
HAL Id: hal-00265343
https://hal.science/hal-00265343

Preprint submitted on 19 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Link between the free field and the elements of frontiers
in a complex structure
Olivier Maurice, Alain Reineix

To cite this version:
Olivier Maurice, Alain Reineix. Link between the free field and the elements of frontiers in a complex
structure. 2008. �hal-00265343�

https://hal.science/hal-00265343
https://hal.archives-ouvertes.fr


Link between the free field and the elements of frontiers 

in a complex structure

Olivier MAURICE* - Alain REINEIX**

*PSA Peugeot Citroën, route de Gisy, 78 Vélizy Villacoublay, France

olivier.maurice@mpsa.com

**Laboratoire XLIM 123 avenue Albert Thomas, 87060 Limoges Cedex

alain.reineix@xlim.fr

Abstract

In  a complex structure,  interactions between various 

elements  that  must  be  compute  to  resolve  EMC 

problem,  can  exists  through  radiated  or  conducted 

fields. In this second case, the description of the field 

propagation  is  easier  in  the  frequency  domain.  We 

present in this paper an analytical approach to resolve 

the  field  in  a  large  and  complex  structure  and  to 

incorporate  its  description  in  a  tensorial  analysis  of 

network developed in a previous work on the base of 

Kron's formalism [1][2]. We discuss first of the various 

kind of field describe in the Poynting's equation. From 

this equation we discuss of two states of the field: the 

trans electromagnetic guided waves and the stationary 

one. From this second kind we study the construction 

of 3D modes. This allows us to introduce a model for 

guided waves in both domains: frequency and temporal 

one.  To  conclude  we  show  how  to  determine  the 

transmission  of  energy  in  any  structure  using  a 

technique  near  to  Branin's  one,  considering  3D  TE 

modes  of  propagation  in  the  frequency  domain  and 

wavelets  for  the  time  domain  and  non  linear 

impedances.

1. Introduction

Previous works have clearly identified the various kind of fields involved in 
the EMC of complex system [1][3]. These various fields are represented by 
various elements in the topology. So, to have a good understanding on the 
representation  of  the  field  in  closed  volumes  and  to  see  the  various 
possibilities to manage the link between the field and the currents on the 
surface around it, we try to construct simple images of these mechanisms 
in order to join the formulas of guided waves in the frequency domain. 
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Once the formulas are based in the frequency domain, we try to make the 
link with the expression of the same field in the temporal domain. We 
show that this link is complex and justify the fact to use the frequency 
description  of  the  field  even  in  a  temporal  process.  The  frequency 
description allows to understand how the field energy is guided through 
various modes. This understanding is essential to improve efficiently the 
EMC interactions computed with the tensorial analysis of network method 
[1]. 

2. Poynting's energy, field nature and TEM 

waves

The field is a quantity very difficult to understand. The free field is quite 
clearly understood starting from the force concept[4]. But when we want 
to make a link between the classical field and the quantum one, it stills 
difficult. The free field diffusion is well represented by the Green's function 
[5][6]. Event in quantum mechanics, the Green's function can be seen as 
the probability to measure a photon on a trajectory. We still in a Maxwell's 
description  of  the  field,  where  the  field  in  an  abstract  mathematical 
expression very directly similar with this Green's function[7]. But further 
than the field, another difficulty appears in closed structures: the link with 
the charges and currents. As Einstein's said[8]: “Maxwell's equations does 
not say to us exactly how the charges are”. There is for that one reason: 
the self interaction of the electron is a very difficult problem[9]. It can be 
obtained at a macroscopic level through the self interaction between the 
various  element  of  an  antenna,  or  an  electronic  circuit.  This  global 
computation is very interesting and is included in the Poynting's theorem. 
To have good patterns of the interactions in closed structures where there 
is  a  hard  link  between the  field  and the  charges  and currents  in  the 
structure, a solution consists in using energy approaches. Using potentials 
rather than fields, as Maxwell's has done[10], it's easier to find patterns 
efficient to compute the fields and the currents in complex structures. 
Following Jackson[6]  we can recall  the  link  between the  field  and the 
currents. Poynting's theorem is the equation of conservation of energy W 
for the electromagnetic field. In a volume v, we can write that the energy 
dissipated in the field-currents interaction is:

W=∫
v

d
3
x J⋅E (1)

Using the Ampere-Maxwell law we can write:

W=∫
v

d
3
x [ E⋅ ∇ X H −

E⋅∂ D

∂ t
] (2)

We have the vectorial identity:

∇⋅ E⋅H =H⋅ ∇⋅E−E⋅ ∇⋅H  (3)
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Using this identity and the Faraday's law we obtain:

∫
v

d
3
x J⋅E=−∫

v

d
3
x [ ∇⋅ EX H 

E⋅∂ D

∂ t

H⋅∂ B

∂ t
] (4)

If, as usually, we note u the total energy density with:

u=
1

2
 E⋅DB⋅H  (5)

We can write:

−∫
v

d
3
x J⋅E=∫

v

d
3
x [ ∂u

∂ t

 ∇⋅ E X H ]  (6)

This relation leads to the known Poynting's equation given by:

∂ u

∂ t

 ∇⋅S=−J⋅E (7)

With S being the Poynting's vector. This expression shows the three kinds 
of electromagnetic energy: the conductive one (E.J), the propagative one 
(∇.S) and the stored one (u). Each energy speaks of a particular kind of 
field.  The flux  S represents  the  flow of  radiated energy  including  the 
radiation resistance while  J represents the field in the matter under its 
particular aspect. u gives the quantity of electromagnetic energy contains 
in equivalent capacitance and inductance, i.e. in the stationary fields in 
the volume. This energy is strictly the same as the one we compute in 
case of LC circuit.  That's why modes can be schematically represented 
with LC circuits too, which is a technique often used in high frequency[11]. 
There is here an important point. In Maxwell's equations, a radiated field 
can be created by a static field. The equation that Maxwell has added 
demonstrates  that  a  Coulomb's  field  generates  a  magnetic  field.  The 
Faraday's law then show that this magnetic field creates after an electric 
one, and the field wave process is understood from this basic mechanism. 
Effectively, in the case of a simple plate capacitor we have:

C=0

S

h
(8)

The current in this capacitor is given by the law:

i
C
=C

∂V

∂t
(9)

By replacement and with Ampere's law we obtain:

3



0

S

h

∂

∂ t
E⋅h=∬

S

ds⋅H⇒ ∇ X H=0

∂ E

∂ t
(10)

In  this  well  known relation  E can be  a Coulombian field,  a  static  one 
derived  from a  scalar  potential  in  the  coulomb's  gauge.  The  inverse 
process results from the stationary field construct with a radiated one. 
When we take a look to the charges and currents distribution on the walls 
of a cavity, we see that the charges still static, exactly like in a capacitor. 
The  “capacitor”  field  coming  from a  scalar  potential  is  a  longitudinal 
one,while  the  radiative  one  comes  from  the  vector  potential.  These 
transformations can be represented by the symbolic diagram given figure 
1.

Figure 1: TEM to static field process

The  dashed  line  is  the  TEM  wave  associated  with  the  radiated  or 
propagated transverse field while the full line is the longitudinal field. the 
difference of nature between the two fields (the longitudinal one and the 
transverse one) is deep. In quantum mechanics, Feynman shows that the 
Coulombian interaction can be seen as a virtual photon[12]. 
In complex structure, the problem will consists in computing the various 
transformation of  the field in losses in the walls,  stored energy in the 
stationary waves and propagation in the TEM waves. But, as we will show 
it, it  is possible to have another kind of field where the stored energy 
moves like a TEM wave. In this model, the field is seen like a “2D particle”. 
This  kind  of  fields  are  commonly  experiments  in  waveguides.  The 
advantage  of  this  model  is  that  it  includes  efficiently  the  relations 
between the field in the free space of guided wave and the charges and 
currents in the wall of the structure. 

