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Athermal dynamics of strongly coupled stochastic three-state oscillators

Bastien Fernandez' and Lev S. Tsimring?
L Centre de Physique Théorique CNRS, Universités de Marseille I et II et de Toulon-Var,
Luminy Case 907, 13288 Marseille CEDEX 09, France
2 Institute for Nonlinear Science, University of California, San Diego, La Jolla, CA 92093-0402

We study the collective behavior of a globally coupled ensemble of cyclic stochastic three-state
systems with transition rates from state ¢ — 1 to state ¢ proportional to the number of systems
already in state . While the mean field theory predicts only decaying oscillations in this system,
direct numerical simulations indicate that the mean field exhibits stochastic oscillations even in the
limit of large number of oscillators. We characterize the regularity of oscillations by the coherence
parameter which has a well-defined maximum at the coupling constant of order 1. In contrast, the
order parameter characterizing the level of synchrony among oscillators, increases monotonously with
the coupling strength. We derive the exact solution of the full master equation for the stationary
probability distribution and find the analytical expression for the order parameter.

PACS numbers:

Interacting stochastic systems emerge in a variety of
physical and biological contexts, from arrays of Joseph-
son junctions [1] and laser arrays [2] to neural networks
[3, 4] and gene regulatory networks [5, 6]. While the
dynamics of individual elements can be rather compli-
cated and non-generic, the dynamics of a large ensem-
ble of coupled units often exhibits universal behavior.
Therefore, studies of canonical models with simple indi-
vidual dynamics and interaction rules have proven very
useful for understanding the behavior of specific systems.
Well-known examples of such canonical systems are the
Desai-Zwanzig model [7] of coupled bistable systems and
the Kuramoto model [8] of coupled phase oscillators. The
Kuramoto model and its many variations and generaliza-
tions (see [9]) have been very successful in describing the
transition to coherent oscillations in ensembles of coupled
phase oscillators. Stochastic dynamics of individual ele-
ments in such models are described by coupled nonlinear
Langevin equations. In the thermodynamic limit, they
can be reduced to low-dimensional deterministic equa-
tions for the mean field or the order parameter charac-
terizing global behavior of large systems.

A simpler way of describing interacting stochastic sys-
tems incorporates stochastic elements with a discrete set
of states with certain transition rates. It is most often
done for bistable systems which are replaced by two-state
stochastic systems with suitably chosen transition rates.
For example, array-enhanced stochastic resonance has
been studied in a system of globally coupled two-state
systems [10]. A transition to regular oscillations in an
ensemble of two-state systems coupled through a delayed
mean field was studied in [11].

Recently, Prager et al. [12] introduced a globally
coupled three-state stochastic “oscillators” with uni-
directional (1 — 2 — 3 — 1) transitions as a para-
digmatic model of noise-driven excitable systems. This
model is simple enough to make analytical and large-scale
numerical studies of large systems feasible [12, 13]. An

important property is their behavior in the thermody-
namic limit, when the number of units approaches infin-
ity. Prager et al. [12] considered Markovian systems with
transition rates depending on the suitably defined mean
field and found no Hopf bifurcation in the thermody-
namic limit. Instead, they found oscillations in this limit
if the transitions between states are characterized by non-
exponential waiting time distributions which imply non-
Markovian dynamics. Later, Wood et al. [13] studied the
dynamics of both globally and locally coupled Markovian
three-state systems in the thermodynamic limit and did
find a supercritical Hopf bifurcation to coherent periodic
oscillations for strong enough coupling. While the indi-
vidual systems considered in [12] and [13] were essentially
identical, the difference between the models was in the
way the coupling between the systems was introduced.

In this Letter we focus on the seemingly “less interest-
ing” situation when the Markovian dynamics of a globally
coupled ensemble of three-state systems does not exhibit
a Hopf bifurcation. However, we find that in any finite-
size system, quasi-regular oscillations of the mean field
are present. We introduce the coherence parameter which
characterizes regularity of mean field oscillations, and the
order parameter which characterizes the degree of syn-
chrony among the oscillators. We show that while the
order parameter increases monotonously with the cou-
pling strength, the coherence parameter has a maximum
at a certain intermediate coupling strength. The simplic-
ity and a high degree of symmetry in the system under
study allow us to find the statistical properties of the
finite ensemble analytically.

