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LARGE-EDDY SIMULATIONS OF TURBULENCE

O. Métais

1 Introduction

Direct-numerical simulations of turbulence (DNS) consist in solving explic-
itly all the scales of motion, from the largest lI to the Kolmogorov dissipa-
tive scale lD. It is well known from the statistical theory of turbulence that

lI/lD scales like R
3/4
l , where Rl is the large-scale Reynolds number u′lI/ν

based upon the rms velocity fluctuation u′. Therefore, the total number
of degrees of freedom necessary to represent the whole span of scales of a

three-dimensional turbulent flow is of the order of R
9/4
l in three dimensions.

In the presence of obstacles, around a wing or a fuselage for instance, and
if one wants to simulate three-dimensionally all motions ranging from the
viscous thickness δv = ν/v∗ ≈ 10−6 m up to 10 m, it would be necessary
to put 1021 modes on the computer. Right now, the calculations done to
the expense of not excessive computing times on the biggest machines take
about 2×107 grid points, which is very far from the above estimation. Even
with the unprecedented improvement of scientific computers, it may take
several tenths of years (if it becomes ever possible) before DNS permit to
simulate situations at Reynolds numbers comparable to those encountered
in natural conditions.

Statistical modelling based on Reynolds Averaged Navier–Stokes
(RANS) equations are particularly designed to deal with statistically steady
flows or with flows whose statistical properties vary “slowly” with time, that
is to say of characteristic time scale much larger than a characteristic tur-
bulent time scale. The application of phase averaging constitutes another
alternative which allows for the modelling of time periodic flows. With the
RANS approach all the turbulent scales are modelled. First order as well
as second order RANS models involve many adjustable constants and it
is therefore impossible to design models which are “universal” enough to
be applicable to various flow configurations submitted to diverse external
forces (rotation, thermal stratification, etc.). However, since RANS models
compute statistical quantities, they do not require temporal or spatial dis-
cretizations as fine as the ones necessary for DNS or even LES. They are
therefore applicable to flows in complex geometries.
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Large-Eddy Simulations (LES) techniques constitute intermediate tec-
niques between DNS and RANS in the sense that the large scales of the flow
are deterministically simulated and only the small scales are modelled but
statistically influence the large-scale motion. LES then explicitly resolve the
large-scales inhomogeneity and anistropy as well as the large-scales unsteadi-
ness. This is important from an engineering point of view since the large
scales are responsible for the major part of turbulent transfers of momentum
or heat for example. Most subgrid-scale models which parameterized the
action of the small-scales are based upon “universal” properties of small-
scales turbulence: those can therefore be applied to various flows submitted
to various external effects without being modified. In this respect, they con-
stitute “universal” models directly applicable to various flow configurations.
However, they require much finer spatial and temporal discretizations than
RANS and lie inbetween DNS and RANS as far as CPU time consump-
tion is concerned. Once confined to very simple flow configurations such as
isotropic turbulence or periodic flows, the field is evolving to include spa-
tially growing shear flows, separated flows, pipe flows, riblet walls, and bluff
bodies, among others. This is due to the tremendous progress in scientific
computing and in particular of parallel computing. As will be seen in the
few examples presented below, LES are extremely useful in particular to-
wards the understanding of the dynamics of coherent vortices and structures
in turbulence. We will show below that this is of special importance for flow
control problems, for detached flows and their aeroacoustics predictions and
for flows submitted to compressibility effects and density differences.

1.1 LES and determinism: Unpredictability growth

From a mathematical viewpoint, the LES problem is not very well posed.
Indeed, let us consider the time evolution of the fluid as the motion of a
point in a sort of phase space of extremely large dimension (e.g. ∼1021

around a wing, as seen above). At some initial instant, the flow computed
with LES will differ from the actual flow, due to the uncertainty contained
in the subgridscales. This initial difference between the actual and the
computed flow will grow, due to nonlinear effects, as in a dynamical system
having a chaotic behaviour. Therefore, the two points will separate in phase
space, and, as time goes on, the LES will depart from reality. However, as
will be seen below, LES permit to predict the statistical characteristics of
turbulence, as well as the dynamics of coherent vortices and structures.

Note that chaos in dynamical systems with a low number of degrees of
freedom is generally characterized by a positive Lyapounov exponent, with
exponential growth of the distance between two points initially very close
in phase space. In isotropic turbulence, one introduces for predictability
studies the error spectrum E∆(k, t), characterizing the spatial-frequency
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distribution associated to the energy of the difference between two random
fields �u1 and �u2 with same statistical properties:

1

4

〈
[�u2

1(�x, t) − �u2
2(�x, t)]

〉
=

∫ +∞

0

E∆(k, t) dk, (1.1)

the energy spectrum E(k, t) being such that

1

2

〈
�u2

1

〉
=

1

2
〈�u2

2〉 =

∫ +∞

0

E(k, t) dk. (1.2)

The error rate

r(t) =

∫ +∞

0
E∆(k, t)dk

∫ +∞

0
E(k, t)dk

(1.3)

is zero when the two fields are completely correlated, and one when they are
totally uncorrelated. In predictability studies, one takes generally an ini-
tial state such that complete unpredictability (E(k) = E∆(k)) holds above
kE(0), while E∆(k) is 0 for k < kE(0). Two-point closures of the EDQNM
type (see [67] for details) show (in three or two dimensions) an inverse cas-
cade of error, where the wavenumber kE(t) characterizing the error front
decreases (see [79]). Thus, the error rate can be approximated by

r(t) ≈
∫ ∞

kE(t) E(k, t)dk
∫ +∞

0
E(k, t)dk

·

We assume that the turbulence is forced by external forces, so that the
kinetic energy arising at the denominator of equation (1.3) is fixed. In three-
dimensional turbulence, and if a k−5/3 spectrum is assumed for k > kE, the

error rate will be proportional to k
−2/3
E . In fact, closures (see [67,79]) show

that k−1
E follows a Richardson’s law (k−1

E ∝ t3/2), so that the error rate
grows linearly with time. This is in fact a slow increase compared with the
exponential growth of chaotic dynamical systems, and quite encouraging
concerning the potentialities of large-eddy simulations for three-dimensional
turbulent flows.

2 Vortex dynamics

As will be seen, large-eddy simulations deal with energetic structures of
the flow with a characteristic scale or wavelength larger than a given cutoff
scale ∆x. These so-called large scales may be spatially organized or not,
and sometimes correspond to coherent vortices of recognizable shape. It is
therefore important to be able to identify these coherent vortices.
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2.1 Coherent vortices

2.1.1 Definition

Coherent vortices in turbulence are defined by Lesieur [67] as regions of the
flow satisfying three conditions:

(i) the vorticity concentration ω, modulus of the vorticity vector, should
be high enough so that a local roll up of the surrounding fluid is
possible;

(ii) they should keep approximately their shape during a time Tc longer
enough in front of the local turnover time ω−1;

(iii) they should be unpredictable.

In this context, high ω is a possible candidate for coherent-vortex identifi-
cation.