2. The TE wave

In a non homogeneous structure, TEM wave cannot exists. If we take a 
look to a structure of guided waves, the waves propagates in the direction 
x,  with the electric field along z and a width in the direction  y.  If  the 
structure is homogeneous on the width Y, a TEM wave can exists with a 
Poynting's vector sx. Now if we imagine a change of height in the direction 
y,  a  part  of  field  should  be  reflected  to  equilibrate  the  energy.  The 
potential stills the same at the equilibrium state all along the y direction. 
So, the field which is a gradient of the potential must be different. But if 
the field is different, Ampere's law tells us that an  x component of the 
magnetic field must appears. The electric field is then associated with two 
magnetic fields: one in the x direction and one in the y direction. The non 
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homogeneous structure creates a wave of transverse electric field.  If we 
consider a distribution of the field depending on y like:

E
z
y =E0 Sink

y
y  u

z
(11)

where E0 is a given amplitude of the field. This field can propagates in the 
x direction. The field in both x and y directions has this definition:

E
z
x ,y =E0Sin k

y
y  u

z
e
i t−k

x
x (12)

By replacement of this field in the equation of Helmholtz we find:

k
x
=

2

c
2
−k

y

2 (13)

Under the cutoff frequency πc/Y if Y is the structure width, the wave vector 
is evanescent. The dependency of the field in the y direction is obtained 
for a short-circuit limit condition. If we suppose X>>Y with X the structure 
length, the field defined in 11 can propagate in the x direction. Before to 
study how the  total  field  will  be  distributed,  we recall  the  topological 
mechanism of a line structure.

3. Line structure

Using the Branin's modeling, a line structure is represented topologically 
by two edges and four nodes, two nodes for one port.  From each port, the 
impedance  seen  is  the  backward  impedance  determined  from  the 
reflection coefficient at the other port. The figure 2 shows one simple case 
of two edges connected with a line: a generator and an impedance. 

Figure 2: simple circuit with a line

The backward impedances Z11 and Z22 are given by the ratio of the sum 
of the incident and reverse voltage and current seen from a port:

Z
11
=Zc

V
i
V

R

i
i
−i

R

=Z
c {1s2 e

−2ikX

1−s2 e
−2ikX } (14)

s2 is the reflexion coefficient computed at the opposite port:
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s2=
R3−Z

c

R3Z
c

(15)

Z22 and s1 are computed by the same way. The backward impedance takes 
into account the reflected wave of voltage. But the transmitted one must 
be added to the second mesh in order to transmit the energy coming from 
the generator E[13]. 

e2=
Z

11
E  Z

22
R3 

[R0Z
11
] 1s2 e−2ikX

e
− ikX1−s2

Z
c

(16)

This expression, quite complicated, is extracted from the mesh current J2 
equation. Writing:

2
e2

Z
22
R3

=J2

(17)

we obtain relation 16. The guided wave interaction is finally computed 
using for one side the backward impedances Z11 and Z22, and adding in 
the source vector the transmit generator e2[1]. 

4. TE wave in a closed structure

The previous approach can be extend to the case where the propagation 
is not in a TEM mode. Under the cutoff frequency of the structure, the 
transmitted energy vanishes. Up to this frequency, a wave can propagates 
with  a  field  organized  following  a  TE  mode.  If  we  imagine  a  closed 
structure, this field is completely reflected at the end of the structure. At 
the beginning, we observe a wave given by:

E
z
x=0=E0Sin k

y
Y {1−e−2ik

x
X }=E0Sin k

y
Y i2e

ik
x
X {Sin k

x
X  } (18)

The modes link with the closed structure appear if we write:

E
z
x=0 =i2e

ik
x
X
E0 Sin n 2


x

X Sin m 2


y

Y =i2e ikx X E0 TEn , m
1 (19)

TE1 being the normalized trans electric mode of propagation. This mode is 
obtained for a given polarization of the source of field. Figure 2 shows that 
the topology of the problem cannot be separate from the source of the 
field.  The  polarization  and the  location  of  this  source  cause  the  field 
organization in the volume at the various frequency band. The first source 
of field coming from the generator is the scalar potential. Equation 19 can 
be integrated along z to obtain the transmitted voltage to the structure of 
propagation.  This transmitted voltage is the one created by the generator 
at the point of excitation. The voltage amplitude in the x,y surface follows 
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the electric field amplitude for the  z polarization.  The gradient of the 
voltage determine the currents in the surface of the structure. But these 
currents radiate a refracted transverse field. This field can store energy, 
up to a given cutoff frequency, in stationary waves – secondary modes. 
This energy must be subtract from the one contained in the first modes. If 
the receptor doesn't care to these secondary modes, a part of the stored 
energy is not use. All the energy of the source must be include in the 
various modes excited. We can notice that the potential propagation is an 
efficient base to determine the currents and the field in all the surface or 
volume of the structure. Once the surface currents are known, the fields 
can be compute in all the directions and locations of the volume. We will 
show that using virtual frontiers, the 2D TE mode determine the 2D one in 
a cavity (more usually the field is determine from its longitudinal part[14]: 
the frontier is an edge).

5. 3D organization of the field deducted from 

the TE mode

In  a  structure  where  a  scalar  potential  Vz(y)  propagates  along  x,  no 
electric field exists in the x direction until the wavelength is large compare 
to the height z of the structure. As said before, the currents follow the 
gradient of Vz(x,y). The figure 3 shows this process. 

Figure 3: current lines versus voltage distribution

The distribution of the field is completely defined under the assumption 
that there is no propagation in the z direction. The modes have their third 
number always equal to zero. If the wavelength begin shorter, until to be 
shorter than the height,  a new field distribution in the  z direction will 
appear. We can detail the mechanism of interactions between the currents 
figure 4. 

Figure 4: Stationary field along z
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We see  that  when  the  wavelength  begin  short  enough,  each  current 
creates an opposite current on the other side. The reduction of current 
translates the energy stored in the stationary field in the direction z. This 
transfer appears for the principal wave as losses. The distribution of the 
field in the volume follows in this  case a law where appear the three 
directions x, y and z:

E x, y , z=Sin m 2
x

X Sin  n 2
y

Y Sin  q 2
z

Z  (20)

Where  is some function of amplitude and phase.
Under the z stationary wave cutoff frequency, the field propagates for part 
continuously and for part like stationary wave in the  x and  y directions. 
The standing wave ratio gives the proportion of propagating and standing 
waves. Figure 5 shows this process. 

Figure 5: Stationary wave ratio

Where only 2D wave exists, the stationary amplitude changes in the  z 
direction only and the field vector stills in this direction as shown figure 3. 
Equation 19 describes completely the field. When the z mode appears, the 
field doesn't change only following a Az(x,y) law of amplitude, but with a 
Ax(x,y) component too. Figure 6 details the potential evolution in the case 
of a 2D stationary wave. 

Figure 6: Vz evolution for a 2D stationary wave

In case where the z mode exists, the field has an x component and turn 
from one direction to another from one location of the maximum of the 
potential to the next one[15]. Figure 7 details this process. 
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Figure 7: Wave process with 3D standing waves

Having  an  understanding  of  how  the  field  works  in  the  volume,  the 
question now is to compute this field at any frequency.

6. Propagation of the scalar potential 

We can give four evidences: the maximum of the x component of the 
electric field can exist only where the By field is maximum, i.e. it cannot 
be  located  where  the  current  are  null  and  where  the  charges  are 
maximum. The divergence of the currents are given by the time evolution 
of the charges. The distribution of the charges follows a diffusion process 
and the interactions guided by the scalar potential without delays in the 
Coulomb's gauge. Depending on the excitation, the voltage transmitted 
from the generator is the incident potential for the wave. It is possible to 
define a reflection coefficient only link with the impedance of the medium, 
independently  of  the  fields.  The  voltage  distribution  respects  this 
coefficient whatever is its amplitude on  y for example. How this works? 
The generator applies a force on two separate domains. We can consider 
the waves link with the diffusion of these charges. The diffusion of the 
force  inside  the  metallic  surface  can  be  seen  as  a  Huygens  process 
repeated from each location where the generator vibration is transmitted. 
From the positive charge to the negative one at the other side of the 
structure, we can compute the scalar potential, not delayed. Under the 
hypothesis that the interaction inside the metal is the major one compare 
to the interaction between the positive and negative charges through the 
structure,  we can project all the points at the same time distance from 
the source on each side of the structure and compute the scalar potential 
in the free volume between these sides. Each part of the structure excited 
by a pole of the generator (one by the positive pole, the other by the 
negative one) is an image of the other. Each charge as its image in the 
opposite set.  This rule doesn't  depend on the structure geometry.  The 
potential  energy induced by the  generator  diffuse in  the  two set  (the 
scalar potential is a bijective application from the positive set of charges 
to the negative one). Figure 8 try to represent the potential propagation. 
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Figure 8: propagation of the potential lines

Now we can write the physical relations that translates our discussion.
In the nodes space[1] the Lagrangian is (q being the electric charge):

L=
1

2
 q̇am

ab
q̇
b −Uaq a=T−U (21)

The equation of the problem are given by:

∂

∂t

∂T

∂ q̇
a
−
∂U

∂q a
=0 (22)

By replacement we obtain:

∂

∂ t
{m

ab
q̇
b

s,s '}=Ua s, s ' (23)

In this expression, s and s' are the limit surfaces of the volume, s being 
the one of the positive charges and s' of the negative ones. mab is the 
metric  between  the  charges  and  the  voltage  developed  between  the 
nodes. Ua is the potential energy given to the network, i.e. the voltage 
generator reported to each node a. This equation demonstrates that if we 
are able to compute the scalar potential at each time step, we can know 
all the charge values at each node of the network. The law of conservation 
of the charge can be written using the connectivity between charges and 
currents:

q̇
a
=N

b

a
J
b (24)

Jb being the conductive or displacement currents. We can put this relation 
in 23 to obtain:

∂

∂t
{m

ab
N
k

b
J
k s ,s '}=Ua s,s ' (25)

The currents Jk are conductive or displacement ones:

J
k
=J

c
J
k
=C

kd
∂V

d●

∂ t

(26)
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Using these expressions in 25 we have:

∂

∂ t
{mabNcb Jc  s

s '
mabNkbCkd

∂ V
d●
s,s '

∂ t
}=Ua s,s ' (27)

Ua is a function of the time, we can so compute its Fourier transformation 
to write in the frequency domain:

{imabNcb Jc  s
s '
−2

m
ab
N
k

b
C
kd
V
d●
s,s '}= Ua s,s ' (28)

mab being the self or mutual inductances, this equation shows all the roots 
(proper values) of the network corresponding to the modes and to the 
terms EJ  or  du/dt of  equation 7.  The propagation is  done here by the 
infinite  succession  of  inductive  and  capacitive  components  associated 
with the network of infinite order of the latticed structure. The conductive 
currents can be linked with the potential writing:

J
c
=

cd
E
d
=

cd
∂V

d

∂ s,s '

(29)

Finally:

{imabNcb cd ∂ V
d

∂ s, s '

−
2

m
ab
N
k

b
C
kd
V
d
s ,s '}= U

a
s,s ' (30)

Equation 30 shows that the propagation of the wave can be computed 
considering only the propagation of the potential between the two layers 
of the structure. 
We can integrate equation 7 on the volume  ν  of the structure (with Y 
admittance of the source):

∂ u

∂ t

 ∇⋅S=−J⋅E ⇒
1

2

∂

∂ t

E2
H2 

S
=

1

2

∂

∂ t

CV2
Li

2 
S
=−YU

2
(31)

We  don't  take  care  in  this  relation  of  the  losses  in  the  walls.  Now 
integrating over the time we have:

1

2  { s
s'
}tE2

 {s
s'
} tH2∫0

t

dtS
=−∫

0

t

dt Y U
2
t (32)

Where IU is nothing else than the generator energy, the covered volume 
at the time t being the surface of flux  Γ defined by the potential lines 
described figure 8 multiplied by the curvilinear coordinates s or s'. When a 
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mode is filled, the Poynting flux can go only in the direction far from the 
source. Looking at figure 7 it means that once the z mode is occupied, the 
filed continue to propagates in the x direction. So, as we don't care of the 
losses,  the source energy minus the Poynting flux must be the stored 
energy. This appears writing:

1

2  { s
s '
}tE2

 {s
s '
} tH2=−∫0

t

dt Y U
2
 t−∫

0

t

dtS (33)

We know that  the  electric  energy  stored must  equal  to  the  magnetic 
one[11]. 33 can be written:

 {s
s'
} tE2=−∫0

t

dt Y U
2
t−∫

0

t

dtS (34)

Looking  27  and  34  we  understand  that  Ua must  be  the  transmitted 
potential from nodes to nodes. In the harmonic domain the time to fill the 
stored energy disappears and we see that the modes are link with the 
transmitted voltage spectrum. In the process of energy transmission some 
modes are lost like the z mode in figure 7, but they increase the time rise 
and time fall of the impulse response of the structure (playing the role of a 
dispersive medium for the TE wave of figure 3) as they appear only up to 
their cutoff frequency. The wave vector for the s curvilinear direction of 
propagation  with  a  wave  surface  developed  in  the  t  direction  and  a 
polarization in the z direction begun something like:

k
s
=


2

c
2 [1

Q
z
Z

X 1 

z

2 ]

2

−k
t

2

(35)

Qz is the quality coefficient and λz the cutoff wavelength for the z mode 
(given by the curvilinear distance between the s and s' domains). As the 
limit condition and the reflection coefficients can be determined by the 
classical  rules  of  continuity  of  the  field  at  the  frontier  between  the 
mediums[16],  the  Branin's  model   can still  be  employed even for  3D 
waves, using the wave vector defined in 35.

7.Link between the temporal and the frequency 

mechanism

We consider a simple line of length L, with a coefficient of reflection gs and 
gL and a characteristic impedance Zc.  In the temporal domain, we can 
compute the transmitted voltage at the line far end:

V L=1g
L
 [
Z
c

Z
c
Z

s

V
s

L

c
]gL g s[

Z
c

Z
c
Z

s

V
s
1g

L
] 3L

c

 (36)
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In this expression δL/c is the delay operator, and the coefficients gs and gL 

are computed from purely real impedances. It respects:


a

b
=

ab
(37)

So:

V L=1g
L
 [
Z
c

Z
c
Z

s

V
s

L

c
] {1gs gL2

L

c

} (38)

In the frequency domain we define:

VL= 1g
L

1−g
s
g
L
e
−2ikL [ Z

c

Z
c
Z

s

V
s
e
−ikL] (39)

As:

1

1−g
s
g
L
e
−2ikL 

=1g
s
g
L
e
−i2kL (40)

We obtain:

V
L
=1g

L
 [
Z
c

Z
c
Z

s

V
s
e−ikL ] {1g sgLe−i2kL} (41)

We can compare equation 38 and 41 to see that the Laplace's transform 
of 38 gives 41.
Now if the impedance at the extremity is not real but complex, like an 
inductance, the reflection coefficient is complex too and the development 
41 makes appear a series of added delays coming from the coefficient 
phase:

if g
L
=g

L
e
i

L , etc.: V
L
=1g

L
e
i

L [
Z
c

Z
c
Z

s

V
s
e
− ikL] {1gsg Le−i 2kL

L

 } (42)

In the temporal domain this should be translates by a series of added 
Dirac's pulses. Effectively, an inductance can be seen as an impedance 
which varies with time. At the beginning, it behaves  like an open circuit. 
For long time, it behaves like a short circuit. So, the inductance in the time 
domain can be seen as a series of real impedance delayed. This series 
must  be  link  with the  one obtain in  equation 42.  Figure  9  shows the 
correspondence between the frequency and the time domain in the case 
of real impedances. 
In the harmonic domain, the voltage reflected is included in the reverse 
impedance relation (impedance on the port 1: Z11):
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Z
11
=Z

c

Z
L
iZ

c
tan k L

Z
c
iZ

L
tan k L

=Z
c

1g
L
e
−2ik L

1−g
L
e
−2ikL

(43)

Figure 9: the delayed process

Equation 43 can be found thinking in transmitted current and voltage. For 
a line we can obtain the input impedance Z11 writing (L is the line length):

Z
11
=
V
i
V

R

I
i
−I

R

=
V
i

I
i

 1s2e
−2ikL

1−s2 e
−2 ikL =Zc  1s2e

−2ikL

1−s2e
−2ikL  (44)

The transmitted current on the port 2 is obtained writing (we suppose all 
the quantities to be in the frequency domain):

I
t
L=I

i
1−s2e

−ikL=
V
i

Z
c

1−s2e
−ikL

(45)

Vi is the incident voltage. We know that the transmitted voltage at x=0 is 
the sum of the incident and the reflected ones:

1s2e
−2ikLV

i
=V 0 (46)

V( is the transmitted voltage created by the source V0. So:
VI(

V 0=V0

Z
11

Z
11
R 0

(47)

Finally:

I
t
L=

V0

1s2 e
−2ikL 

Z
11

Z
11
R0

1−s2

Z
c

e
−ikL

(48)
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A generator can be computed using:

I
t
L=

e2

Z22ZL
(49)

Using 48 and 49 we obtain:

e2=Z
22
R3

Z
11

R0Z
11


1

1s2e
−2ikL 

e
− ikL

1−s2

Z
c

(50)

We can write this equation quite differently, making to appear I(0):

e2=Z
22
R3  1−s2

Z
c

e−r
Z

11

1s2e
−2r
I 0  (51)

With r=ikL. Topologically I(0) is the current of the mesh one I1, and e2 the 
emf of the mesh two. We can define a function of cross talk:

G
21
=
e2

I1
= 1−s2

Z
c

[ Z22
R3Z

11

1s2e
−2r 

]e− r (52)

Developing this expression, we obtain something like:

G
21
=K 2e

−r ∑h
N
h
e
−hr

∑
b

D
b
e−br  K2=

1−s2
Z
c

(53)

The function  G is a part of the metric in the mesh space. The inverse 
Fourier's transformation of  G is the filter that can be used in the time 
domain, what we will detailed in chapter 12. The characteristic impedance 
of the medium of propagation, in this definition does not depends on the 
modes. Like in a line with standing waves, the zc parameter stills the same 
– with the usual changes in its self parameters like the losses, etc. The 
process by which the infinite series of temporal impulsion between two 
perfectly reflective limit conditions became a finite expression involving 
only one traveling and back wave can be well understood looking at the 
figure  10.  This  figure  shows,  in  case  where  the  limit  conditions  are 
perfectly reflective ones, that the incident and reflected waves are the 
same  every  2L/c  times.  So,  the  temporal  mechanism  of  the  waves 
continue until the infinite (we suppose the medium without losses). As the 
temporal process is periodic we can compute the Fourier's series of one 
time evolution of the waves from 0 to 2L/c. The time response of this 
system is δ0-δ2L/c and the Fourier's transformation of this function is simply 
1-e-2ikL.
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Figure 10: temporal process between two short circuits

We can recall Paul's rules[13] to construct a guided wave interaction:

1. determine the reflection coefficient s2=
Z
L
−Zc

Z
L
Zc

2. determine the input reflection coefficient  s0=s2 e−i2kL

3. determine the input impedance to the line  [Z
ii
]
ii
=Zc

1s 0

1−s 0

4. determine  the  input  voltage   determine  the  input  voltage 

V 0=
[Z
ii
]
ii

Z0[Z
ii
]
ii

V 0

5. determine the incident wave  V
+=

V 0

1s 0

6. determine the source voltage  IL =
V

+

Zc
e−ikL [1−s2 ]

From  these  rules  we  determine  easily  the  reported  emf: 

[e
j
]
j
=[Z

ii
]
ii
Z

L
I L

and the expression of the cross talk impedance in the mesh space: 

G=
e2

I 0
= Z22

Z
L

Z
c

Z11
e
−ikL 1−s2

1s2 e
−2ikL



(54)

this relation gives the key to resolve in the frequency domain the global 
problem without knowing by advance the emf induced.

8. How to compute the reflection coefficients?

If the propagation structure is connected to other complex structures, a 
problem is  to  determine  the  impedance  of  the  sources  and  loads  to 
compute the reflection coefficients.  To reduce a network to an edge is 
simply the Thèvenin's process. Computing the open circuit voltage and 
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short  circuit  current  between  the  two  input  and  output  nodes  of  the 
structure, it is possible to construct the input and output edges of the 
circuit  represented figure 2.  But this  method requests  to compute the 
circuit before to have connected the line. It implies that a characterization 
of each network should be made before to realize any connections. Ones 
the impedance is known, the connection of the guided wave structure is 
very simple as the emf e2 and the current I1 are defined in the mesh 
space. The coupling impedance  G21 has just  to be added in the mesh 
space in the metric of the network connected. 
The reflection coefficient can be computed from the fields at the frontiers 
between the medium, the integration of the field giving the transmitted 
voltage.
When  we  consider  a  TE  wave  which  defines  the  wave  vector  in  a  z 
direction, the values of the electric field in the y direction, perpendicular 
to z, is the one obtained when the energy is established. For example in 
the case of a guided wave, the sin(kx) distribution of the field is obtained 
once the field has made various paths. It is the same for the potentials 
and the currents. Like a line under a standing wave working, until the field 
stills only in the direction of the potential, the iterative impedance of the 
structure is a constant value (except for the losses). This stills true for the 
direction s of  propagation even when the z mode appears. We can use 
Collin's approach to justify this. The characteristic impedance of a line can 
be written:

Z
c
= 

1

2
C
−1 (55)

Whatever are the modes, until  no modes exists in the z direction, the 
capacitance of the propagation structure stills the same in the s direction. 
So, for an homogeneous structure without modes in the z direction (but 
potentials only in the s and t directions), the characteristic impedance still 
continuous in frequency. Now when the z modes appear, the added energy 
stores in the z mode can be seen in an extended telegraph's equation has 
shown figure 11. 

Figure 11: Classical and extended telegraph's cell

The energy stores in the z modes cannot come from charges as it is stored 
in the wide space between the plates. This energy can only come from the 
time derivation of the vector potential created by the currents. So, it can 
be seen as a mutual coupling between the plate. Figure 11 a) shows the 
classical telegraph's cell where the element L and C are linked with the 

17



magnetic  and  the  electric  energy  stored  (u  term  of  the  Poynting's 
equation). Now when the z mode appears, the mutual coupling between 
the plate must be added as represented on figure 11 b). To compute the 
expression  of  the  characteristic  impedance  Zc,  we can start  from the 
energy study of the matched cell. The metric in the mesh space[1]  of this 
first network is:

Z=[
iL

2
Z

c


1

iC

−1

iC

1

iC

iL

2
Z

c


1

iC
] (56)

From this metric we can deduced the magnetic T and electric p energies:

T=[
L

2
0

0
L

2
] p=[

1

C

−1

C

−1

C

1

C
] (57)

The characteristic impedance is given by the equation:

det |pT−Zc2
I |=0 (58)

Using the expressions of 51.3 we obtain:

 L
2C

−Zc2
2

−
L

2

4C
2
=0⇒Zc= LC (59)

In case of the cell b), the metric becomes:

Z=[ 
L

2
−2m 1

C
−Zc2 − L2−2m 1

C

− L2−2m  1

C
 L2−2m 1

C
−Zc2] (60)

Which gives the energy operator:

T=[
L

2
−2m 0

0
L

2
−2m ] p=[

1

C

−1

C

−1

C

1

C
] (61)

Resolving 58 we obtain:

Zc= 2

C
 L2−2m  (62)
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We see that if m=0 we retrieve the relation 59. Computing the energy 
stored in  the  z  mode  gives  the  characteristic  impedance  through  the 
element m (which depends on the frequency) knowing:

W
H
=

1

2
J
a
m
ab
J
b

(63)

The  equivalent  cell  shown  figure  11  is  a  good  base  to  compute  the 
characteristic  impedance  expression  depending  on  the  frequency.  The 
approach  can  be  extend  to  the  magnetic  modes.  In  this  case,  the 
telegraph's cell is given figure 12. 

Figure 12: Telegraph's cell for the TM mode

Each element, as for the TE mode representation, is linked with the energy 
stored by the field in electric and magnetic forms. The Poynting's equation 
7 stills true whatever is the microscopic form of u. Figure 12 b) shows an 
equivalent process to the one observed for the electric field. When the 
delay  between  the  plates  becomes  to  long,  a  standing  displacement 
current appears in the z direction, being modeled by the m' coupling term. 
The creation of the m and m' coupling by the currents (of conduction or 
displacement) makes hybrid modes coupled with the original TE and TM 
modes. We could think in this case to draw a generalized cell allowing to 
represents  classical  or  hybrid  modes.  This  special  cell  is  represented 
figure 13 where we retrieve with bold lines the known TE and TM extended 
cells. This graph was suggested by Sir Gabriel KRON in a similar form fifty 
years  ago.  The  z  modes  are  include  in  these  cells.  And  all  coupling 
between the elements are authorized. The cells can be reduced to any 
sampled space depending on the wavelength. Between each “globule”, 
we place a resistor that takes into account the losses of the structure.

Figure 13: the generalized cells for all modes
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The source determine which mode is excited first. The modes are created 
by the antenna and/or the coupling process between the structure and the 
source. Then, these first modes can create secondary modes.
The schematics figures 11, 12 and 13 can be used too to understand and 
modeling non homogeneous structures.  In these structures,  an electric 
field in the s direction can create an electric field in the z direction through 
the non homogeneous permittivity of the medium. In this case,  ε  and μ 
are dyadic. We have, if e and d are the microscopic fields:

{
d
s
=

ss
e
s


st
e
t


sz
e
z

d
t
=

ts
e
s


tt
e
t


tz
e
z

d
z
=

zs
e
s


zt
e
t


zz
e
z

⇔d
u
=

uv
e
v  (64)

9. Connection of various zone of propagations

Any non homogeneous  guided wave structure  can be  divide  in  series 
parallel  structures.  Studying  the  propagation  from  the  source  in  the 
various directions of the structure, once determine the graph equivalent 
to the problem in order to resolve the currents and voltages in the 3D 
volume of the structure. Once these voltages and currents are known, the 
field  can  be  determined  in  all  the  volume  and  the  various  coupling 
involved can be computed too. At each change of the geometry, a new 
structure of propagation appears. Between each guided wave structure, 
the frontiers can radiates diffracted fields. Finally the complete metric of a 
complex  guided  wave  structure  is  a  series  of  elementary  ones  with 
coupling  impedance  between each elementary  structure.  The  example 
given at the end of the article shows how to proceed.