A single stochastic three-state unit with unidirectional
transitions is schematically shown in the inset to Fig. 1b.
We assume that in an isolated unit all three transitions
from state i (i = 1,2, 3) to state i+ 1(mod3) are Markov-
ian with identical rate a [14]. Without loss of generality
we take a = 1. Statistical properties of this system have
been investigated in Ref. [12]. The cyclic behavior of a



single oscillator is characterized by the mean time T of
an oscillator to return to the initial state after an excur-
sion through the other two states. Since the mean time
of switching from state ¢ to state i + 1 is Ty, = 1, we
get T = 3T = 3. The probability for a system to be in
state i = 1,2, 3 at time ¢ is given by the continuous-time
master equation

P=—P+P_,,i=123 (1)

This master equation has a fixed point Py = P5 =
P§ = 1/3 corresponding to equipartition among the
three states, and three eigenvalues A\, = —1 + e2™F/3,
k =0,1,2. The first eigenvalue (kK = 0) corresponds to
the conservation of the total probability, and the other
two describe equilibration of the probability distribution
among the three states. Imaginary part of these eigenval-
ues implies that there are decaying periodic oscillations
of deviations from equipartition with the mean frequency
w=+3/2.

Globally coupled three-state oscillators. Now let us
consider an ensemble of N identical three-state oscilla-
tors. The specific mechanism of coupling is the follow-
ing. We assume that the probability m; ;41 of switch-
ing of an oscillator from a state i to state ¢ + 1 at time
t is linearly proportional to the number of oscillators
n;+1(t) already at state ¢ + 1 at time ¢, with the propor-
tionality constant b (which we call coupling coefficient),
Tii+1(t) = 1+bn;11(¢). This type of coupling is reminis-
cent of the auto-catalytic transitions in gene regulatory
circuits when multiple copies of a single gene are present
in the cell.

Since this model is Markovian, it can be efficiently sim-
ulated using Gillespie algorithm [15]. Figure 1 shows
sample stochastic trajectories for the occupation number
of oscillators in states 1,2, and 3 as a function of time for
different values of coupling parameter b for N = 1000.
The initial condition for all cases is nq1(0) = N, ng 3(0) =
0. For b = 0, the population slowly drifts toward an equi-
librium state with n; = ny = nz = N/3 with O(N'/?)
stochastic fluctuations. For even very small non-zero
b < 1, noisy oscillations around the mean become visible.
As b grows, the period becomes shorter, and the ampli-
tude of oscillations grows until for b ~ 1 it approaches N,
i.e. almost all oscillators are simultaneously in the same
state. At large b > 1, the system exhibits switching
behavior resembling the dynamics of a single oscillator.
It is easy to understand: at very large b, once a single
oscillator makes a transition from state ¢ to state ¢ + 1
(which occurs with rate N), all other oscillators quickly
follow. So indeed in the limit b > 1 the dynamics of the
ensemble becomes equivalent to the dynamics of a sin-
gle oscillator with a rescaled transition rate N, a result
confirmed by analytical calculations [20].

We computed the power spectrum of the time series of
the occupation numbers and determined the central fre-
quency w and the half-width Aw of the spectral peak. We
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FIG. 1: Time series of the instantaneous occupation numbers
oscillators n1, na, n3 in states 1, 2, 3 respectively for N = 1000,
and different values of the coupling parameter: (a) b =0, (b)
b= 0.1 (Inset: Transition diagram in a single unit); (¢) b =1,
(d) b= 10.

call the ratio CP=w/Aw the coherence parameter. Fig-
ure 2a shows w, Aw, and CP as functions of the coupling
parameter b. Both w and Aw increase with b, however the
coherence parameter has a distinct maximum at b ~ 1,
see Fig. 2a. This value appears to be independent of N
for large enough N. Thus, we observe a manifestation
of the coherence resonance [16], however the difference is
that the maximum appears not at a certain noise strength
but a certain value of the coupling.

