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Abstract 
 
One of the major issues with multiparticle reactors is to handle their multiscale aspect. For 
modeling, it usually comes to coupling a reactor model (describing the phenomena at the 
macroscopic scale) with a so-called grain model (simulating the behavior of a single grain or a 
particle). An interesting approach proposed by H.Y. Sohn (1978) is to use the law of additive 
reaction times in order to calculate, approximately but analytically, the reaction rate of a particle 
in the reactor model. Its great advantage, compared to a numerical grain model, is to drastically 
reduce the computation time, particularly in the case of complex reactor models. This is the 
approach we retained for modeling the moving bed furnace, a counter-current gas-solid reactor 
used in the nuclear fuel-making route for producing uranium tetrafluoride from uranium trioxide. 
The numerical model we developed is 2-dimensional, steady-state and based on the finite volume 
method. It describes solid and gas flow, convective, conductive and radiative heat transfers, and 
six chemical reactions involved in the process. The law of additive reaction times is used to 
calculate analytically the rate of the three principal gas-solid reactions at every discrete point in 
the reactor. We have demonstrated the validity of this approach by comparing its results with 
those calculated from a numerical grain model. Also detailed in the paper are the main results of 
the moving bed furnace model itself and the possibilities of optimizing the process revealed by 
the calculations. 
 

Introduction 
 
Gas-solid reactions are at the root of numerous major industrial processes. Notable examples are 
the combustion of solids, the incineration of wastes, the absorption of acid gases and reactive 
vapor phase deposition. In the field of pyrometallurgy one can cite the treatment of ores by 
calcination, roasting and reduction, the oxidation of metals, the pyrolysis of coal, the oxidation of 
coke. In most cases the kinetic and thermal characteristics of the reaction(s) control the plant 
productivity and impose their requirements for operating the process (range of temperatures to 
abide by, profile of flow rate and gas composition to control, etc.). This explains the great 
interest for the knowledge and the control of these reactions and their kinetics, and consequently, 
the numerous studies devoted to the mathematical modeling of both gas-solid reactions and gas-
solid reactors. 
The reactors involved are of all types, e.g. bed of particles traveling on a moving grate, moving 
beds in shaft furnaces, rotary kilns, fluidized beds, batch fixed beds. Features shared by most of 
these reactors are, in addition to the presence of gas-solid reactions, a high-temperature operation 



(700-1300 °C), the treatment of divided solids, often heterogeneous and poorly defined, and 
phenomena occurring at several scales, from meter to micrometer. For mathematical modeling, 
the latter feature is quite significant since it drives the choice of the modeling approach, as it will 
be discussed in detail in the present paper. Roughly speaking, one has to combine a description at 
the scale of the solid particles, the size of which ranges from centimeter (pellets, lumps) to 
micrometer (powders) and which often include micrometric pores, with a description at the scale 
of the reactor, typically a few meters. 
 

The Single Particle 
 
Main Physical Phenomena 
 
The solid particles treated industrially are generally porous pellets composed of a number of 
individual grains of different sizes, separated by the pores. If these grains are themselves porous, 
they can be considered as a combination of dense crystallites and pores. A possible 
representation of the solid is then that shown in Figure 1a, where the pellet is in fact an 
agglomerate of dense grains of different sizes. Let us consider a pellet of this type immersed in a 
gas, and inside which the following reaction occurs 
 

  
aA( g ) + bB(s) = pP( g ) + qQ(s)  (1) 

(a, b, p, and q are the stoichiometric coefficients, and A, B, P, and Q the species), and examine in 
more detail the physical, chemical and thermal phenomena that take place. 

 
Figure 1. Schematic representation of a porous pellet (a) made up 
of grains, a pore (b), and the steps in mass transport (i to iii) and 
reaction (iv). B and Q are the solid reactant and product phases. 

 
Before reacting with the solid B, the reactive gas A must be transported to the reaction site by (i) 
transfer within the external gas to the pellet surface and (ii) diffusion through the intergranular 
pores. In the grains (Figure 1b), the reaction (iv) can itself be broken down into adsorption, 
reaction, and desorption steps, and generally also involves a final mass transport step (iii), 
through the layer of solid product Q, which can be either dense or porous. The gaseous product P 
is desorbed, then evacuated outwards through the pores. Each of these steps has its own kinetics 
and can limit, or help to limit, the overall rate of conversion. A so-called chemical regime is one 
where the chemical reaction itself controls the overall kinetics, while a diffusional regime is one 
governed by diffusion of the gas either in the pores or in the layer of Q. Other possibilities are 
mixed regimes, corresponding to various combinations of the controlling steps. 
If the reaction is exo- or endothermic, or if the external temperature varies for any reason, the 
evolution or consumption of heat by the reaction, and heat transfer within the pellet and to the 
outside are superimposed on the mass transport processes. In the case of thermal decomposition 



