L0, δ),

where the residual term is

R(M, τ, L0, δ) = τ2e2τ
3M5/2(δL0)

−3
M
∑

j=1

‖φj‖2n +
2βτ3M5/2

nδ3L3
0

for L0 < ∞ and R(M, τ,∞, δ) = τ2
∑M

j=1 ‖φj‖2n.

Proof. We apply Theorem 2 with p(dλ) = C−1
λ∗ q(λ − λ∗)1l(‖λ − λ∗‖ ≤ δL0) dλ,

where Cλ∗ is the normalizing constant. Using the symmetry of q and the fact that
fλ − fλ∗ = fλ−λ∗ = −fλ∗−λ we get

∫

Λ

〈fλ∗ − f, fλ − fλ∗〉n p(dλ) = C−1
λ∗

∫

‖w‖≤δL0

〈fλ∗ − f, fw〉n q(w) dw = 0.

Therefore
∫

Λ
‖fλ − f‖2n p(dλ) = ‖fλ∗ − f‖2n +

∫

Λ
‖fλ − fλ∗‖2n p(dλ). On the other

hand, bounding the indicator 1l(‖λ − λ∗‖ ≤ δL0) by one and using the identities
∫

R
q0(t) dt =

∫

R
t2q0(t) dt = 1, we obtain

∫

Λ

‖fλ − fλ∗‖2n p(dλ) ≤
1

C0Cλ∗

M
∑

j=1

‖φj‖2n
∫

R

w2
j

τ
q0

(wj

τ

)

dwj =
τ2
∑M

j=1 ‖φj‖2n
C0Cλ∗

.

Since 1− x ≥ e−2x for all x ∈ [0, 1/2], we get

Cλ∗C0 =
1

τM

∫

‖λ‖≤δL0

{

M
∏

j=1

q0

(λj

τ

)}

dλ ≥ 1

τM

M
∏

j=1

{

∫

|λj |≤ δL0√
M

q0

(λj

τ

)

dλj

}

=

(
∫ δL0/τ

√
M

0

3dt

(1 + t)4

)M

=

(

1− 1

(1 + δL0τ−1M−1/2)3

)M

≥ exp
(

− 2M

(1 + δL0τ−1M−1/2)3

)

≥ exp(−2τ3M5/2(δL0)
−3).

On the other hand, in view of the inequality 1+|λj/τ | ≤ (1+|λ∗
j/τ |)(1+|λj−λ∗

j |/τ)
the Kullback-Leibler divergence between p and π is bounded as follows:

K(p, π) =

∫

RM

log

(

C−1
λ∗ q(λ− λ∗)

q(λ)

)

p(dλ) ≤ 4

M
∑

j=1

log(1 + |τ−1λ∗
j |)− logCλ∗ .

Easy computation yields C0 ≤ 1. Therefore Cλ∗ ≥ C0Cλ∗ ≥ exp(− 2τ3M5/2

(δL0)3
) and

the desired result follows. �

Inspection of the proof of Theorem 5 shows that our choice of prior density q0
in (21) is not the only possible one. Similar result can be readily obtained when
q0(t) ∼ |t|−3−δ, as |t| → ∞, for any δ > 0. The important point is that q0(t) should
be symmetric, with finite second moment, and should decrease not faster than a
polynomial, as |t| → ∞.

We now explain how the result of Theorem 5 can be applied to improve the SOI
existing in the literature. In our setup the values x1, . . . , xn are deterministic. For
this case, SOI for the BIC, Lasso and Dantzig selector are obtained in [6, 8, 40, 3].
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In those papers the random errors ξi are Gaussian. So, we will also focus on the
Gaussian case, though similar corollaries of Theorem 5 are straightforward to obtain
for other distributions of errors satisfying the assumptions of Sections 3, 4 or 6.

Denote by Φ the Gram matrix associated to the family (φj)j=1,...,M , i.e., the
M ×M matrix with entries Φj,j′ = n−1

∑n
i=1 φj(xi)φj′ (xi), j, j

′ ∈ {1, . . . ,M}, and
denote by Tr(Φ) the trace of Φ. Set log+ x = max(log x, 0), ∀ x > 0.

Theorem 6. Let f̂n be defined by (2) with π(dλ) = q(λ) dλ and L0 = ∞. Let ξi be
i.i.d. Gaussian N (0, σ2) random variables with σ2 > 0 and assume that β ≥ 4σ2,
Tr(Φ) > 0. Set τ = σ√

nTr(Φ)
. Then for all λ∗ ∈ R

M we have

E
(

‖f̂n − f‖2n
)

≤ ‖fλ∗ − f‖2n +
4βM(λ∗)

n

(

1+ log+

{

√

nTr(Φ)

M(λ∗)σ
|λ∗|1

})

+
σ2

n

where |λ∗|1 =
∑M

j=1 |λ∗
j |.