Working  with  the  potential  allows  to  use  simple  models.  For  a  wide 
frequency  band,  the  elementary  propagation  cell  is  our  extended 
telegraph's  cell.  For  each  frequency  of  mode  we  will  compute  the 
characteristic impedance and the propagation speed. After what we can 
compute the standing waves depending on the limit conditions. 

Basically, the principle consists in verifying on the surfaces of separation 
the equations of continuity in the fields. These surfaces can be seen as 
impedances  between  two  regions  of  propagation  and  the  sources  of 
diffractions. Relation 52 must be constructed from surfaces to surfaces 
where R3 became an impedance computed from the input impedances of 
the previous part of the network. Figure 14 represents a typical case of 
connection of three primitive networks by two guided wave structures. 

The impedance and edges 1 (R1),  4 (R4) and 7 (R7) are the primitive 
edge. Between these edges we connect two lines. The impedances b2, b3, 
b5 and b6 are the backward impedances. In this graph the Gij impedances 
are defined in the edge space. 

20



Figure 14: Three networks connected

For the three frontiers we define three reflection coefficients S1 to S3 for 
the direction of propagation (+x) and (-x). We compute:

b5=c  r7−cTh x 


c
−r7 Th x   b2= c  r4 b5r4B5

−1
−

c
Th  x 

 c−r 4b5r4B5
−1

Th  x 


b3=c  r1−c Thx 

c−r1 Thx   b6=c  r4 b3r4B3
−1
−

c
Th  x 


c
−r 4b3r4B3

−1

Th  x 


(65)

αc and  βc are  the  characteristic  impedances of  propagation.  Once the 
impedances and reflection coefficients are all defined, the impedances  Gij 

can be computed, where R3 in equation 50 is the input impedance of a 
connected part of the network. We can write:

e
3
=G

32
i2 e

6
=G

65
i5 (66)

Noting with a Greek index the meshes currents and emf, we have:

e
6
=G

65
L

5
J=G

65
L

5
Y
 3
e

3
=G

65
L

5
Y
3
G

32
i
2 (67)

We can define:

L
5 Y 3=X53 (68)

We obtain:

e
6

i
2
=G

62
=G

65
X

53
G

32
(69)

Equation 69 is the equation of the connexion. When the structures seen 
by the source are in parallel, each layer has its own G function, but the 
source  potential  is  the  same  for  both.  Equation  69  should  allow  to 
compute any organization of structures.
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To the  final  composition  of  sub structures,  the  diffraction  of  the  little 
element can be added. 

10. How to determine the frequencies of the 

modes?

The Fourier transformation of the geometric profiles of each direction of 
propagation gives the modes for each of these directions. These profiles 
are constructed by some operations of scanning. The functions p(s,t,z) of 
scanning are  the  evolution  of  height  z of  the  structure  for  each  (s,t) 
directions followed by the wave surface of potential excited by one source. 
The wave vector 35 is defined for one excitation. Once the function p is 
known, its Fourier's transformation gives the modes for one polarization 
and under the hypothesis that no modes appear in the direction of the 
potential.  To  these  modes  must  be  added  the  ones  coming  from the 
longitudinal components of the field. These modes are extracted from the 
length of the potential lines used for the scan. By replacing all the walls of 
the structure by short circuits,  we can determine all  the modes of the 
structure. After what depending on the direction and type of excitation, we 
can identify the longitudinal  and transverse modes to the propagation. 
This technique is detailed in [7].

11. To construct a base of modes

Starting  from  the  reflection  coefficient  and  from  a  binomial  series 
expansion we have obtained:

V
L
=1g

L
 [
Z
c

Z
c
Z

s

V
s
e
−ikL ] {1g sgLe−i2kL} (70)

k is given by equation 35. We can define a functional space[5] noting that 
the wave vector is a function of ω:

|
=1

)=[
e
−ik

=1
L

0

⋮

0

] |
=2

)=[
0

e
−2ik

=2 
L

⋮

0

]  |
=n

)=[
0

0

⋮

e
−nik

=n 
L

] (71)

On this base we can define the transmitted voltage by:

VL=Ws 1g L {∑


C|)} (72)

Expressed here on the base of modes |ψω ) with Ws the sources and C ω the 
coefficients of the modes. The 3D properties of the waves are includes in 
the ω  index of ψ which is a normalized one, i.e. the harmonic order of a 
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fundamental cutoff frequency ω0. 
The direction of propagation s is perpendicular to the scalar potential in 
the direction of polarization z. In the direction transverse t, the modes can 
cut the wave under a given cutoff frequency before which the wave are 
purely evanescent. The modes in the z direction doesn't cut the wave, and 
do not carry losses. So, as we have seen, they change only the speed of 
propagation.  For  large structures,  the approach can be the same in  a 
spheric description of the propagation. 
The connection consists in making the intersection between the bases of 
two connected medium. Starting from equation 52 we can write:

G
21
=H

21{R31s1e−2ikL∑
q

s1 e
−2ikL 

q

 1s2e−2ikL∑
q '

s2 e
−2ikL

q'

} (73)

with:

H
21
=

1−s2
Z
c

e−r

1s2e
−2r

(74)

G21 can be written:

G
21
=S

21

k |
k
)
21

k=qq ' and S
21

 k including H
21

(75)

Equation 69 can be generalized to all the space writing:

G
iy
=G

ij
X juG

uy
(76)

Using 75 we write:

G
iy
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k |
k
)
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X ju S

uy

 k '|
k '

)
uy

(77)

In the tensorial notation this can be written:

G
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k
k 
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X
ju
S
uy

 k '
k '

|
uy

(78)

By the Hilbert's transformation, this becomes:

G
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=
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*
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ij 
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S
uy
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(79)

which can be written more usually:

G
iy
= (

 ij 

k
| S

iy

kk '
|

k'
)
uy

(80)

This is our generalized law for the connections of various homogeneous 
structures. 
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12. How to treat non linear impedances?

In the temporal  domain, it  is difficult  to compute the modes and their 
factor of quality, for example because of the skin effect in the walls.
When  the  impedances  are  non  linear,  the  harmonic  domain  is  not 
sufficient. It is necessary to use the time domain in order to take into 
account these non linearities. Nevertheless, the harmonic domain stills the 
best one to translate the physical process of the guided waves. In the 
same idea, we can think of the radiation process as a purely frequency 
one,  link  with  the  photons.  If  the  impedance  change  with  time,  the 
function  G  (and  its  associated  function  f  )  will  change  too.  How  to 
proceed?
The basic idea is quite simple. We will separate the time in intervals where 
the impedances are constants.  In these intervals,  the inverse Fourier's 
transformation of the harmonic spectrum of propagation is the time filter 
that must be convolved with the temporal signal of the circuit connected 
to this structure of propagation. The harmonic expression of G must gives 
through an inverse Fourier's transform the coefficients of the filter. Some 
frequencies seen their phases increased by the z modes, depending on 
the wave vector values. From the frequency where the modes appears (for 
given  limit  conditions)  the  speed  of  propagation  is  a  function  of  the 
frequency. The dispersion properties of the medium comes from the fact 
that the z modes does not create losses but only a delay due to the 
necessary time to fill the energy in this modes.
The Fourier's inverse transformation is quite easy to realize, and still  a 
robust  process.  The  phases  of  each  harmonic  must  be  ikx and  their 
amplitudes the one of |VL(f)| of equation 72.
One  technique  consists  in  finding  a  function  F  which  respects  this 
property:

f t =∑
n

F
n
t  f  t (81)

If we find such a function, we can after write:

f
n
 t=F

n
t f t (82)

The function F is chosen to assure that f(t) is constant on the domain of F. 
Under this hypothesis, the computation of the problem can be made on 
each function fn with an update of the coefficient of the filter at each time 
step.
Equation 66 in the time domain becomes:

e
3
 t=G

32
* i

2
t  (83)

Using 74, this equation becomes:

e
3
 t=G

32
*  [∑

n

F
n
 t i

2
 t] (84)
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We chose a F function such that the time domain Ω of F of order n is the 
sample used to compute the convolution product of G by i. It means that 
we compute:

{
e

3
0=G

32
0, e

t<0
F0i

2t

e
3
1=G

32
1, e0F0 i

2tG
32
0, e0F1 i

2t

e
3
2=G

32
2, e1F0 i

2tG
32
1, e1F1 i

2tG
32
0, e1F2 i

2t



(85)

The  function  G(i,ei-1)  is  updated  at  each  time  step  depending  on  the 
impedances values at the time i-1, these impedances being changed by 
the emf ei-1 at the same instant.
Another  technique  is  to  constructed  a  function  that  includes  all  the 
transfer functions between two frontiers for various impedance values. 
The non linear impedances are computed through a variable impedance 
depending on voltage or current values. In a first step we construct for 
example the admittance Yij giving the current Ji for the excitation ej. This 
admittance is  obtained for  a first  value of  impedance of  a  non linear 
element. If p is the parameter that indicates the non linear state, we can 
notice Yij|p the tensor Yij obtained for the parameter value p. After what in 
the time loop, the parameter p is adjust at each time step depending on a 
criterion, a voltage value for example. Once Yij|p  is constructed, the time 
evolution of a current  Ji can be entirely determined.