2.1.2 Pressure

With such a definition, the core of the coherent vortices should be pressure
lows. Indeed, a fluid parcel winding around the vortex will be (in a frame
moving with the parcel) in approximate balance between centrifugal and
pressure-gradient effects. We are talking here of the static pressure p. The
reasoning may be made more quantitative by considering Euler equation (in
a flow of uniform density ρ0) in the form

∂�u

∂t
+ �ω × �u = − 1

ρ0

�∇P (2.1)

where P = p+ρ0�u
2/2 is now the dynamic pressure. In a frame moving with

the coherent vortex and supposed locally Galilean, the ratio of the second
to the first term in the l.h.s. of equation (2.1) is of the order of Tc ω. Then
the equation reduces to the cyclostrophic balance

�ω × �u ≈ − 1

ρ0

�∇P (2.2)

if condition (ii) above is fulfilled. If one supposes that the coherent vortex
is a vortex tube tangent to the velocity vector, it follows that this tube is a
low for the dynamic pressure.

2.1.3 The Q-criterion

We recall now the so-called Q-criterion. Let

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, Ωij =

1

2

(
∂ui

∂xj
− ∂uj

∂xi

)
(2.3)
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be respectively the symmetric and antisymmetric parts of the velocity-
gradient tensor ∂ui/∂xj . It is well known that the second invariant of
this tensor

Q =
1

2
(ΩijΩij − SijSij) =

1

4
(�ω2 − 2SijSij) , (2.4)

is equal to ∇2p/2. Indeed, the Poisson equation for the pressure in a flow
of uniform density writes

− 1

ρ0
∇2p =

∂2

∂xi∂xj
uiuj =

∂

∂xi

[
uj

∂ui

∂xj

]
=

∂ui

∂xj

∂uj

∂xi

=

(
Sij +

1

2
ǫijλωλ

) (
Sji +

1

2
ǫjiµωµ

)
= SijSij −

1

2
�ω2 = −2Q.

Let us consider a low-pressure tube of small section. Let ∆Σ be its lateral
surface, assumed isobaric and convex. Let Σ1 and Σ2 be two cross sections
of the tube, supposed normal to its axis, and ∆V the volume of the tube
portion comprised between Σ1 and Σ2. The pressure gradient on ∆Σ is
normal to it and directed towards the exterior. The pressure gradient on
the two cross sections is tangent to them. Then, the flux of the pressure
gradient getting out of the tube is equal to the flux through ∆Σ, and is
positive. Due to the divergence theorem, this is equal to the integral over
∆V of ∇2p, which is positive, such as the integral of Q. If we suppose
that the size of ∆V is small enough so that Q does not vary appreciably
within it, this implies that Q is positive in ∆V . Since this reasoning may
be repeated all along the length of the tube, the Q-criterion (Q > 0) is
therefore a necessary condition for the existence of such thin convex low-
pressure tubes. This is the reason which motivates Hunt et al. [46] to
propose the Q-criterion as a way to characterize the vortices.

We have thus shown that the Q-criterion is valuable to help charac-
terizing the convex low-pressure tubes, which are generally associated to
coherent vortices. Notice however that the relation Q = ∇2p/2ρ0 implies
that vortex-identification criteria based upon Q involve much more small-
scale activity than thosed based on the pressure, as will be verified in the
simulations.

2.2 Vortex identification

Let us present a comparison of some of these vortex-identification methods
(low dynamic pressure, high ω, positive Q) applied to incompressible DNS of
isotropic turbulence and LES of a backward-facing step, done by Delcayre
[28]. Other exemples will be provided in the rest of the chapter. More
specifically, we consider isosurfaces at a given threshold of ω, p and Q. The
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Fig. 1. Low-pressure isosurfaces in DNS of isotropic turbulence (from Delcayre

[28]).

Fig. 2. High vorticity (left) and positive Q (right) isosurfaces in DNS of isotropic

turbulence (from Delcayre [28]).

choice of the threshold is justified by what gives visually the best vortices, or
with respect to what we know of the flow dynamics from former simulations
or laboratory experiments.

2.2.1 Isotropic turbulence

For isotropic turbulence, we consider a DNS at low Reynolds number (freely-
decaying case). It is well known that coherent vortices exist in such a flow, in
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the form of thin tubes randomly orientated, of length the turbulence integral
scale (Siggia [102], Vincent and Ménéguzzi [111], Métais and Lesieur [80],
Jimenez and Wray [47]). Comparison of Figures 1 and 2 (left) show that
the isobaric surfaces are more fat than the vorticity surfaces, but represent
the same events, in good agreement with the observations of Brachet [13]
for Taylor–Green vortices and Métais and Lesieur [80] for LES of isotropic
turbulence. This is confirmed by the present DNS. Figure 2 (right), showing
the iso-Q maps, is close to the vorticity map, althought slightly less dense.
A last point concerns the dimension of these tubes: everybody agrees on
the average length, which is integral scale l. It is right now not decided yet
whether the diameter scales on the dissipative scale or the Taylor microscale.
If we interpret the vortices as resulting from the roll up of local vortex sheets,
it is this last scale which should prevail. As a matter of fact, this strongly
anisotropic vortex topology is very far from the quite naive circular eddies
considered in the popular folklore of Richardson–Kolmogorov cascade.

Fig. 3. Schematic view of the backward-facing step (from Delcayre [28]).

2.2.2 Backward-facing step

We present now LES results of a uniform-density flow above a straight
backward-facing step. The model used is the selective structure-function
model (SSF, see Sect. 5.2). Figure 3 shows a schematic view of the flow.
The step-height is H , the expansion ratio 1.2, and the Reynolds number
U0H/ν = 5100, as in the configuration studied experimentally (Jovic and
Driver [49]) and numerically (Le et al. [62], Akselvoll and Moin [2]) at
Stanford. A free-slip boundary condition is used on the upper bound-
ary, well justified with respect to the laboratory experiment consisting in a
double-expansion channel. At the inlet, we impose Spalart’s [106] mean tur-
bulent boundary-layer velocity profile, to which a small three-dimensional
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white-noise perturbation regenerated at each time step is superposed. One
assumes periodicity in the spanwise direction, and there is an outflow bound-
ary condition of the Sommerfeld type, where the quantities are transported
following a fictitious “tangential” wave phase velocity. We have checked
that the latter is very good for letting the coherent vortices get out of the
computational domain without any distorsion.

Fig. 4. Backward-facing step, visualization of coherent vortices using high-

vorticity modulus (left) and positive Q (right) isosurfaces (from Delcayre [28]).

Fig. 5. Backward-facing step, low-pressure isosurfaces (from Delcayre [28]).

Flow animations show the following vortex dynamics: quasi two-
dimensional Kelvin–Helmholtz type vortices are shed behind the step,
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resulting from the instability of the upstream vortex sheet. Then they
are subject to dislocations (helical pairings) and transform into a field of
big staggered arch-like vortices which impact the lower wall and are carried
away downstream. Figure 4 (left), presenting iso-vorticity maps, does show
the breakdown of the vortex sheet into big staggered Λ-vortices. Figure 4
(right) presents iso-Q maps, and indicates the same vortex events as for the
vorticity, but the vortices are thinner, and the upstream vortex sheet has
been erased. Finally, isobaric surfaces (Fig. 5) are misleading in this case,
since they seem to indicate a large quasi two-dimensional vortex at the level
of reattachment, whereas it is simply an erroneous reconnection of the tips
of the big Λ’s.