Proof. To apply Theorem 5 with L0 = ∞, we need to verify that f̂n satisfies (8).
This is indeed the case in view of Theorem 1. Thus we have

E
(

‖f̂n − f‖2n
)

≤ ‖fλ∗ − f‖2n +
4β

n

∑

j∈J(λ∗)

log(1 + τ−1|λ∗
j |) + τ2Tr(Φ).(25)

By Jensen’s inequality,
∑

j∈J(λ∗) log(1+τ−1|λ∗
j |) ≤ M(λ∗) log(1+|λ∗|1/(τM(λ∗))).

Since log(1+|λ∗|1/(τM(λ∗))) ≤ 1+log+(|λ∗|1/(τM(λ∗))), the result of the theorem
follows from the choice of τ . �

Theorem 6 establishes a SOI with leading constant 1 and with no assumption
on the dictionary. Of course, for the inequality to be meaningful, we need a mild
condition on the dictionary: Tr(Φ) < ∞. But this is even weaker than the stan-
dard normalization assumption ‖φj‖2n = 1, j = 1, . . . ,M . Note that a BIC type
aggregate also satisfies a SOI similar to that of Theorem 6 with no assumption on
the dictionary (cf. [6]), but with leading constant greater than 1. However, it is
well-known that the BIC is not computationally feasible, unless the dimension M
is very small (say, M = 20 in the uppermost case), whereas our estimator can be
efficiently computed for much larger M .

The oracle inequality of Theorem 6 can be compared with the analogous SOI
obtained for the Lasso and Dantzig selector under deterministic design [6, 3]. Sim-
ilar oracle inequalities for the case of random design x1, . . . , xn can be found in
[7, 34, 23]. All those results impose heavy restrictions on the dictionary in terms
of the coherence introduced in [16] or other analogous characteristics that limit the
applicability of the corresponding SOI, see the discussion after Corollary 4 below.

We now turn to the problem of high-dimensional parametric linear regression,
i.e., to the particular case of our setting when there exists λ∗ ∈ R

M such that
f = fλ∗ . This is the framework considered in [8, 40] and also covered as an example
in [3]. In these papers it was assumed that the basis functions are normalized:
‖φj‖2n = 1, j = 1, . . . ,M , and that some restrictive assumptions on the eigenvalues
of the matrix Φ hold. We only impose a very mild condition: ‖φj‖2n ≤ φ0, j =
1, . . . ,M, for some constant φ0 < ∞.

Corollary 4. Let f̂n be defined by (2) with π(dλ) = q(λ) dλ and L0 = ∞. Let ξi be
i.i.d. Gaussian N (0, σ2) random variables with σ2 > 0 and assume that β ≥ 4σ2.
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Set τ = σ√
φ0nM

. If there exists λ∗ ∈ R
M such that f = fλ∗ and ‖φj‖2n ≤ φ0,

j = 1, . . . ,M, for some φ0 < ∞, we have

E
(

‖f̂n − f‖2n
)

≤ 4β

n
M(λ∗)

(

1+ log+

{

√
φ0nM

M(λ∗)σ
|λ∗|1

})

+
σ2

n
.(26)

Proof is based on the fact that Tr(Φ) =
∑M

j=1 ‖φj‖2n ≤ Mφ0 in (25).

Under the assumptions of Corollary 4, the rate of convergence of f̂n is of the or-
der O(M(λ∗)/n), up to a logarithmic factor. This illustrates the sparsity property

of the exponentially weighted aggregate f̂n: if the (unknown) number of non-zero
components M(λ∗) of the true parameter vector λ∗ is much smaller than the sam-

ple size n, the estimator f̂n is close to the regression function f , even when the

nominal dimension M of λ∗ is much larger than n. In other words, f̂n achieves
approximately the same performance as the “oracle” ordinary least squares that
knows the set J(λ∗) of non-zero components of λ∗. Note that similar performance
is proved for the Lasso and Dantzig selector [6, 8, 40, 3], however the risk bounds
analogous to (26) for these methods are of the form O

(

M(λ∗)(logM)/(κn,Mn)
)

,
where κn,M is a “restricted eigenvalue” of the matrix Φ which is assumed to be
positive (see [3] for a detailed account). This kind of assumption is violated for
many important dictionaries, such as the decision stumps, cf. [3], and when it is
satisfied the eigenvalues κn,M can be rather small. This indicates that the bounds
for the Lasso and Dantzig selector can be quite inaccurate as compared to (26).

8. Appendix

Lemma 3. For any x ∈ R and any α0 > 0, x+ log
(

1 + 1
α0

(

e−xα0 − 1
))

≤ x2α0

2 .