13. Example

A method can be proposed in order to guide our computations. We can 
follows  the  ones  given by  Paul  [18]  for  the  computation  of  the  lines, 
adding some extensions for 3D waves. The rules are:

1. to  identify  the  homogeneous  structures  seen  from  the  source 
location  in  the  direction  of  the  spherical  or  rectangular  waves 
going far from the source;

2. To integrate the field to compute the characteristic impedance of 
each structure of propagation;

3. to determine the reflection coefficient at each frontiers;
4. to determine the input impedance  to each structure, starting from 

the end of propagation;
5. to use equation 80 or a similar one to add the G interaction in the 

metric.

We want to resolve the problem presented figure 15. We consider an open 
structure with one discontinuity and a single wire line with a resistive 
impedance  and  a  diode.  The  structure  is  excited  by  a  source  at  the 
coordinates  x=0  and  y=Y/2.  The  structure  is  made  of  five  primitive 
networks or subnetworks. These primitive elements are shown figure 15. 
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Each of these primitive networks has its own equivalent circuit.  We will 
compute the problem in a rectangular space. The first work consists in 
drawing the equivalent schematic of each primitive element. 

Figure 15: primitive elements

The models attached to the elements are defined for a given frequency 
band. For this example we will stay in a frequency band such that the 
coins stills linked together with simple resistors. The major volume is a 
line made of two parallel plates. The figure 16 shows the five primitive 
elements and their possible equivalent circuits.

Figure 16: primitive elements

From these primitive elements we will  construct three subsystems and 
after we will construct the interactions between these subsystems. The 
construction  we  present  are  dependent  on  the  frequency.  In  order  to 
clarify the method, we limit our frequency band to have quite simples 
patterns for the primitive elements. But the technique can be extended to 
any frequencies.

13.2 Construction of the subsystems 

First we can make the principal structure. It is made of the major volume 
and of the two front walls. In the x direction, the structure behave like a 
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line. Connected with the two walls we obtain the substructure which graph 
is presented figure 17. In this graph we recognize the front wall, the open 
major structure and the generator which is used to create the excitation of 
the system. 

Figure 17: graph of the major structure with the front walls

The lateral walls appear like line too, but with a characteristic impedance 
lower  than  the  one  of  the  major  structure.  Between  each  coins,  we 
construct a line but with limit conditions different from the ones we saw 
on the major structure. Figure 18 shows the graph of the lateral walls.

Figure 18: lateral structure 

There is two of these structures in the system. To make this system we 
have to connect these three subsystems (we will consider the electronic 
circuit after).

13.2 Connection of the subsystems

Each subsystem has its own connectivity between the edge space and the 
mesh one[1]. For the major structure this connectivity is:

Lmajor=[
1 0

1 0

0 1

0 1

] (86)
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For the lateral ones the connectivity is given formula 87. 

Having define the metric in the edge space, these connectivities define 
completely the metric in the mesh space where the problem is solved. If 
we connect the three subsystems, the numbering of the meshes of the 
first subsystem will kept its values, for example from 1 to N, while the 
numbering of the second will start at 1+N until M+N and the third from 
1+N+M to P+N+M. 

L lateral=[
1 0 0 0

1 0 0 0

0 1 0 0

0 1 −1 0

0 0 1 1

0 0 0 1

0 0 0 1

] (87)

But due to the fact that we connect the nodes of edge 1 of subsystem 1 to 
the nodes of the edge 1 of the subsystem 2 we create a new mesh that 
doesn't exist before. So the connection of the three connectivities of the 
three subsystems follows the procedure shown figure  19.

Figure 19: organization of the partial connectivities

The added connectivities are shown figure 20. 

Between the last numbering of edge of the first subsystem and the first 
numbering of the second one we must add the number of meshes added 
connecting the two subsystems. Here two meshes are added, one to each 
extremity of the structure. 

For the electronic circuit, the coupling is made only through radiated field 
between edges or meshes. There is no edge or mesh to add.
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Figure 20: added connectivities

Two actions still to be done to end the connection: the coupling between 
edges must be added to the metric in the mesh space and the modes in 
the t direction for the wave in the major structure must be defined (in the 
case  where  some  electrostatic  interactions  appears,  C  edge  must  be 
added in the edge space. see [1][2] to make this operation, strictly similar 
for one only network construction). 

Each subsystem has its own edges. When we connect one to another, a 
field emitted by an edge can create an emf on an edge of the second 
subsystem. This coupling must be added in the global metric of the edge 
space. 

To construct  this  metric  the first  action is  to put  each metric  of  each 
subsystem in the global one like shown figure 21. 

Figure 21: construction of the metric in the edge space

To the first  construction we must add the coupling created during the 
connection. These terms are extra-diagonal ones.  Figure 22 shows some 
terms added between symmetric structures. In the graph, the interactions 
added must be the same that the one added in the global metric. 
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Figure 22: to add interactions

The major section is a propagative one. As we have seen, these structures 
are defined for modes of propagation in the t and z directions, i.e. here for 
the y and z directions. Connecting the lateral walls, the t modes can be 
modified, that's what we have to verify. 
The free major structure has,  seen from its  center,  a law of  potential 
given by:

V y=0=V 0 1 ye
−ikY  (88)

The connection  of  the  major  structure  to  the  lateral  walls  modify  the 
reflection coefficient  Γy. For the free structure, its value is 1. When we 
connect the lateral walls, this value becomes:


y
=

R
w
 1

iC
w

0 th[ kY2 ]

0Rw
1

iC
w
  th [k

Y

2 ]
(89)

With this parameter and knowing the frequency of the generator we can 
compute the y distribution of the voltage and the t mode of the wave in 
the major structure. Another method can be to directly compute the wave 
vector of the structure from the coefficients of propagation:

k=


2

C R
2


2L

2LC 
1

2

(90)

Once the tensor of the impedances in the edge space is modified, one 
operation  to  do  is  to  add  the  coupling  between  meshes  due  to  the 
connection in the tensor of impedance in the mesh space. Once these 
coupling done, the last operation to do is to compute the global moment 
of the connected network for far field interaction with the environment. 
These  two  operations  are  strictly  similar  to  the  one  done  for  one 
network[1][2]. 
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The connection of the subsystems is so resume by the six actions:

1. to associate the primitive tensors to numbering the new ones;
2. to add the capacitive edge due to electrostatic interactions and to 

compute and add the coupling interactions in the edge space;
3. to associate the connectivities meshes to edges and to add the 

meshes of the edges connected;
4. to modify the ks and kt wave vector of the guided wave structures 

connected;
5. to add the mutual coupling in the mesh space of the computed 

tensor of the impedance transformed in the mesh space;
6. to compute eventually the new global moment of the new network 

created.

13.3 Resolution

The resolution of our problem will be made in two phases. In a first step 
we will compute only the structure in the frequency domain. Then we can 
add the electronic circuit and to compute it in the time domain. The lateral 
walls have the metric and connectivity written relation 91.