Such vortical structure has important implications in terms of pressure
spectra and aeroacoustics. Figure 6 indeed shows the frequency pressure
spectra at four positions in the flow: (1) just behind the step, (2) just
before reattachment, (3) just behind reattachment and (4) much further
downstream. Frequencies f are expressed in units U0/H and correspond
in fact to Strouhal numbers St = fH/U0. Position (1) is marked by a
peak at St = 0.23, corresponding to the shedding of Kelvin–Helmholtz
vortices. At position (2), a second peak of higher amplitude is present at
the subharmonic Strouhal number 0.12, corresponding physically to helical
pairing. At positions (3) and (4), the two previous Strouhal numbers are still
there, but a third peak forms at a Strouhal St = 0.07, corresponding to the
well-known flapping of the recirculation bubble. These different Strouhal
numbers associated with the different unsteady phenomena are in good
agreement with those previously found by other authors (see e.g. Le et al.

[62], Arnal and Friedrich [6]). Such informations regarding the pressure
spectra and how they relate to the vortex dynamics is very important for
acoustical studies and noise control in particular.

3 LES formalism in physical space

This chapter deals with an incompressible flow, whose density is conserved
with the fluid motion, which implies the continuity equation �∇�u = 0. Then ρ
may be either uniform, or have a mean variation taken into account through
Boussinesq’s approximation.

3.1 LES equations for a flow of constant density

To begin with, let us consider a simulation of Navier–Stokes equations with
constant density ρ0 carried out in physical space, using finite-difference or
finite-volume methods. Let ∆x be a scale characteristic of the grid mesh.
In order to eliminate the subgridscales, we introduce a filter of width ∆x.
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Fig. 6. Backward-facing step, spectra of spanwise-averaged pressure fluctuations

at different positions (courtesy Delcayre).

Mathematically, the filtering operation corresponds to the convolution of
any quantity f(�x, t) of the flow by the filter function G∆x(�x), in the form

f̄(�x, t) =

∫
f(�y, t)G∆x(�x − �y)d�y =

∫
f(�x − �y, t)G∆x(�y)d�y, (3.1)

and the subgridscale field is the departure of the actual flow with respect
to the filtered field:

f = f̄ + f ′. (3.2)

Since ∆x is here assumed constant, it is easy to show that the space and
time derivatives commute with the filtering operator.

10



✐

We assume that we use a Cartesian system or coordinates. Let us first
write themomentum equations as

∂ui

∂t
+

∂

∂xj
(uiuj) = − 1

ρ0

∂p

∂xi
+

∂

∂xj
(2νSij), (3.3)

where Sij is the deformation tensor already defined by equation (2.3). The
filtered momentum equations write exactly

∂ūi

∂t
+

∂

∂xj
(ūiūj) = − 1

ρ0

∂p̄

∂xi
+

∂

∂xj
(2νS̄ij + Tij), (3.4)

where

Tij = ūiūj − uiuj (3.5)

is the subgrid-stresses tensor, responsible of momentum exchanges between
the subgrid- and the filtered scales. The filtered continuity equation writes

∂ūj

∂xj
= 0. (3.6)

Let us consider now the mixing of a passive scalar (such as temperature or
density) of molecular diffusivity κ transported by the flow, and satisfying
the equation

∂ρ

∂t
+

∂

∂xj
(ρuj) =

∂

∂xj

{
κ

∂ρ

∂xj

}
· (3.7)

The filtered scalar equation writes

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ūj) =

∂

∂xj

{
κ

∂ρ̄

∂xj
+ T

(ρ)
j

}
, (3.8)

where

T
(ρ)
j = ρ̄ūj − ρuj (3.9)

is the subgrid scalar flux. Tij and T
(ρ)
j can be written as:

Tij = −
(
u′

iu
′
j + ūiu′

j + u′
iūj + ūiūj − ūiūj

)
, (3.10)

T
(ρ)
j = −

(
ρ′u′

j + ρ̄u′
j + ρ′ūj + ρ̄ūj − ρ̄ūj

)
. (3.11)

In equation (3.10), −u′
iu

′
j is a Reynolds-stress like term, −(ūiu′

j + u′
iūj) is

called the Clark term (Clark et al. [21]), and ūiūj − ūiūj is the Leonard’s
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tensor (Leonard [65]). The latter is explicit in the sense that it is defined
in terms of the filtered field, and has been used in scale-similarity models
to provide information on the subgrid stresses (see Sect. 7.3). Leonard’s
stresses are also a major ingredient of the so-called Germano’s identity for
the dynamic approach in physical space (see Sect. 6).

These subgridscale tensors and fluxes need of course to be modelled.

3.2 LES Boussinesq equations in a rotating frame

We give now the LES equations corresponding to Navier–Stokes equations
within the Boussinesq approximation in a Cartesian frame of reference ro-
tating with a constant angular velocity Ω about the x3 axis:

∂ūi

∂t
+

∂

∂xj
(ūiūj) = − 1

ρ0

∂p̄

∂xi
+

∂

∂xj
(2νS̄ij + Tij)

+2ǫij3Ωūj − giδi3
ρ̄

ρ0
, (3.12)

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ūj) =

∂

∂xj

{
κ

∂ρ̄

∂xj
+ T

(ρ)
j

}
· (3.13)

This comes from the filtering of a particular version of Boussinesq equations,
valid both for a liquid and a perfect gas, where ρ is the total density, p the
static pressure, and ρ0 an average density on the height of the fluid layer. Tij

and T
(ρ)
j are defined as above. Here, the density is still a scalar transported

by the flow (as in Eq. (3.7)). But it is not passive since it reacts through
gravity in the momentum equation. In fact, this system of equations is very
useful to study stably-stratified or thermally convective rotating flows.

3.3 Eddy-viscosity and diffusivity assumption

By analogy with what is done in the framework of Reynolds equations for
the ensemble-averaged equations, the subgridscale tensors are in most of
the cases expressed in terms of eddy-viscosity and diffusivity coefficients in
the form

Tij = 2νt(�x, t) S̄ij +
1

3
Tll δij ; T

(ρ)
j = κt(�x, t)

∂ρ̄

∂xj
· (3.14)

Then LES equations for a flow of uniform density write

∂ūi

∂t
+

∂

∂xj
(ūiūj) = − 1

ρ0

∂P̄

∂xi
+

∂

∂xj

{
(ν + νt)

(
∂ūi

∂xj
+

∂ūj

∂xi

)}
(3.15)

∂ρ̄

∂t
+

∂

∂xj
(ρ̄ūj) =

∂

∂xj

{
(κ + κt)

∂ρ̄

∂xj

}
, (3.16)
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where

P̄ = p̄ − 1

3
ρ0Tll (3.17)

is a modified pressure which can be determined with the aid of the filtered
continuity equation.