This coherence resonance should not be confused with
synchronization among the oscillators. The degree of syn-
chronization can be characterized by the order parameter

N 2
R= <N1 > et > (2)

with discrete phases of oscillators ¢; = 27k/3,k = 1,2, 3.
This order parameter was introduced by [13] by anal-
ogy with coupled continuum phase oscillators in the Ku-
ramoto model [8]. The order parameter is zero when all
oscillators are equally distributed among the three states
(n1 = ny = ng = N/3), and it approaches unity if all
oscillators are perfectly synchronized, so all of them are
simultaneously in the same state. As expected, the order
parameter increases monotonously with b, see Fig. 2b.
As Figure 2b shows, the order parameter for a given b
is independent of the number of oscillators in population
N.

Mean-field approximation. In the thermodynamic limit
N — oo of globally coupled oscillators, the mean-field
equations for the deterministic “concentrations” of oscil-
lators z; = n;/N are given by

fEi = .Tifl(]. + bN.’EZ) - xl(l + bN{Ei+1),Z' = ]., 2, 3(m0d3)

3)
From the symmetry of the underlying dynamics it im-
mediately follows that the fixed point of this system is
1 = x9 = x3 = 1/3. The associated two complex eigen-
values (the first eigenvalue is 0 as before because of the
conservation law) Ao 3 = —2 +iv/3(1 + Y') always have
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FIG. 2: Gillespie simulations of coupled stochastic oscilla-
tors: (a) mean frequency w (blue squares), bandwidth Aw
(black diamonds), and the coherence parameter CP (red cir-
cles) vs. b for N = 100. (b) Order parameter R vs. b for
N =107,10%,10%. Solid line corresponds to formula (8).

negative real part, which indicates the absence of Hopf
bifurcation at any coupling b. This is in contrast with the
model by Wood et al. [13], in which a different form of
coupling was proposed (the transition rate from i to i+ 1
was an exponential function of the linear combination of
nj+1,n;), for which the mean field had a Hopf bifurcation
at large enough coupling strength [17].

Stochastic description. The full description of the sto-
chastic properties of the system is given by the master
equation for the probability p(ni,ne,ns) that at time ¢
there are ny oscillators at state 1, no at state 2, and ng
at state 3 (obviously, ny + ng +n3 = N),

(n1 + D1+ b(n2 — 1)]p(ny + 1,n2 — 1,n3)
+(ng +1)[1 +b(ng — 1)]p(n1,n2 + 1,n3 — 1)
(TL3 —+ 1)[1 +b(n1 — 1)] (TLl — 1 ,N2,N3 + ].)

+b( )

-V

The total number of states (n1,ne,ng) in this system is
(N + 2)(N 4+ 1)/2. It is convenient to depict the state
space as a triangular grid, see Figure 3a.

According to the Frobenius-Perron Theorem, the mas-
ter equation has a unique stationary solution. We were
able to find the exact solution in a closed form,

G(b, nl)G(b, TLQ)G(b, 713)

ny !ng 'n3'

p(ni,ng,ng) =

()

ps(ni,n2,n3) = Cy

n—1
where G(z,n) = H(l + kz) and C is the normaliza-

k=0
tion constant, which can be verified by direct substitu-

tion. Expression (5) shows that the stationary solution
is not only invariant with respect to cyclic permutations
but also with respect to any permutation of coordinates
(n1,n2,n3). This property is remarkable because the
equation itself does not possess this symmetry.

It is easy to check by direct substitution that (5) sat-
isfies the relation

(ng + D1+ b(ny — 1)]ps(n1 — 1,na,n3 + 1)
= n1(1 + bng)ps(n1,n2, n3) (6)
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FIG. 3: (a)State space of the three-oscillator system N = 3;
correspond to distinct states (n1,mn2,n3) of the system, and
arrows indicate transitions among the states. Expressions at
the arrows show the corresponding transition rates. (b-e) Sta-
tionary probability distributions for N = 14 and b = 0.2 (b),
b=08(c),b=1(d),b=2 (e).

and two other relations obtained from (6) by cyclic per-
mutations (adding these 3 relations and using the ro-
tation symmetry gives the stationary master equation

ning + nang + ngny)|p(ni, ne, ns)(4)equation (4) without Lh.s.).