Proof. On the interval (−∞, 0], the function x 7→ x + log
(

1 + 1
α0

(e−xα0 − 1)
)

is
increasing, therefore it is bounded by its value at 0, that is by 0. For positive
values of x, we combine the inequalities e−y ≤ 1 − y + y2/2 (with y = xα0) and
log(1 + y) ≤ y (with y = 1 + 1

α0
(e−xα0 − 1)). �

Lemma 4. For any β ≥ s2/n + 2 supλ∈Λ ‖f − fλ‖2n and for every µ′ ∈ P ′
Λ, the

function

µ 7→ exp
(s2‖f̄µ′ − f̄µ‖2n

nβ2
− ‖f − f̄µ‖2n

β

)

is concave.

Proof. Consider first the case where Card(Λ) = m < ∞. Then every element of
PΛ can be viewed as a vector from R

m. Set

Q(µ) = (1− γ)‖f − fµ‖2n + 2γ〈f − fµ, f − fµ′〉n
= (1− γ)µTHT

n Hnµ+ 2γµTHT
n Hnµ

′,

where γ = s2/(nβ) and Hn is the n×m matrix with entries (f(xi)− fλ(xi))/
√
n.

The statement of the lemma is equivalent to the concavity of e−Q(µ)/β as a function
of µ ∈ PΛ, which holds if and only if the matrix β∇2Q(µ) − ∇Q(µ)∇Q(µ)T is
positive-semidefinite. Simple algebra shows that ∇2Q(µ) = 2(1 − γ)HT

n Hn and
∇Q(µ) = 2HT

n [(1 − γ)Hnµ + γHnµ
′]. Therefore, ∇Q(µ)∇Q(µ)T = HT

n MHn,
where M = 4Hnµ̃µ̃

THT
n with µ̃ = (1 − γ)µ + γµ′. Under our assumptions, β is
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larger than s2/n, ensuring thus that µ̃ ∈ PΛ. Clearly, M is a symmetric and
positive-semidefinite matrix. Moreover,

λmax(M) ≤ Tr(M) = 4‖Hnµ̃‖2 =
4

n

n
∑

i=1

(

∑

λ∈Λ

µ̃λ(f − fλ)(xi)

)2

≤ 4

n

n
∑

i=1

∑

λ∈Λ

µ̃λ(f(xi)− fλ(xi))
2 = 4

∑

λ∈Λ

µ̃λ‖f − fλ‖2n

≤ 4max
λ∈Λ

‖f − fλ‖2n

where λmax(M) is the largest eigenvalue ofM and Tr(M) is its trace. This estimate
yields the matrix inequality

∇Q(µ)∇Q(µ)T ≤ 4max
λ∈Λ

‖f − fλ‖2n HT
n Hn.

Hence, the function e−Q(µ)/β is concave as soon as 4maxλ∈Λ ‖f−fλ‖2n ≤ 2β(1−γ).
The last inequality holds for every β ≥ n−1s2 + 2maxλ∈Λ ‖f − fλ‖2n.

The general case can be reduced to the case of finite Λ as follows. The concavity

of the functional G(µ) = exp
(

s2‖f̄µ′−f̄µ‖2
n

nβ2 − ‖f−f̄µ‖2
n

β

)

is equivalent to the validity

of the inequality

G
(µ+ µ̃

2

)

≥ G(µ) +G(µ̃)

2
, ∀ µ, µ̃ ∈ P

′
Λ.(27)

Fix now arbitrary µ, µ̃ ∈ P ′
Λ. Take Λ̃ = {1, 2, 3} and consider the set of functions

{f̃λ, λ ∈ Λ̃} = {f̄µ, f̄µ̃, f̄µ′}. Since Λ̃ is finite, P ′
Λ̃
= PΛ̃. According to the first

part of the proof, the functional

G̃(ν) = exp

(

s2‖f̄µ′ − ¯̃fν‖2n
nβ2

− ‖f − ¯̃fν‖2n
β

)

, ν ∈ PΛ̃,

is concave on PΛ̃ as soon as β ≥ s2/n + 2maxλ∈Λ̃ ‖f − f̃λ‖2n, and therefore for

every β ≥ s2/n + 2 supλ∈Λ ‖f − fλ‖2n as well. (Indeed, by Jensen’s inequality for
any measure µ ∈ P

′
Λ we have ‖f − f̄µ‖2n ≤

∫

‖f − fλ‖2nµ(dλ) ≤ supλ∈Λ ‖f − fλ‖2n.)
This leads to

G̃
(ν + ν̃

2

)

≥ G̃(ν) + G̃(ν̃)

2
, ∀ ν, ν̃ ∈ PΛ̃.

Taking here the Dirac measures ν and ν̃ defined by ν(λ = j) = 1l(j = 1) and
ν̃(λ = j) = 1l(j = 2), j = 1, 2, 3, we arrive at (27). This completes the proof of the
lemma. �
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