Two questions are in fact posed: the first one is how to determine the
eddy-viscosity νt and the corresponding turbulent Prandtl number

Prt =
νt

κt
, (3.18)

and the second one concerns the validity of the eddy-viscosity assumption
itself. Indeed, it is based on an analogy with Newtonian fluids, which is
certainly not fulfilled here. Let us discuss briefly this point: molecular
viscosity ν characterizes for a “macroscopic” fluid parcel the momentum
exchanges with the surrounding fluid due to molecular diffusion across its
interface. Here, one assumes a wide separation between macroscopic and
microscopic scales and it is this separation which allows to calculate these
molecular exchange coefficients using kinetic theories of liquids or gases
where molecules are assumed to follow some sort of Gaussian random walk.
No such scale separation exists in the LES problem, where one observes
in general a distribution of energy (kinetic-energy spectrum) continuously
decreasing from the energetic to the smallest dissipative scales, even in
inflexional shear flows with vigorous coherent vortices. Since the cutoff
scale ∆x is in the middle of this spectrum, there is obviously no spectral
gap at this level. On the other hand, trajectories of fluid parcels are very
far from a random walk, since they may be either trapped around a vortex
or strained in stagnation regions between vortices.

We believe therefore that the lack of spectral gap is the major drawback
of the eddy-viscosity assumption, responsible for the fact that numerous nu-
merical and even experimental a priori tests (see e.g. Clark et al. [21], Liu
et al. [77]) invalidate relation (3.14): when a low-pass filter is for instance
applied to DNS results, one can calculate explicitely the subgrid-stresses ten-
sors, and correlate them to the filtered deformation. The correlation found
is very poor, of the order of 0.1 instead of 1. This justifies the development
of models going beyond the classical eddy-viscosity concept: it is the case of
the spectral eddy viscosity (see Sect. 4.1), and also of models presented in
Section 5. However, LES results based on classical eddy-viscosities in phys-
ical space derived from Smagorinsky or structure-function models may give
very good results, as will be seen below, from the point of view of vortex
dynamics and statistical predictions.
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3.4 Smagorinsky’s model

As already pointed out, the most widely used eddy-viscosity model was
proposed by Smagorinsky [105]. He introduced an eddy-viscosity which was
supposed to model subgridscale dissipation through a Kolmogorov k−5/3

cascade. Smagorinsky’s model is an adaptation of Prandtl’s mixing-length
theory to subgridscale modelling. Prandtl assumes that the eddy viscosity
arising in Reynolds-averaged Navier–Stokes equations is proportional to a
scale characteristic of turbulence (the mixing length) times a characteristic
turbulent velocity. In the same way, Smagorinsky assumes that the LES
eddy-viscosity is proportional to the subgrid-scale characteristic length scale
∆x, and to a characteristic subgrid-scale velocity

v∆x = ∆x |S̄|, (3.19)

based on the second invariant of the filtered-field deformation tensor

|S̄| =
√

2S̄ijS̄ij . (3.20)

Thus Smagorinsky’s eddy viscosity writes

νt = (CS∆x)2|S̄|. (3.21)

If one assumes that kC = π/∆x, the cutoff wavenumber in Fourier space,
lies within a k−5/3 Kolmogorov cascade E(k) = CKǫ2/3k−5/3 (CK is the
Kolmogorov constant), one can analytically determine the constant CS. It
is then found (see Lilly [75]):

CS ≈ 1

π

(
3CK

2

)−3/4

· (3.22)

It yields CS ≈ 0.18 for a Kolmogorov constant of 1.4. This value proves
to give acceptable results for LES of isotropic turbulence. However, most
researchers prefer CS = 0.1 (which represents a reduction by nearly a fac-
tor of 4 of the eddy-viscosity), a value for which Smagorinsky’s model be-
haves reasonably well for free-shear flows and for channel flow1 (Moin and
Kim [85]). This clearly indicates that CS is not a universal constant, and
that assuming kC within a k−5/3 Kolmogorov cascade is too much a con-
straint. In fact, Smagorinsky’s model is obviously too dissipative in the
presence of a wall, and does not work in particular for transition in a
boundary-layer developing upon a flat plate: it artificially relaminarizes
the flow if the upstream perturbation is not high enough. This is due to

1These channel flow computations require wall laws.
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the heavy influence in the eddy-viscosity expression of the velocity gradient
in the direction normal to the wall (see Meneveau and Katz [82]). Further-
more, the subgrid-scale dissipation Psm = TijSij is on the average positive
corresponding to a global flow of kinetic energy from the large-scale towards
the subgrid scale (forward scatter). However, backscatter, associated with a
locally negative Psm and with a reversed energy transfer, occurs in some flow
regions (Piomelli et al. [95], Liu et al. [77]). Classical eddy-viscosity models
like Smagorinsky’s assume that Psm is positive everywhere. This justifies
Smagorinsky’s dynamic approach which will be presented in Section 6, and
where the constant is dynamically adjusted to the flow conditions.

4 LES in Fourier space

4.1 Spectral eddy viscosity and diffusivity

We assume that Navier–Stokes is written in Fourier space. This requires
statistical homogeneity in the three directions of space, but we will see below
how to handle flows with only one direction of inhomogeneity. Let ûi(�k, t)

and ρ̂(�k, t) be the spatial Fourier transform of the velocity and passive-scalar

fields where �k is the wavenumber. The filter consists in a sharp cut-off filter,
simply clipping all the modes larger than kC, where kC = π/∆x is still the
cut-off wavenumber.

We write Navier–Stokes in Fourier space as

∂

∂t
ûi(�k, t) + [ν + νt(�k|kC)]k2ûi(�k, t)

= − ikmPij(�k)

∫ �p+�q=�k

|�p|,|�q|<kC

ûj(�p, t)ûm(�q, t)d�p (4.1)

where Pij(�k) = δij − (kikj/k2) is the projector on the plane perpendicular

to �k, which allows in particular to eliminate the pressure. The spectral eddy
viscosity νt(�k|kC) is defined by

νt(�k|kC)k2ûi(�k, t) = ikmPij(�k)

∫ �p+�q=�k

|�p|or|�q|>kC

ûj(�p, t)ûm(�q, t)d�p. (4.2)

The r.h.s. of equation (4.1) corresponds to a resolved transfer.
A spectral eddy-diffusivity for the passive scalar may be defined in the

same way, by writing the passive-scalar equation in Fourier space

∂

∂t
ρ̂(�k, t) + [κ + κt(�k|kC)]k2ρ̂(�k, t) = −ikj

∫ �p+�q=�k

|�p|,|�q|<kC

ûj(�p, t)ρ̂(�q, t)d�p (4.3)
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with

κt(�k|kC)k2ρ̂(�k, t) = ikj

∫ �p+�q=�k

|�p|or|�q|>kC

ûj(�p, t)ρ̂(�q, t)d�p. (4.4)

4.2 EDQNM plateau-peak model

Expressions (4.2) and (4.4) give exact expressions of the eddy coefficients.
They are however useless since they involve subgrid quantities. In fact, they
can be evaluated at the level of kinetic-energy and passive-scalar spectra
evolution equations obtained with the aid of two-point closures of three-
dimensional isotropic turbulence. It is in this context that the concept of
k-dependent eddy-viscosity was first introduced by Kraichnan [54]. The
spectral eddy-diffusivity for a passive scalar was introduced by Chollet and
Lesieur [19, 20].