reactions (endothermic, with a=0, e.g. the decomposition of calcium carbonate), the heat transfer 
can itself control the overall kinetics. 
Finally, a characteristic feature of numerous gas-solid reactions is the variation of the porous 
structure of the solid in the course of reaction. This evolution can be caused by external stresses, 
by high-temperature sintering or simply by the chemical reaction itself. The conversion of the 
solid phase B to a new solid phase Q of different molar volume modifies the morphologies of the 
solid grains, the pores and sometimes the pellet. 
 
Grain, Pore and Pseudo-Homogeneous Models 
 
The large variety of physical phenomena involved explains why it is difficult to describe 
mathematically the transformation processes in all their complexity. Nevertheless, an abundant 
literature deals with the topic and, since the early Shrinking Core Model (SCM) [1], 
mathematical models aiming at simulating gas-solid reactions in a single particle became 
increasingly sophisticated. A possible way to classify these models is to follow the underlying 
description of the particle structure (Figure 2). Grain models image the structure depicted in 
figures 1a and 2a, i.e. a pellet made up of grains. The pioneering work of Szekely, Evans and 
Sohn [2] was later extended to account for a variable porosity [3] and changing and distributed 
grain sizes [4, 5].  Grain models can account for the chemical reaction itself, together with the 
associated mass transport phenomena, like the diffusion through the solid product layer, the 
diffusion through the intergranular pores, and the external transfer. As they represent a 
significant improvement on earlier, much simpler models, grain models were widely and 
successfully applied to the simulation of numerous gas-solid reactions. The second class, pore 
models, first considers the pores, the solid phase being the volume complement of the pore phase 
[6-10]. These are well adapted to the description of the pore evolution in the course of the 
reaction [11, 12]. Eventually, all these models mostly reflect the same physical and chemical 
phenomena and the description of the structure in terms of grains or pores leads essentially to 
different expressions for the evolution of the reaction surface area [13, 14]. This justifies the 
development of another kind of models, the pseudo-homogeneous ones, which do not describe a 
grain or pore structure a priori, but only through the expressions of the reaction rate and the 
effective transport properties [14, 15]. 
 

 
Figure 2. Grain and pore models 

 



Whatever the type, most of the models require a numerical solution. Only simple situations and 
rate expressions can be treated analytically. At least two coupled equations are to be solved, 
these expressing the local balances of the gaseous and solid reactant. Table I gives the equations 
solved in the pseudo-homogeneous model “Boulet” [14]. The latter was developed by two of the 
authors in order to simulate both the kinetic and the thermal behavior of a porous spherical pellet 
in reaction with a gas. Non-isothermal and non-equimolar reactions can be dealt with, possibly in 
the transient regime and in the presence of gaseous and solid inerts. A subsequent version was 
written accounting for the evolution of a pore size distribution [16]. This model has been 
validated against analytical and numerical solutions from the literature and was successfully 
applied for simulating the oxidation of zinc sulfide and the hydrofluorination of uranium dioxide. 
 

Table I. Main equations of the model “Boulet” [14]. 
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Notation: NA, NP, NI, Nt, molar flux densities of A, P, I (inert), and total; t time; ε, porosity; ct, total gas 
concentration; xA, xP, molar fractions of A, P; rV, reaction rate per unit volume; cB0, initial molar 
concentration in B; xB, local conversion; cpV, volumic specific heat; λe, effective thermal conductivity; ΔrH 
heat of reaction; DAe, DPe, effective diffusivities; rs, reaction rate per unit surface area; Ea, energy of 
activation; n, l, and m, reaction orders; Keq, equilibrium constant; a0, initial specific surface area; Vp 
particle volume. 
 