It is straightforward to obtain convexity properties of
the stationary solution (5). Indeed, according to (6),
we have ps(n1 — 1,n9,n3 + 1) < ps(ni,ne,ng) iff 0 <
(ng+1—n1)(1—0). If b < 1 (resp. b > 1) the probability
increases (resp. decreases) when one moves one step to
the right in the left part of the triangular lattice and vice
versa [18]. Combining it with the rotation symmetry, we
conclude that the distribution is convex with a maximum
in the center when b < 1 and concave with a maximum
in the corners for b > 1; for b = 1 the distribution is flat.

For zero coupling (b = 0), the stationary distribution
is trinomial

N!

ni, N2, N3 AN -7
Ps ( ’ ’ ) 3Nn1'n2'n3'

which of course could be deduced directly since oscillators
are independent and in the long term limit they become
uniformly distributed among the three states. The most
probable state is in the middle of the triangle (n; = ny =
n3 = N/3) and the least probable states are in the corners
(N,0,0),(0,N,0),(0,0,N).

For large b, the stationary distribution is highly local-
ized at the corners. However there is a small (O(1/b))
probability flux in and out of the corners. In the first



order of 1/b, the stationary probability distribution is

ps(n,0,N —n) = (N )+O(1/62),n:1,N71
N-1
1 2 1
ps(0,0,N) = = — — —+0(1/6%)
3 bk:lk

(the remaining state probabilities follow from cyclic per-
mutation) and ps(ny,na,n3) = O(1/b%) for ningns # 0.
Thus the probability distribution has a deep minimum
at the center of the triangle, and sharp peaks in the
corners (Fig. 3e). The dynamics close to equilibrium
can be approximated by the probability flow around the
edges of the triangle, ignoring the influence of the inner
nodes. This simplification allows us to compute the non-
zero eigenvalues of the full system in the first order in
1/b [20]. As expected, for large b these eigenvalues are
AN +O(1/6?), k = 1,2, where )\ are the eigenvalues
of the single oscillator. It is interesting to note that the
equilibration rate Re(—A; 2N) is independent of b.
For large n1,ny and ng one can use Stirling formula to
find an asymptotic expression for the distribution (5),
bN

I2(1/b

with C, = b=NT'(3/b)T~2(1/b)N'~2/*. We can use this
expression, replace summation by integration and com-
pute the order parameter for large N explicitly [19]. This
straightforward calculation results in a surprisingly sim-
ple formula b

(8)

T b+3

ps(na1,ng,ng) = Cb )(nlngns)l/b_l (7)

This formula agrees very well with direct Gillespie sim-
ulations (Fig. 2b). Note that the order parameter is
independent of N (at least for large N). For arbitrary
N, the order parameter can be computed from the sta-
tionary distributions at zero coupling and large coupling
respectively. For zero coupling, we get R = 1/N and for
large coupling, we have R =1 — 2(1 — &) 4+ O(1/b?).
Discussion. Our analysis indicates that in the system
of globally coupled three-state units there are significant
stochastic oscillations, and while the frequency of these
oscillators scales as N, their temporal coherence reaches
maximum at a finite b ~ 1 independent of the number
of oscillators. This result is counterintuitive, since the
mean-field theory predicts no sustained oscillations in
the thermodynamic limit N — oo. The origin of this
apparent contradiction is that for sufficiently large cou-
pling strength, the implicit assumption of decorrelated
dynamics of individual noisy units is violated. For b ~ 1,
the transition rate of the “last” oscillators remaining in
state ¢ when most of them are already in state i + 1, is
large, O(N), and so the transitions of these “last” oscil-
lators are strongly correlated. For large b, all oscillators
are strongly correlated: as soon as the first one makes
a transition, the rest very quickly follows. This leads to

the correlated and thus athermal behavior of the globally
coupled system at large b. Of course, in any real system
the transition rate should saturate as N — oco. Then
eventually the thermal behavior of the system would be
recovered, however in the intermediate scaling regime of
finite N the dynamics described here can be observed.
Note that our results are easily generalizable to the case
of arbitrary p-state oscillators with any p > 2. The or-
der parameter for p-oscillators is simply R, = b/(b+ p),
and the coherence parameter reaches maximum at b ~ 1.
However, the behavior of boolean systems (p = 2) is dif-
ferent: while the order parameter still exhibits the same
behavior (Re = b/(b + 2)), the quasi-regular oscillations
are completely absent, and the coherence parameter re-
mains small O(1) throughout the full range of b.
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