Kraichnan used the so-called Test–Field Model. We work using a
slightly different closure called the Eddy-Damped Quasi-Normal Markovian
(EDQNM) theory introduced by Orszag [89,90] (see also André and Lesieur
[3], and Lesieur [67], for details). In this theory, which is easily handable
only in the case of isotropic turbulence, the fourth-order cumulants in the
hierarchy of moments equations are supposed to relax linearly the third-
order moments, in the same qualitative way as does the molecular viscosity.
The EDQNM provides for isotropic turbulence a closed equation of evolu-
tion for the kinetic energy spectrum E(k, t). In a LES approach, we split
the transfers between interactions involving only modes smaller than kC,
and the others. The equations for the supergrid-scale velocity, Ē(k, t), and
scalar, Ēρ(k, t) spectra then write

(
∂

∂t
+ 2νk2

)
Ē(k, t) = T<kC

(k, t) + T>kC
(k, t) (4.5)

(
∂

∂t
+ 2κk2

)
Ēρ(k, t) = T ρ

<kC
(k, t) + T ρ

>kC
(k, t), (4.6)

where T<kC
(k, t) and T ρ

<kC
(k, t) are the spectral transfers corresponding to

resolved triads such that k, p, q ≤ kC, and T>kC
(resp. T ρ

>kC
) to modes such

that k < kC, p and (or) q > kC.
We first assume that kC lies within a k−5/3 inertial range. For k ≪ kC,

both modes being larger than ki the kinetic-energy peak, expansions in
powers of the small parameter k/kC yield to the lowest order

T>kC
(k, t) = −2ν∞

t k2 Ē(k, t) (4.7)
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T ρ
>kC

(k, t) = −2κ∞
t k2 Ēρ(k, t) (4.8)

with

ν∞
t = 0.441 CK

−3/2

[
E(kC)

kC

]1/2

(4.9)

κ∞
t =

ν∞
t

P
(t)
r

; P (t)
r = 0.6. (4.10)

Here, E(kC) is the kinetic-energy spectrum at the cutoff kC. The 0.6 value
for the Prandtl number is in fact the highest one permitted by the choice
of two further adjustable constants arising in the EDQNM passive-scalar
equation (see Lesieur [67]). When k is close to kC, the numerical evaluation
of the EDQNM transfers yields

T>kC
(k, t) = −2νt(k|kC) k2 Ē(k, t) (4.11)

T ρ
>kC

(k, t) = −2κt(k|kC) k2 Ēρ(k, t), (4.12)

with

νt(k|kC) = K

(
k

kC

)
ν∞
t ; κt(k|kC) = C

(
k

kC

)
κ∞

t (4.13)

where ν∞
t and κ∞

t are the asymptotic values given by equations (4.9)
and (4.10), and K(x) and C(x) nondimensional functions equal to 1
for x = 0. As shown also by Kraichnan [54], K(x) has a plateau-
value at 1 up to k/kC ≈ 1/3. Above, it displays a strong peak
(cusp-behaviour). Let us mention that Kraichnan did not point out
the scaling of the eddy viscosity against [E(kC)/kC]1/2, which turns
out to be essential for LES purposes. Indeed, when the energy spec-
trum decreases rapidly at infinity (for instance during the initial stage
of decay in isotropic turbulence, see below), the eddy viscosity will be
very low and inactive. On the other hand, we have [E(kC)/kC]1/2

∼ ǫ1/3k
−4/3
C in an inertial-range expression, which may be important even

before the establishment of the k−5/3 range. Furthermore, we will show
below that the plateau-peak model may be generalized to spectra different
from Kolmogorov at the cutoff (spectral-dynamic model).

It was shown by Chollet and Lesieur [19, 20] that C(x) behaves qual-
itatively as K(x) (plateau at 1 and positive peak), and that the spectral
turbulent Prandtl number νt(k|kC)/κt(k|kC) is approximately constant, and
thus equal to 0.6 as given by equation (4.10).

It is clear that the plateau part corresponds to the usual eddy-coefficients
assumption when one goes back to physical space, so that the “peak” part
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goes beyond the scale-separation assumption inherent to the classical eddy-
viscosity and diffusivity concepts. The peak is mostly due to semi-local
interactions across kC: near the cutoff wavenumber, the main nonlinear
interactions between the resolved and unresolved scales involve the smallest
eddies of the former and the largest eddies of the latter (such that p ≪ k ∼
q ∼ kC).

At the level of kinetic-energy exchanges, this formulation of the spec-
tral eddy-viscosity includes all backscatter effects in the following sense:
when kinetic energy is injected around a particular wavenumber ki, and for
the decaying case, it may be shown with the aid of expansions in terms
of the small parameter k/ki ≪ 1 that the transfer is proportional to k4,
and hence a spectrum proportional to k4 is produced at low wavenumbers
k ≪ ki (see Lesieur and Schertzer [72]). Such a backscatter transfer is
due to nonlinear resonance between two energetic modes in the neighbor-
hood of ki. This was checked in an LES in which ki was close to kC by
Lesieur and Rogallo [71]. Considering the eddy-viscosity (4.13), it may
be shown that, for k ≪ kC (both modes being larger than ki and in the
inertial range), the backscatter due to subgrid-scale modes is negligible. In-
deed, its relative importance in terms of transfers is, according to EDQNM
theory, (k/kC)2[E(kC)/E(k)], which is very small since E(kC) ≪ E(k) (see
Lesieur [67]). The cusp results from the difference between a “drain”, which
sends energy to the subgrid scales, and a “backscatter” which injects energy
back to the supergrid scales, so that the net effect is a positive eddy-viscosity.

As shown by Chollet [18], the plateau-peak behaviour of K(x) can ap-
proximately be expresssed with the following analytical expression:

K(x) = 1 + 34.5 e−3.03/x. (4.14)

We will see below another analytic expression of this spectral eddy viscosity
in terms of hyper-viscosities (see Sect. 7.1).

The plateau-peak model consists in using these eddy-viscosities in the
deterministic equations ((4.1), (4.3)). One advantage of using such a sub-
gridscale modelling is that they are correct from an energetic-transfer view-
point.