The Law of Additive Reaction Times 
 
To the authors’ knowledge, the first mentions of the law of additive reaction times are found in 
[2] when Szekely, Evans and Sohn evaluate the different mass transfer resistances in the case of 
a reaction in the mixed regime (reaction-gas diffusion) in the frame of the Grain Model. Sohn 
little later stated more clearly this law under the following form [17]: 
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 (2) 

Mathematically, and adding the possible contribution of external transfer, it can be written: 

 
  
tX B

= tX B ,chemical regime + tX B ,diffusion regime + tX B ,external transfer regime  (3) 

This law is exact in the case of a non-porous particle following the SCM with a reaction order 
with respect to the gas reactant equal to 1. Szekely et al. and Sohn, however, had the intuition 
and showed [17] that it holds, approximately, in a number of situations: these described by the 
original Grain model, for different pellet and grain shapes, but also the case when diffusion 
through the product layer around grains is a rate-limiting step, as well as for various reaction 
kinetics, like those of the nucleation-and-growth type or first-order with respect to the unreacted 
solid. The physical reason underlying the additivity of the reaction times is that these times are 
tantamount to mass transfer resistances. The resistances are perfectly in series for a non-porous 
pellet, and roughly in series for a porous one.  
The calculation of the reaction times is problem-specific. According to the Grain Model and for 
spherical pellet and grains, one has: 
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Our own notations are used here. τch is the characteristic time of the chemical reaction itself, i.e. 
the time that would be necessary to get a complete conversion under chemical reaction control, 
τdif the time for complete conversion under gas diffusion control, and τext the time for complete 
conversion under control by the external transfer. In addition to the notations already used, aext is 
the external surface area of the pellet, ca∞ the molar concentration in A in the bulk external gas, 
and kg the external mass transfer coefficient. 
As indicated by Sohn, a major benefit of the law of additive reaction times is the possibilities 
offered by its analytical, “closed-form” expression. The calculation of the evolution of the 
conversion as a function of time is hundreds of times faster using (3) than using a numerical 
grain model, which implies a time-consuming spatial discretization of the pellet. This is a 
decisive advantage when attempting to model and simulate multiparticle reactors. In this case, 
the proper variable to handle is the reaction rate, which can be obtained by the derivation of (3) – 
or (4) for the Grain Model. In the latter case, one obtains: 
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where rX B
is the reaction rate expressed as the time derivative of the conversion. Sohn tested and 

checked against a numerical grain model the validity of using the derivative form of the law of 
additive reaction time when temperature and gas composition change with time [17]. 
 

The Multiparticle Reactor 
 
The purpose of this section is not to present all of the approaches for modeling multiparticle 
processes. We rather intend to show how gas-solid reactions can be described and treated 



mathematically in multiparticle reactor models. The most reliable mathematical models of 
processes are certainly those describing the actual transport phenomena involved and using the 
formalism of Computational Fluid Dynamics (CFD), i.e. based on the solution of the local 
balance equations. Compared to the case of a single particle, the physical-chemical phenomena 
to account for at the multiparticle reactor scale are the same, with the addition of gas and solid 
flows. This kind of model requires a numerical solution. The reactor is meshed in 2-D or 3-D and 
treated either in steady or transient state. The usual current numerical methods are finite elements 
or finite volumes and the codes are either multi-purpose commercial CFD softwares or 
specifically-written, dedicated ones. 
 
Coupling Particle and Reactor Models 
 
The issue of modeling a multiparticle reactor in which gas-solid reactions take place is clearly a 
multi-scale problem. As stated before, tools are available for describing finely the phenomena at 
the scale of the particles (from µm to mm), these are the particle or grain models, and others, the 
commercial or dedicated softwares, based on balance equations on elementary reactor volumes, 
are available to deal with the macroscopic scale (roughly from mm to m). Coupling, i.e. making 
these two types of numerical codes enter into dialog or being totally integrated, raise the 
theoretical question of the representative elementary volume and the practical one of the 
coupling method. 
At the macroscopic scale of the process, it is desirable and convenient to be able to model the 
two-phase (gas+solid) content of the reactor as a continuous and homogeneous medium. This 
wish, common to most of scientific domains dealing with heterogeneous media, gave birth to the 
concept of Representative Elementary Volume (REV). The latter can qualitatively be defined as 
a volume large enough for defining meaningful “equivalent” properties (equivalent to those of a 
continuous homogeneous medium) but small enough compared to the macroscopic dimensions. 
A lot of work was devoted to the calculation of these equivalent properties, like the effective 
thermal conductivity, the effective mass diffusivities, or the permeability, in particular by means 
of local averaging techniques on the REV [18]. We assume here that this approach is valid for 
gas-solid reactors. 
Concerning the method of coupling, the simplest one is to integrate the particle model into the 
reactor model, which, in terms of programming, amounts to making the particle model a 
subroutine of the reactor model. Coupling is carried out through the reaction rate. The reaction 
rate per unit reactor volume, 

 
rVr

, which appears in nearly all balance equations, is expressed as: 

 rVr
=

1
b

cB0 r
rX B

 (6) 

where 
  
cB0r

 is the initial apparent concentration in B per unit reactor volume. 
 