Z
L
=[
R1 0 0 0 0 0 0

0 ZR1 0 0 0 0 0

0 0 ZR1 0 0 0 0

0 0 0 R4 0 0 0

0 0 0 0 ZR2 0 0

0 0 0 0 0 ZR2 0

0 0 0 0 0 0 R7

] L
L
=[

1 0 0 0

1 0 0 0

0 1 0 0

0 1 −1 0

0 0 1 0

0 0 0 1

0 0 0 1

] (91)

For the central volume we make the same approach to obtain:

Z
c
=[

1

sC

Rc 0 0 0

0 ZRc 0 0

0 0 ZRc 0

0 0 0
1

sC

Rc
] L

c
=[

1 0

1 0

0 1

0 1

] (92)

We can connect  the three networks following our  rules  with the  edge 
numbering  beginning  by  the  first  lateral  network  and  ending  by  the 
second one. If Z1, Z2, Z3 are the three metrics of the three networks, we 
can construct the global one making in a first step:
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Z=[
Z1 0 0

0 Z2 0

0 0 Z3
] (93)

We obtain:

Z=[
R1 0 0 0 0 0 0

0 ZR1 0 0 0 0 0

0 0 ZR1 0 0 0 0

0 0 0 R4 0 0 0

0 0 0 0 ZR2 0 0

0 0 0 0 0 ZR2 0

0 0 0 0 0 0 R7

[0 ] [0]

[0 ]

1

sC

Rc 0 0 0

0 ZRc 0 0

0 0 ZRc 0

0 0 0
1

sC

Rc

[0]

[0 ] [0 ]

R1 0 0 0 0 0 0

0 ZR1 0 0 0 0 0

0 0 ZR1 0 0 0 0

0 0 0 R4 0 0 0

0 0 0 0 ZR2 0 0

0 0 0 0 0 ZR2 0

0 0 0 0 0 0 R7

] (94)

To this  tensor  we have to add the radiated interaction between some 
edges. Here we add the cross talk between edges 4 and 13 which are the 
vertical post. The interaction impedance are given by:

[Z
ab
]
ab
=−i∫

l b 

dl∫
za 

dz


4 R ab
e−ikRa b (95)

Our metric in the edge space gives the relation 96.

We have now to define the connection. Figure 23 represents the graph of 
our problem and the mesh numbering. 

The  graph shows that  four  meshes  have  to  be  added to  the  original 
number of meshes obtained from the connected networks. As the number 
of  edges stills  here unchanged, the global  connectivity has two bands 
added  in  the  matrix  as  shown  figure  19.  Added  meshes  are  include 
between meshes 4 and 7, and 8 and 11.
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Z=[
R1 0 0 0 0 0 0

0 ZR1 0 0 0 0 0

0 0 ZR1 0 0 0 0

0 0 0 R4 0 0 0

0 0 0 0 ZR2 0 0

0 0 0 0 0 ZR2 0

0 0 0 0 0 0 R7

[0 ] [Z
4,13

]

[0 ]

1

sC

Rc 0 0 0

0 ZRc 0 0

0 0 ZRc 0

0 0 0
1

sC

Rc

[0]

[Z
13,4

] [0 ]

R1 0 0 0 0 0 0

0 ZR1 0 0 0 0 0

0 0 ZR1 0 0 0 0

0 0 0 R4 0 0 0

0 0 0 0 ZR2 0 0

0 0 0 0 0 ZR2 0

0 0 0 0 0 0 R7

] (96)

Figure 23: mesh numbering

 The new connectivity has this shape:
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L= [
1 0 0 0

1 0 0 0

0 1 0 0

0 1 −1 0

0 0 1 0

0 0 0 1

0 0 0 1

[X] [0] [X] [0 ]

[0 ] [X]

1 0

1 0

0 1

0 1

[X] [0 ]

[0 ] [X] [0] [X]

1 0 0 0

1 0 0 0

0 1 0 0

0 1 −1 0

0 0 1 0

0 0 0 1

0 0 0 1

] (97)

The matrices [X] are the connectivity to be added between edges 1,8,12 
and 7,11,18 and meshes 5,6 and 9,10. The relations between edges and 
meshes are:

edge\mesh 5 6 9 10

1 −1 0 0 0

7 0 1 0 0

8 1 0 1 0

11 0 −1 0 −1

12 0 0 −1 0

18 0 0 0 1

(98)

Starting from these relations we have to add the edges not concern by 
these connectivities, to put zeros in the rows of the matrix and after to 
add the two columns in  the  global  connectivity.  We obtain the matrix 
presented relation 99.  Having these matrices, the last work consists in 
writing  the  impedance  expression  and  to  resolve  it  in  the  frequency 
domain. This computation can be made using SCILAB software.

In SCILAB[20] the construction of  this connectivity can be made using 
expression 97. Annexe I shows the SCILAB listing of the software which 
gives the curves presented figure 24.

What is important to see is that the impedance construction goes from the 
far limit conditions to the excitation while the source report goes from the 
excitation  to  the  far  edge  reached.  Equation  54  contains  all  the 
information to create the source from edge to edge through the structure 
of the guided wave. 
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L
a
=[

1 0 0 0

1 0 0 0

0 1 0 0

0 1 −1 0

0 0 1 0

0 0 0 1

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−1 0

0 0

0 0

0 0

0 0

0 0

0 1

1 0

0 0

0 0

0 −1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

1 0

0 1

0 1

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0

0 0

0 0

0 −1

−1 0

0 0

0 0

0 0

0 0

0 0

0 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 −1 0

0 0 1 0

0 0 0 1

0 0 0 1

] (99)

The field in the 3D structure can be computed starting from the known 
currents on the limit conditions of the structures of guided waves. For 
each of these structures we obtain the field using:

E
z
s, t=t0=

∂

∂ z {Zc 
J0 

1−s2 e−2ikL

e−iks−
J
L

1−s1 e−2ikL

e−ik X−x } (100)

Figure 24: Result in the frequency domain (here for 400 MHz)
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13.4 To add the electronic

For this first example we consider an electronic circuit short compared to 
the wavelength. We consider too that the disturbance of the waveguide 
structure by the electronic mesh is weak. The direction of the single mesh 
of the electronic circuit is in front of the excitation mesh, i.e. that these 
two meshes are the only one in interaction (this is just to simplify our 
demonstration). It is quite simple to add this circuit. We just have to add 
two edges in the metric and two connectivities. But if we accept some 
approximation, there is another way to do it which is a simplest one. 
Directly in the mesh space we can create a cross talk between the mesh 
of the electronic circuit and the meshes 7 and 8 of the main structure. 
Ones this new metric is created, the technique here consists in computing 
the transfer function Y15,7 for each impedance value of the diode. In a first 
step we compute Y15,7|0 for the blocked diode, then for the passed one 
Y15,7|1. The transfer function is updated each step time. The algorithm has 
the following sequence:

parameter p initialization: p=0
for t=1:1000

J=0
for q=1:t

J=J+ Y15,7|p(q)*e7(t-q+1)
next q
J15(t)=J

if (diode(p).J>0,6) then p=1;end,
if (p==1 && J<J0) then p=0; end,

next t

The listing of the program is given annexe II. The voltage through the non 
linear element is shown figure 25.

Figure 25: time result through the diode

This last result shows that the method allows to treat non linear elements 
in the network. 
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ANNEXE I: scilab program in the frequency 

domain
//First program in the frequency domain without electronic circuit
//initialization
clear;
xbasc;

//primary variables
c=3e8;
u=4*%pi*1e-7;
eps=1/(36*%pi*1e9);
n=sqrt(u/eps);
sig=1e7;
Z=0.7;
X=3;
Y=0.3;

//fixed impedances
R1=1/sig*Z/2/1e-4;
R4=R1;
R7=R1;
R12=R1;
R15=R1;
R18=R1;
Ro=1/sig*Z/2/(1e-2*Y);

C8=eps*(Y-2*1e-2)/(Z/2);
C11=C8;

//connectivities
LL=[1 0 0 0
1 0 0 0
0 1 0 0
0 1 -1 0
0 0 1 0
0 0 0 1
0 0 0 1];
Lgb=[0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0];
LCg=[-1 0
0 0
0 0
0 0
0 0
0 0
0 1
1 0
0 0
0 0
0 -1
0 0
0 0
0 0
0 0
0 0
0 0
0 0];
LCd=[0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
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0 0
0 0
0 -1
-1 0
0 0
0 0
0 0
0 0
0 0
0 1];

Lc=[1 0
1 0
0 1
0 1];

LG=[[LL;Lgb],LCg,[zeros(7,2);Lc;zeros(7,2)],LCd,[Lgb;LL]];

//tabs
J=[]; //meshes currents
res=[]; //one particular result wanted
Efv=[]; //field in the volume for one frequency
sveG=[];
Zm3D=[];