4.2.1 The spectral-dynamic model

Another drawback of the plateau-peak model is that it is restricted to the
case where kC lies within a k−5/3 Kolmogorov cascade. Fortunately, this
can be cured with the introduction of the spectral-dynamic model. One
assumes now that the kinetic-energy spectrum is ∝ k−m for k > kC, whith
m not necessarily equal to 5/3. We modify the spectral eddy viscosity as

νt(k|kC) = 0.31 CK
−3/2

√
3 − m

5 − m

m + 1
K

(
k

kC

) [
E(kC)

kC

]1/2

, (4.15)
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for m ≤ 3. This expression is exact for k ≪ kC within the same nonlocal
expansions of the EDQNM theory, as shown in Métais and Lesieur [80].
We retain the peak shape through K(k/kC) in order to be consistent with
the Kolmogorov spectrum expression of the eddy viscosity. For m > 3,
the scaling is no more valid, and the eddy viscosity will be set equal to
zero. Indeed, we are very close to a DNS for such spectra. In the spectral-
dynamic model, the exponent m is determined through the LES with the
aid of least-squares fits of the kinetic-energy spectrum close to the cutoff.
On may also check that the turbulent Prandtl number is given by:

P t
r = 0.18 (5 − m) (4.16)

(see Métais and Lesieur [80]). This value does not depend on the
Kolmogorov and model constants. It is a great advantage in LES of heated
or variable-density flows to have the possibility of a variable turbulent
Prandtl number. This possibility exists also for the dynamic models in
physical space which will be presented in the following sections.

4.2.2 Existence of the plateau-peak

The spectral LES of decaying isotropic turbulence and associated scalar
mixing performed by Lesieur and Rogallo [71], together with those of Métais
and Lesieur [80], have been used to compute directly the spectral eddy-
viscosity and diffusivity. The method is the same as that employed by
Domaradzki et al. [29] for a direct numerical simulation: one defines a
fictitious cutoff wavenumber k′

C = kC/2, across which the kinetic-energy
transfer T and scalar transfer T ρ are evaluated. Since we deal with a large-
eddy simulation, the latter correspond to triadic interactions such that k <
k′
C, p and (or) q > k′

C and p, q < kC: they are termed T <kC

>k′

C

(k, t) and

T ρ <kC

>k′

C

(k, t). They correspond to resolved transfers, and satisfy energetic

equalities of the type

T <kC

>k′

C

(k, t) = T>k′

C
(k, t) − T>kC

(k, t) (4.17)

where T>k′

C
and T>kC

are the total kinetic energy transfers across k′
C and kC.

It is important to note that equation (4.17) is the exact energetic equivalent
in spectral space of Germano’s identity (Germano [41], see Sect. 6). A

similar relation holds for T ρ <kC

k′

C

. Once divided by −2k2 E(k, t) and

−2k2 Eρ(k, t), they give the resolved spectral eddy-viscosity and diffusivity.
Figure 7 shows these functions normalized by [E(k′

C)/k′
C]1/2, taken from

Métais and Lesieur [80]. Similar results had been found in Lesieur and
Rogallo [71]. It demonstrates that the plateau-peak behaviour does exist
for the eddy viscosity, but is questionable for the eddy diffusivity. This
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anomalous scalar range still exists in a DNS of decaying isotropic turbulence:
in this case, the double filtering yields a plateau-peak eddy viscosity with a
plateau value approximately 0, as was discovered by Domaradzki et al. [29].
The eddy-diffusivity on the contrary still behaves as in the LES. In fact,
Métais and Lesieur [80] have checked that the anomaly disappears when
the temperature is no more passive and coupled with the velocity within
the frame of Boussinesq approximation (stable stratification). It is possible
that the same holds for compressible turbulence, which would legitimate the
use of the plateau-peak eddy diffusivity in this case. Note that the plateau-
peak behaviour was recently confirmed by the experimental data from the
turbulent wake experiment performed by Cerutti et al. [17]

Fig. 7. Resolved eddy-viscosity and diffusivity evaluated through a double filter-

ing in LES of isotropic decaying turbulence (from Métais and Lesieur [80]).

The plateau-peak spectral eddy-viscosity and diffusivity coefficients have
been used successfully to study freely-decaying three-dimensional turbulence
at high Reynolds number. LES at a resolution of 1283 Fourier modes have
been carried out by Lesieur and Rogallo [71]. It was checked that, at first,
Kolmogorov and Corrsin–Oboukhov k−5/3 cascades establish. Afterwards,
the kinetic-energy spectrum decays self-similarly, with a spectral slope com-
prised between −5/3 and −2. The scalar spectrum exhibits a very short
inertial-convective range close to the cutoff, and a very wide range shal-
lower than k−1 in the large scales. Here, the scalar decays much faster
than the temperature. This anomalous range was explained by Métais and
Lesieur [80] as due to the quasi two-dimensional character of the scalar dif-
fusion in the large scales, leading to large-scale intermittency of the scalar.
More precisely, the scalar diffusion seems to be dominated by the effect of
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coherent vortices already considered in Section 2.1, and tending to form
scalar discontinuities in the stagnation regions between the vortex tubes.

The plateau-peak model been applied to various temporally growing free-
shear flows like wakes, jets and mixing-layers for which the flow is assumed to
be periodic in the streamwise direction. Silvestrini ([104], see also Lesieur
and Métais [69]) showed that LES, even at moderate resolution are able
to reproduce the complexity of the mixing-layer dynamics. With three-
dimensional initial noise, the helical pairing arrangement, previously found
in the mixing-layer DNS of Comte et al. [24], was recovered: vortex filaments
oscillate out-of-phase in the spanwise direction, and reconnect, yielding a
vortex-lattice structure. On the other hand, and if the perturbation is
quasi two-dimensional, the mixing layer was shown to evolve into a set of
big quasi two-dimensional Kelvin–Helmholtz vortices which both undergo
pairing and stretch intense longitudinal hairpin vortices in the stagnation
regions between them. This stretching of longitudinal vortices had been
observed experimentally for a long time (see e.g. Bernal and Roshko [11]).
It is remarkable that LES, done at a quite low resolution, are indeed able
to capture the longitudinal vortices, which are at quite small scales. The
DNS of Comte et al. [24] at an equivalent resolution were unable to find
organized intense longitudinal vortices, because their molecular Reynolds
number is too low. It is only at a much higher resolution that DNS can
capture these vortices (Rogers and Moser [97]). This is an example where
large-eddy simulations are an excellent tool to capture not only large- but
also small-scale vortices.

However, a spectral eddy-viscosity is difficult to employ when the geome-
try of the problem obliges one to work in physical space. This has motivated
the development of new models directly inspired from the previous spectral
formulation but which can be utilized in physical space (see Sect. 5.1).

4.3 Incompressible plane channel

We show now how the spectral dynamic model may be applied to an incom-
pressible turbulent Poiseuille flow between two infinite parallel flat plates.
A schematic view of the channel is presented in Figure 8. A rotation axis
oriented in the spanwise direction is indicated for further applications, but
rotation is inactive right now. The channel has a width 2h, and we de-
fine the macroscopic Reynolds number by Re = 2hUm/ν, where Um is the
bulk velocity. We assume periodicity in the streamwise and spanwise direc-
tions. Calculations are carried out at constant Um. They are initiated by
a parabolic laminar profile perturbed by a small three-dimensional random
noise, and pursued up to complete statistical stationarity.
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Fig. 8. Schematic view of a plane channel.

