
Supplementary Information to ”Athermal dynamics of strongly coupled stochastic
three-state oscillators”

Bastien Fernandez1 and Lev S. Tsimring2
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PACS numbers:

EIGENVALUES OF THE FULL MASTER EQUATION

Here we present the rigorous analytic computation of the main eigenvalues of the full system in the large coupling
limit b � 1.

Let Q(a, b) be the transition rate matrix associated with the globally coupled system. The individual transition
rate a (which is set to 1 in the paper) is allowed to take any non-negative value a ≥ 0. The matrix Q(a, b) is such
that its action on the probability vectors {p(n1, n2, n3)} is given by

(Q(a, b)p)(n1, n2, n3) =
(n1 + 1)[a + b(n2 − 1)]p(n1 + 1, n2 − 1, n3)
+(n2 + 1)[a + b(n3 − 1)]p(n1, n2 + 1, n3 − 1)
+(n3 + 1)[a + b(n1 − 1)]p(n1 − 1, n2, n3 + 1)
−[aN + b(n1n2 + n2n3 + n3n1)]p(n1, n2, n3)

By the Perron-Frobenius theorem, 0 is a single eigenvalue of Q(a, b) (a > 0), and all other eigenvalues have negative
real part. We want to compute the eigenvalues with largest negative real part in the strong coupling limit (b � 1).
Up to time rescaling, this is equivalent to the assumption that a is small.

For a = 0, transitions from any edge node (n1n2n3 = 0) to any inner node (n1n2n3 > 0) have zero probability, and
the Markov process is transient. Moreover, the corners (0, 0, N), (0, N, 0) or (N, 0, 0) are absorbing states. Therefore
for a = 0 the eigenvalue 0 is triple and all other eigenvalues has negative real part.

Since Q(a, b) is analytic in a, this triple eigenvalue 0 splits for a > 0 into 3 eigenvalues, namely 0 and aλ± +O(a2)
by using the Puiseux series. By application of a continuity argument to other eigenvalues, the eigenvalues aλ±+O(a2)
are certainly the eigenvalues with the largest negative real part when a is sufficiently small.

In order to compute λ±, we use the following enumeration {i}TN
i=1 of all lattice nodes (n1, n2, n3), where TN =

(N+1)(N+2)
2 is the total number of nodes. The indices {i}3N

i=1 correspond to edge nodes, starting from a corner
and following the flow around the triangular grid. The indices {i}TN

i=3N+1 correspond to inner nodes. With this
enumeration, the matrix λId−Q(a, b) can be written as (the first row and the first column stand for indices)
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1 2 · · · N N + 1 · · · 2N · · · · · · 3N · · · TN

1 q11 0 · · · · · · · · · · · · · · · · · · 0 q1 3N

2 q21 q22
. . . 0

... 0 q23
. . . . . .

...

N
...

. . . . . . . . . . . .
...

N + 1
...

. . . q1 3N q11
. . .

...
...

...
. . . q21

. . . . . .
...

2N
... 0

. . . . . . . . .
...

...
...

...
. . . . . . . . . . . .

...
...

...
...

. . . . . . . . . 0

3N
...

... 0
. . . . . .

...
...

...
...

...
... aQ1

... aQ2

... aQ3 Q4

TN 0 0 0

where

q11 = λ + aN, q21 = −aN, q22 = λ + aN + b(N − 1)
q23 = −(N − 1)(a + b), and q1 3N = −a + (N − 1)b

and where blocks Qi are of order O(1) in the parameter a.
For λ = aNλ± + O(a2), neglecting terms O(a2), the determinant can be computed by letting q11 = aN(λ± + 1).

Factoring out aN in the three columns i = 1, N + 1, and 2N + 1, we may assume that q11 = λ± + 1 and q21 = −1.
It remains to compute the 0th order term of the remaining determinant, i.e. we may assume that a = 0 in the
computation.