//frequency loop
disp('start of computation');

fo=1e6;
for n=[1:1000]
f=n*fo;
w=2*%pi*f;
s=%i*w;
//metric definition
Zc1=n*Z/2/1e-2;
ZR2g=Zc1*(R7+Zc1*tanh(s*(X/2)/c))/(Zc1+R7*tanh(s*(X/2)/c));
RT=R4*ZR2g/(R4+ZR2g);
ZR1g=Zc1*(RT+Zc1*tanh(s*(X/2)/c))/(Zc1+RT*tanh(s*(X/2)/c));
ZR1d=Zc1*(R1+Zc1*tanh(s*(X/2)/c))/(Zc1+R1*tanh(s*(X/2)/c));
RT2=R4*ZR1d/(R4+ZR1d);
ZR2d=Zc1*(RT2+Zc1*tanh(s*(X/2)/c))/(Zc1+RT2*tanh(s*(X/2)/c));

Zc2=n*Z/(Y-2e-2);
kx=w/sqrt(2)*(sqrt(u*eps)/Zc2*sqrt(Ro^2/w^2+(Zc2/(sqrt(u*eps)*c^2))^2)+1/c^2)^(0.5);

//svgde pour trace 3D
//$$$$$$$$$$$$$$$$$$$$$
fchoi=400;
if (n==fchoi) then sveG(4)=kx;end,

Zoc=1/(s*C8);
ZRcg=Zc2*(Zoc+Zc2*tanh(%i*kx*(X)))/(Zoc+Zc2*tanh(%i*kx*(X)));
ZRcd=ZRcg;

ZL=[R1 0 0 0 0 0 0
0 ZR1g 0 0 0 0 0
0 0 ZR1d 0 0 0 0
0 0 0 R4 0 0 0
0 0 0 0 ZR2g 0 0
0 0 0 0 0 ZR2d 0
0 0 0 0 0 0 R7];

ZC=[Zoc 0 0 0
0 ZRcg 0 0
0 0 ZRcd 0
0 0 0 Zoc];

ZG=[[ZL;zeros(11,7)],[zeros(7,4);ZC;zeros(7,4)],[zeros(11,7);ZL]];

//to add the edges cross talk
ZG(12,4)=-s*Z/2*Z/2*u/(4*%pi*(Y-1e-2))*exp(-%i*w/c*(Y-1e-2));
ZG(4,12)=ZG(12,4);

//svve 3D
if (n==fchoi) then Zm3D=ZG;end,

Zm=LG'*ZG*LG;
//Zm=[Zm;zeros(1,14)];
//Zm=[Zm,zeros(15,1)]; //1 mesh added in Zm

//first sources
Em=[0 0 0 0 0 0 1 0 0 0 0 0 0 0]; 
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//to add the guided wave sources in the mesh space

RTT1=R4*ZR2g/(R4+ZR2g);
GL1=(RTT1-Zc1)/(RTT1+Zc1);
GL2=(R7-Zc1)/(R7+Zc1);
GLc=(Zoc-Zc2)/(Zoc+Zc2);

//svgde pour trace 3D
if (n==fchoi) then sveG(1)=GL1;sveG(2)=GL2;sveG(3)=GLc;end,

Zm(2,1)=(ZR1d+RTT1)*exp(-%i*w/c*(X/2-1.5e-2))/(1-GL1*exp(-2*%i*w/c*(X/2-1.5e-2)))*(1-GL1);
Zm(12,11)=Zm(2,1);
Zm(4,3)=(ZR2d+R7)*exp(-%i*w/c*(X/2-1.5e-2))/(1-GL2*exp(-%i*w/c*(X/2-1.5e-2)))*(1-GL2);
Zm(14,13)=Zm(4,3);

Zm(8,7)=(ZRcd+Zoc)*exp(-%i*kx*(X-1e-2))/(1-GLc*exp(-%i*2*kx*(X-1e-2)))*(1-GLc);

//résolution des courants
J=pinv(Zm)*Em';
res=[res;J(8)];

//svgde pour trace 3D
if (n==fchoi) then Efv=J;end,

end, //end of frequency loop

//curves
n=[1:1000];
subplot(2,1,1);plot2d(n*fo,abs(res),style=9,logflag='ll');xgrid(9);xtitle('Output current J(8) [A] versus frequency [Hz]');

disp('Start of the 3D computation');

//3D plot of the field for one frequency
//coordinates of the emitter edges: connectivity edge - space(x,y,z=Z/2), for the diffraction part
COO=[0 0
X/2-0.5e-2 0
X/2+0.5e-2 0
X 0
Y/2 0
Y/2 X
0 Y
X/2-0.5e-2 Y
X/2+0.5e-2 Y
X Y];

EV=zeros(300,30);
//the repartition is EV(300,[1:2])->lateral walls. EV(300,[2:28])-> central structure.  EV(300,[29:30])

uk=2*%pi*fchoi*fo/c;
//Efv(11)=Efv(1);Efv(12)=Efv(2);Efv(13)=Efv(3);Efv(14)=Efv(4);

for x=[2:149]
EV(x,1)=Z/2*Zc1*((Efv(1)/(1-sveG(1)*exp(-2*%i*uk*X/2))*exp(-%i*uk*x*1e-2))-(Efv(2)/(1-sveG(2)*exp(-2*%i*uk*X/2))*exp(-
%i*uk*(X/2-x*1e-2))));
EV(x,30)=EV(x,1);
end,

for x=[151:299]
EV(x,1)=Z/2*Zc1*((Efv(3)/(1-sveG(1)*exp(-2*%i*uk*X/2))*exp(-%i*uk*x*1e-2))-(Efv(4)/(1-sveG(2)*exp(-2*%i*uk*X/2))*exp(-
%i*uk*(X/2-x*1e-2))));
EV(x,30)=EV(x,1);
end,

for x=[2:299]
  for n=[2:29]
  EV(x,n)=Z*Zc2*((Efv(7)/(1-sveG(3)*exp(-2*%i*sveG(4)*X))*exp(-%i*sveG(4)*x*1e-2))-(Efv(8)/(1-sveG(3)*exp(-
2*%i*sveG(4)*X/2))*exp(-%i*sveG(4)*(X-x*1e-2))));
  
  end,
end,
EV(1,[2:29])=Efv(7)*Zm3D(9,9);
EV(300,[2:29])=Efv(8)*Zm3D(10);
EV(1,1)=Efv(1)*Zm3D(2,2);
EV(300,1)=Efv(4)*Zm3D(6,6);
EV(1,30)=Efv(11)*Zm3D(13,13);
EV(300,30)=Efv(14)*Zm3D(17,17);
EV(150,1)=(Efv(2)-Efv(3))*Zm3D(4,4);
EV(150,30)=(Efv(12)-Efv(13))*Zm3D(15,15);
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//adding diffraction
//-----------------------------------------------------
j=[1 2 3 4 7 8 11 12 13 14];
for n=[2:299]
  for m=[2:29]
    xn=n*1e-2;
    ym=m*1e-2;
    EVnm=0;
    for p=[1:8] 
      d=sqrt((xn-COO(p,1))^2+(ym-COO(p,2))^2);
      //if (d==0) then d=1e-3;end,
      EVnm=EVnm-2*%pi*fchoi*fo*%i*u*LG(j(p),:)*Efv(:)/(4*%pi*(d))*exp(-%i*sveG(4)*d);
    end,
    
    EV(n,m)=EV(n,m)+Z*EVnm;
  end,
end,
//-----------------------------------------------------

disp('end of the 3D computation');

n=[1:300];m=[1:30];

//subplot(2,1,2);plot3d(n,m,20*log10(1e6*(abs(EV)+1e-6)));xtitle('3D curve of the vertical electric field[dBµV/m] at 458 
MHz');
subplot(2,1,2);plot3d(n,m,abs(EV));xtitle('3D curve of the vertical electric field[dBµV/m] at 458 MHz');

Annexe II
//program of time computation

Y=[];
Y1=read('hbas.csv',-1,1);
Y2=read('hhaut.csv',-1,1);

Y=[Y1,Y2];
diode=[1 10e3];

//temporal source
e=[];
for t=[1:400]
e=[e;500*(exp(-t/50)-exp(-t/10))];
end

//plot2d(e);
res=[];

J=[];
p=2;

for t=[1:400]
Jj=0;
  for q=[1:t]
    Jj=Jj+Y(q,p)*e(t-q+1);
  end,
J=[J;Jj];
if (abs(diode(p)*Jj)>0.6) then p=1;end,
if (abs(Jj)<0.0025) then p=2;end,

res=[res;diode(p)*Jj];

end,

n=[1:400];
plot2d(n,res,style=9);xgrid(9);
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