4.3.1 Wall units

Let us recall the so-called wall units, very useful when turbulence has de-
veloped. The friction velocity v∗ is defined by

v2
∗ = ν

d〈u〉
dy

|y=0, (4.18)

with the aid of the mean-velocity derivative at the wall. The velocities will
be normalized by v∗ and noted u+

i = ui/v∗. One defines also a viscous
thickness

lv =
ν

v∗
, (4.19)

characteristic of motions very close to the wall which are dominated by
viscosity, so that the spatial scales will be normalized by lv and noted x+

i =
xi/lv. Let y be the distance perpendicular to the wall. Substituting Taylor-
series expansions of the velocity components in powers of y+ close to the
wall, together with the use of the continuity equation, leads to the result
that u+ and w+ scale like y+, while v+ scales likes y+2

.
A consequence is that the mean longitudinal velocity profile scales also

like y+, behaviour which persists up to about y+ = 4 ≈ 5, which character-
izes the width of the viscous region. DNS and LES show that this region is
certainly not laminar, and strongly marked by the system of high and low
longitudinal velocity streaks.

4.3.2 Streaks and hairpins

These coherent structures have been discovered experimentally in a turbu-
lent boundary layer by Kline et al. [52], and had been observed previously by
Klebanoff et al. [51] in a celebrated paper related to transition in a bound-
ary layer forced upstream by a vibrating ribbon. Klebanoff associated the
streaks (which he could detect with anemometers) to a system of longitu-
dinal hairpins travelling downstream in phase and pumping between their
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legs fluid lower fluid slowed by the wall: this model explains the formation
of low-speed streaks in the “peaks” of the hairpins, and high-speed streaks
in the “valleys”. The system of streaks in a turbulent channel was recovered
numerically in the LES of Moin and Kim [85] already mentioned before and
using Smagorinsky’s model with wall laws.

4.3.3 Spectral DNS and LES

We will present turbulent channel DNS and LES, taken from the work of
Lamballais [57] and Lamballais et al. [61] (see also [58–60]). It is interesting
to see that h+ = v∗h/ν defines a microscopic Reynolds number based on the
friction velocity. The numerical code used combines pseudo-spectral meth-
ods in the streamwise and spanwise directions, and compact finite-difference
schemes of sixth order (see [64]) in the transverse direction with grid refine-
ment close to the walls. The subgrid model is the spectral-dynamic eddy
viscosity, computed thanks to two-dimensional kinetic-energy spectra cal-
culated at each time step by spatial averages in planes parallel to the wall.
Therefore, the exponent m in the eddy viscosity depends of y and t. This
spectral eddy viscosity is implemented spectrally in the directions paral-
lel to the wall, and in physical space in the transverse direction. This is a
very precise code of accuracy comparable to a spectral method at equivalent
resolution as shown by the comparison of DNS at h+ = 162 with spectral
DNS of Kuroda [56] at h+ = 150. We reproduce this picture. We see in
Figure 9a that the logarithmic range starts at y+ = 30. Figure 9b presents
the rms velocity profiles as a function of y+. It confirms the strong u′ pro-
duction close to the wall, with a peak at y+ = 12, and which is obviously
the signature of high- and low-speed streaks discussed before. Figures 9e
(Reynolds stresses) and 9d (rms pressure fluctuations) have a peak higher
(y+ ≈ 30). It might correspond to the tip of hairpin vortices ejected above
the low-speed streaks. Figure 9f corresponds to rms vorticity fluctuations.
It indicates that the maximum vorticity produced is spanwise and at the
wall2. The vorticity perpendicular to the wall is about 40% higher than the
longitudinal vorticity in the region 5 < y+ < 30, which shows only a weak
longitudinal vorticity stretching by the ambient shear.

We next present two LES using the spectral-dynamic model, at Re =
6666 (h+ = 204, case A) and Re = 14 000 (h+ = 389, case B). They are
respectively subcritical and supercritical with respect to the linear-stability
analysis of the Poiseuille profile. In the two simulations there is a grid
refinement close to the wall, in order to simulate accurately the viscous

2It corresponds in fact to a steepening of du/dy at the wall under the high-speed
streaks, resulting from a sort of squashing of the boundary layer upon the wall consecutive
to the fact that the fluid is descending, and inducing an increase of the friction-coefficient.
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Fig. 9. Statistical data obtained in DNS of a turbulent channel flow by

Lamballais (straight line) and Kuroda (symbols); from left to right and top to

bottom, a) mean velocity, b) rms velocity fluctuations (respectively from top to

bottom, longitudinal, spanwise, vertical), c) kinetic energy, d) rms pressure fluc-

tuation, e) Reynolds stresses, f) rms vorticity (from top to bottom, spanwise,

vertical, longitudinal). Courtesy Lamballais.
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Fig. 10. Spectral-dynamic LES of the channel flow (case A), time-averaged ex-

ponent m(y+) of the kinetic-energy spectrum at the cutoff.

sublayer. Figure 10 shows for case A the time-averaged exponent m arising
in the energy spectrum at the cutoff, as a function of the distance to the wall
y+. Regions where m > 3 correspond to a zero eddy viscosity and hence
a direct-numerical simulation. This is the case in particular close to the
wall, up to y+ ≈ 12 where we know that longitudinal velocity fluctuations
are very intense, due to the low- and high-speed streaks. Therefore, and
since the first point is very close to the wall (y+ = 1), such LES have the
interesting property of becoming DNS in the vicinity of the wall, enabling
to capture events which occur in this region.

Fig. 11. Mean velocity profiles in wall units. Lines: spectral eddy-viscosity based

simulations (Re = 6666); symbols: Piomelli ([94]; Re = 6500). Left: m = 5/3

(h+ = 181); right: dynamic evaluation of m(y, t) (h+ = 204). The dashed straight

line corresponds to the universal logarithmic mean velocity profile 〈u〉 = 2.5 ln y+

+5.5.

Figure 11 shows (in semi-logarithmic coordinates) the mean velocity pro-
file in case A, compared with the LES of Piomelli [94] using the dynamic
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model of Germano [41]. The latter is known to agree very well with exper-
iments at these low Reynolds numbers. The simulation using the spectral
dynamic model (right part of the figure) coincides with the DNS, yielding a
correct value of the additive constant 5.5 in the logarithmic velocity profile.
On the other hand, the LES using the classical spectral-cusp model with
m = 5/3 (left of figure) gives an error of 100% for this constant. The dashed
parabola corresponds to the linear profile at the wall, which is exact up to
4 wall units. In case A, it was ckecked (see Lamballais et al. [61]) that the
mean velocity and rms velocity fluctuations, compared very well with the
dynamic-model predictions of Piomelli [94]. The agreement of rms veloci-
ties is still very good, with a correct prediction of the longitudinal velocity
fluctuations peak.

Fig. 12. Turbulent channel flow, comparisons of the spectral-dynamic model

(solid lines, h+ = 389) with the DNS of Antonia et al. ([4], symbols, h+ = 395);

top, mean velocity, bottom, rms velocity components.