For a = 0, the block Q4 does not depend on λ± and has non-vanishing determinant since inner nodes are transient.
For the edge nodes, all columns with i 6= 1, N + 1 and i 6= 2N + 1 have only two non-vanishing terms that add to 0.
Factoring out once again, we can rewrite the determinant in the form

1 2 · · · N N + 1 · · · 2N · · · · · · 3N

1 λ± + 1 0 · · · · · · · · · · · · · · · · · · · · · −1

2 −1 1
. . . 0

... 0 −1
. . . . . .

...

N
...

. . . . . . 1
. . .

...

N + 1
...

. . . −1 λ± + 1
. . .

...
...

...
. . . −1 1

. . .
...

2N
...

. . . . . . . . . . . .
...

...
...

. . . . . . λ± + 1
. . .

...
...

...
. . . . . . . . . 0

3N 0 · · · · · · · · · · · · · · · · · · 0 −1 1

Note that this matrix commutes with the N -fold cyclic permutation i 7→ i+N mod3N on edge nodes. It follows that
its eigenvectors are of the following form

(x1, · · · , xN , x1e
4iπk/3, · · · , xNe4iπk/3, x1e

2iπk/3, · · · , xNe2iπk/3), k = 0, 1, 2
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Moreover these vectors belong to the matrix kernel iff x1 = · · · = xN and λ± = −1+ e2iπk/3 for k = 0, 1, 2. Naturally,
the eigenvalue 0 is recovered for k = 0. For k = 1, 2, we conclude that for small enough a, the eigenvalues of Qa,b

with the largest negative real part are

aλkN +O(a2)

where λk = −1 + e2iπk/3 are the eigenvalues of the single oscillator. Note that they do not depend on b. Back in the
original notation, for large coupling b the eigenvalues are λkN +O(1/b2).

DYNAMICS OF d-STATE SYSTEMS

A generalization of the three-state oscillators is an ensemble of systems with a cycle of d states with uni-directional
transitions from state i to i + 1(mod d), whose rates are proportional to the number of oscillators in the “next”
state, πi,i+1 = 1+ bni+1. By using the corresponding master equation, it is straightforward to see that the stationary
probability distribution for globally coupled d-state systems reads

ps(n1, n2, · · · , nd) = Cb,d

d∏
i=1

G(b, ni)
ni!

(1)

with the same definition of the function G(x, n) as in the main text, and Cb,d being the normalization constant.
The distribution (1) for arbitrary d has similar properties to those for d = 3. It is invariant under any permutation

Per(n1, n2, · · · , nd) of coordinates. It is convex with a maximum in the center (where all coordinates ni are equal)
when b < 1 and is concave with a maximum in the corners (where all coordinates ni are 0 except for one ni) for b > 1.
It is flat for b = 1. For zero coupling (b = 0) the distribution is multinomial

ps(n1, n2, · · · , nd) =
N !

dN
d∏

i=1

ni!

and for large b, it is highly localized in the corners

ps(n1, n2, · · · , nd) =
1
d
− 2

db

N−1∑
k=1

1
k

+ O(1/b2) if (n1, n2, · · · , nd) = Per(N, 0, 0 · · · , 0)

ps(n1, n2, · · · , nd) =
N

dbn(N − n)
+ O(1/b2) if (n1, n2, · · · , nd) = Per(N − n, n, 0 · · · , 0) (1 ≤ n < N)

and ps(n1, n2, · · · , nd) = O(1/b2) if at least three distinct indices ni are different from 0. Performing a similar Stirling
approximation as in the main text, we obtain the general expression for the order parameter

Rd =
b

b + d
(2)

As Figure 1a shows, numerical simulations agree with this prediction very well. However, the case d = 2 is funda-
mentally different from other d > 2 because it corresponds not to a cycle system but to a two-state system with
reciprocal transitions. In the latter case,the detailed balance condition applies, and the probability current is zero.
When strongly coupled, these systems exhibit switching behavior in the large couping limit, but they do not exhibit
quasi-regular oscillatory dynamics at the intermediate coupling. Figure 1b shows the coherence parameter as a func-
tion of coupling parameter b for d = 2, 3, 6, and it is clearly seen that for d = 2 the coherence parameter lacks a
maximum which is present at d = 3, 6.
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FIG. 1: Order parameter (a) and coherence parameter (b) as a function of b for d = 2, 3, 6 and N = 100.