rX B

is given by the 

particle model as a function of the particle state (internal profiles of xB, xA, xP, T, etc.) at two 
consecutive times and of the local conditions prevailing around the particle (essentially the 
temperature, composition, and velocity of the gas). To calculate correctly rX B

, it is thus 

necessary, for every reactor cell, to store two complete states of the particle and to run the 
particle model, which implies a spatial integration along the particle radius (for a 1D particle 
model). Such a method of coupling thus requires, compared to the calculations that would be 
necessary for a homogeneous reaction, one additional level of integration, equivalent to a fourth 
dimension. For reactors of simple geometry (1D or 2D) and in steady state, this approach 
remains numerically practicable. An example treated this way by two of the authors is the 
modeling of rotary kilns for coal pyrolysis [19, 20]. For finer descriptions (2D or 3D) at the scale 
of the reactor, the computation time may become unacceptable. 
 



Using the Law of Additive Reaction Times 
 
In the latter situation, the interest of a simpler, though accurate, means for calculating the 
reaction rate is clear. For every reactor point, the reaction rate is no longer computed numerically 
by a particle model, but given by an equation similar to (5). It suffices to calculate the 
characteristic times as a function of the local gas and temperature conditions. These times can 
even be calculated in cases that go beyond the rather restrictive frame of the Grain Model. Other 
systems than a particle, like beds of powder in a lifter or at the bottom of a rotary kiln, can also 
be described considering additive reaction times [21]. 
Surprisingly, despite the advantages cited above, very few papers mentioning the use of the law 
of additive reaction times for modeling multiparticle processes were published. In addition to the 
present work, other examples are referred to in [17]. A recent approach using another 
approximate method is proposed by Gómez-Barea and Ollero, who note that this kind of 
approach has been far more frequently used in the field of catalytic reactions, but who seem to 
ignore the law of additive reaction times [13]. 
 

The Moving Bed Furnace for the Production of UF4 
 
The Process 
 
One of the numerous steps in the route for making the nuclear fuel, which comes after the 
purification and before the isotopic enrichment, is the conversion of uranium trioxide UO3 into 
uranium tetrafluoride UF4. In the French process, it is carried out in a moving bed furnace 
(Figure 3). UO3 pellets (25-mm diameter) fed at the top of a long (9 m) cylinder, descend by 
gravity, and react with counter-flowing gases. In the upper sectio (the reduction zone) the 
reducing gas is hydrogen produced by cracked ammonia NH3. In the lower section (the 
hydrofluorination zone) hydrogen fluoride is injected to convert UO2 into UF4. Particles of UF4 
are extracted in a horizontal section by an Archimedes screw. The tricky point for the process is 
its control. The reactions of reduction and hydrofluorination are very exothermic. Local hot spots 
can soften the pellets and lead to stopping of the bed. In order to build a numerical tool that could 
help to optimize the process and its operation, we developed a mathematical model dedicated to 
this process. 
 
The Model 
 
The problem is indeed rather complex. All types of transport phenomena take place and at least 5 
heterogeneous and 1 homogeneous chemical reactions occur. Several pieces of work were 
necessary to complement the modeling task: establishing overall mass and heat balance of the 
industrial process from specific on-line measurements, design of a cold model to study solid and 
gas flow, separate studies of the cracking of ammonia, the reduction of UO3 and of U3O8, the 
hydrofluorination of UO2, etc. Table II summarizes the reactions and the kinetic laws retained 
here. Three of these (the third, fourth, and sixth equations) correspond to the law of additive 
reaction times. The characteristic times were not calculated as given by the standard Grain 
Model, but specifically to account for the characteristics of the reactions. For example, in the 
case of hydrofluorination, the non-equimolarity and the reversibility of the reaction are 
considered. The resulting expressions are reported below: 
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where f is a subscript for hydrofluorination, dg and dp are the diameters of the grain and the pellet, 
cUO2,p the initial apparent molar concentration in UO2 of the pellet, εp the porosity of the pellet. 
 

 
Figure 3. Schematic representation of the moving bed furnace producing UF4. 

 
 



Table II. The different chemical reactions considered and their rate expressions, from [22]. 

 
 
Concerning the model itself, its distinctive features are a multi-scale description, using the law of 
additive reaction times to model the main three heterogeneous reactions, and the combination of 
two modeling approaches: a mechanical one to describe the vertical sections, using the finite 
volume method in 2D, and a systemic one, using perfectly stirred reactors, to model the 
horizontal section with its Archimedes screw. For the model of the vertical section, gas and solid 
temperatures are assumed equal due to a high convective transfer between gas and solids. The 
model is further detailed in [22, 23].  
The results calculated are in good agreement with available measurements, particularly the axial 
profiles of temperature recorded during a standard operation. From the calculated maps of 
temperature, compositions, reaction rates, and so on, some in-depth and new information about 
the way the furnace works could be obtained. For example, the existence, in the lower part of the 
hydrofluorination zone, of a large central hot region with little reaction taking place was revealed 
(see Figure 4). This is due to the presence of high radial temperature gradients and to a 
thermodynamic limitation at high temperature. This behavior was unknown by the operators and 
is eventually responsible for a poorer performance of the largest furnaces, as experienced 
industrially when comparing furnaces of different diameters. This also led us to propose 
possibilities of improvement of the process, e.g. by injecting a part of the hydrogen fluoride 
directly at the level of the hot region, the temperature would be decreased and the reaction would 
be favored. Indeed, these findings were applied to one of the industrial furnaces, specifically 
modified for that purpose, and operational results have confirmed the model predictions. 
 
Comparison Between the Law of Additive Reaction Times and a Particle Model 
 
To ensure the validity of using the law of additive reaction times, we have compared the 
conversion degree of a reacting UO2 pellet first, when it was calculated with the model of the 
moving bed furnace and second, when it was calculated in the same conditions (temperature, gas 



composition) by means of a particle model. In the latter case, we used as a reference the model 
Boulet [14] presented above. 

 
Figure 4. Calculated results regarding the vertical hydrofluorination zone. 



Calculations were made for a pellet descending the upper part of the vertical hydrofluorination 
zone, with the parameters (thermodynamic and transport properties, diffusion coefficients, etc.) 
used in the model of the moving bed furnace [24]. Profiles of temperature and gas composition 
taken from the moving bed results were used as boundary conditions to the grain model. Two 
cases were considered: either the pellet descends in the centre of the moving bed (leading to the 
worst conversion into UF4 at the bottom of the vertical zone), or next to the outer wall (thus 
leading to the best conversion). 
Figures 5 and 6 present the mean conversion degree and the temperature of the centre of the 
pellet in these two cases. Figure 5 shows that the conversion of the pellet is very well represented 
with the law of additive characteristic times in the model of the moving bed. Figure 6 shows that, 
in spite of the exothermicity of the hydrofluorination, the gas temperature and the temperature at 
the centre of the pellet are very close, thus confirming the hypotheses of a uniform temperature 
in the pellet and of equal gas and solid temperatures.  
 

Figure 5. Evolution of the conversion of a 
pellet along the vertical hydrofluorination 
zone, for two radial positions. Solid lines: 
model Boulet [14], dotted lines: law of 
additive reaction times in the moving bed 
model, from [24]. 

Figure 6. Evolution of temperatures along the 
vertical hydrofluorination zone, for two radial 
positions. Solid lines: at the center of a pellet, 
according to the model Boulet [14], dotted 
lines: gas temperature from the moving bed 
model, from [24]. 

 
Those results illustrate properly the validity of the hypotheses made in the complete model of the 
moving bed. They also represent, to our knowledge, the first numerical validation of using the 
law of additive characteristic times in a multiparticle reactor model. 
 

Conclusion 
 
Gas-solid reactions associate chemical processes, for the chemical reaction itself, to physical 
mass transport processes for transferring the reactant and product species. We have briefly 
described these processes and the consequent kinetic regimes, together with the main 
mathematical models available from the literature to simulate gas-solid reactions at the scale of a 
single particle. An alternative approach to the numerical particle models is the law of additive 
reaction times presented by H.Y. Sohn in 1978. This is an approximate relationship enabling to 
calculate easily the time necessary to reach a given conversion in given surrounding conditions 
and, in its differential form, to calculate the reaction rate in the same conditions. Like particle 
models, it can account for different or mixed kinetic regimes. But unlike these numerical models, 



its simple, analytical form is a key advantage for modeling multiparticle reactors. Surprisingly, 
few studies were published showing its application. 
We used this law for modeling a complex gas-solid reactor, the moving bed furnace converting 
UO3 to UF4. The process is presented, as well as the principal characteristics of the model, 
further detailed in [22-24]. In the last part of the present paper, we have examined the validity of 
the approach using the law of additive reaction times. We have compared its use to that of a 
particle model. It is shown that the law of additive reaction times predicts quite well the 
evolution of the conversion under different external conditions, even non-isothermal ones. 
Provided the characteristic reaction times are specifically calculated to precisely fit the situation 
to simulate, we do believe that the law of additive reaction times has a broad scope and is a 
powerful tool for modeling multiparticle reactors. 
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