Concerning the supercritical case, the LES of case B are in very good
agreement with a DNS at h+ = 395 carried out in Antonia et al. [4], both
for the mean velocity and the rms velocity components. They are shown in
Figure 12. Notice that the LES allows in this case to reduce the computa-
tional cost by a factor of the order of 100, which is huge. Notice also that
the extent of the linear-velocity profile range close to the wall has slightly
increased (from 4 to 5) with the Reynolds number. We present finally in
Figure 13 a map of the vorticity modulus at the same threshold for cases A
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Fig. 13. Turbulent plane channel, vorticity modulus; a) DNS (h+ = 165), b) LES

using the spectral-dynamic model (h+ = 389), from Lamballais [57].

and B. The flow goes from left to right. It is clear that the large-eddy simu-
lation does reproduce features expected from turbulence at higher Reynolds
number, and displays much more vortical activity in the small scales that
the DNS.

5 Improved models for LES

We have clearly shown in the former chapter the advantages of the spectral
eddy-viscosity models, with in particular the possibility of accounting for
local or semi-local effects in the neighbourhood of the cutoff. However, we
have already stressed that in most of industrial or environmental applica-
tions, the complexity of the computational domain forbids the use of spec-
tral methods. One has thus to deal with numerical codes written in physical
space and employing finite-volume or finite-differences methods, often with
unstructured grids. This last point will not be considered here, although it
is crucial for practical applications. We will present however simulations on
orthogonal grids of mesh size varying in direction and location, sometimes
in curvilinear geometry. The present chapter will be devoted to models
of the structure-function family, with applications to isotropic turbulence,
free-shear flows and boundary layers.

5.1 Structure-function model

5.1.1 Formalism

The Structure-Function model is an attempt to go beyond Smagorinsky,
while keeping in physical space the same scalings as the spectral eddy vis-
cosity. The original Structure-Function (SF) model is due to Métais and
Lesieur [80] (see also Lesieur and Métais [69]). It consists in building in
physical space an eddy viscosity normalized by

√
E�x(kC)/kC), still with

kC = π/∆x. The spectrum E�x(kC, t)) is a local kinetic-energy spectrum
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at a given point �x, which has to be properly determined assuming that
turbulence is locally isotropic. This allows to take into account the spa-
tial intermittency of turbulence. One first discards the peak behaviour3 of
K(x) in equation (4.14) and adjust the constant as proposed by Leslie and
Quarini [66], by balancing in a k−5/3 inertial range extending from zero to

kC the subgridscale flux 2
∫ kC

0 νtk
2Ē(k)dk with the kinetic energy flux ǫ.

This yields

νt(kC) =
2

3
C

−3/2
K

[
E(kC)

kC

]1/2

· (5.1)

We keep in mind that E(kC) is now a local kinetic-energy spectrum, which
has to be evaluated in terms of physical-space quantities. The best candi-
date for that is the second-order velocity structure function

F is(r) =
〈
[�u(�x, t) − �u(�x + �r, t)]2

〉
, (5.2)

where the label “is” stands for isotropic turbulence, and the brackets corre-
spond to ensemble averaging. The equivalence of Kolmogorov’s ǫ2/3k−5/3

spectrum is the 〈δv(r)2〉 ∼ (ǫ r)2/3 structure-function. This was the orig-
inal formulation of Kolmogorov’s law (Kolmogorov [53]). We recall also
Batchelor’s relation in isotropic turbulence

F is(∆x) = 4

∫ ∞

0

E(k, t)

(
1 − sin(k∆x)

k∆x

)
dk. (5.3)

For the subgrid-modelling problem, we consider the following local
structure-function

F2(�x, ∆x) =
〈
[�u(�x, t) − �u(�x + �r, t)]2

〉
‖�r‖=∆x

. (5.4)

The difference with relation (5.2) is that F2 is calculated with a local sta-
tistical average of square (filtered) velocity differences between �x and the
six closest points surrounding �x on the computational grid. In some cases,
the average may be taken over four points parallel to a given plane4. The
equivalent Batchelor’s formula is

F2(�x, ∆x) = 4

∫ kC

0

Ē(k, t)

(
1 − sin(k∆x)

k∆x

)
dk, (5.5)

3It will be shown later on how to reintroduce the peak in terms of hyperviscosity.
4In a channel, for instance, the plane is parallel to the boundaries.
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since the filtered field has no energy at modes larger than kC. Assuming
again a k−5/3 spectrum extending from zero to kC, one obtains

νSF
t (�x, ∆x) = 0.105 C

−3/2
K ∆x [F2(�x, ∆x)]1/2. (5.6)

In fact, this derivation of the SF model equation is different and simpler
than the one proposed in the original paper of Métais and Lesieur [80], and
may be found in Ducros [31].

5.1.2 Non-uniform grids

Interpolations of equation (5.6) based on Kolmogorov’s 2/3 law for the
above structure function may be proposed if the computational grid is not
regular (but still orthogonal). Let ∆c be a mean mesh in the three spatial
directions5. We have (in the six-point formulation)

F2(�x, ∆c) =
1

6

3∑

i=1

F
(i)
2

(
∆c

∆xi

)2/3

, (5.7)

with

F
(i)
2 = [�u(�x) − �u(�x + ∆xi �ei)]

2 + [�u(�x) − �u(�x − ∆xi �ei)]
2, (5.8)

where �ei is the unit vector in direction �xi.

5.1.3 Structure-function versus Smagorinsky models

We have found a relation between Smagorinsky’s and the structure-function
models, by replacing the velocity increments in the latter by first-order
spatial derivatives. One finds for the six-point formulation

νSF
t ≈ 0.777 (CS∆x)2

√
2S̄ijS̄ij + ω̄iω̄i , (5.9)

where �ω is the vorticity of the filtered field, whereas CS is Smagorinsky’s
constant defined by equation (3.22) in terms of Kolmogorov’s constant CK.
Then the SF model appears, within this crude first-order approximation,
to be a combination of Smagorinsky model in a strain and vortical version.
Suppose as an example that we are in the stagnation regions between two
quasi two-dimensional vortices (in a mixing layer, or a wake, or in a round
jet...) when there is a low residual vorticity which is going to be stretched
longitudinally. At this initial stage, and since vorticity in the stagnation

5It may be geometric, or of another type.
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region is low, the vortical term will be small in front of the strain term, so
that the SF model will be about 80% less dissipative than Smagorinsky’s,
which will favour the eventual stretching of longitudinal vortices. On the
other hand, SF should be more dissipative than Smagorinsky within the
core of the large vortices.

5.1.4 Isotropic turbulence

It has been shown in Métais and Lesieur [80] that, for CK = 1.4, the SF
model gives a quite good k−5/3 energy spectrum6, whereas Smagorinsky7

has more like a k−2 inertial range.

5.1.5 SF model, transition and wall flows

It was at first quite a disapointment to realize that the SF model was, like
Smagorinsky’s, too dissipative for transition in a boundary layer (yielding
again relaminarization) or in a channel. One might have thought that at
least the four-point formulation in planes parallel to the wall would have
eliminated the effect of the mean shear at the wall on the eddy viscosity.
In fact, it turns out that the isotropic relation (5.5) introduces spurius
inhomogeneous effects in the eddy-viscosity, which increase the latter, and
the SF model is too dissipative for quasi two-dimensional or transitional
situations. This is of course a real concern, specially for turbulent boundary
layers or channel flows, and has motivated the development of two improved
versions of the SF model: the selective structure-function model (SSF), and
the filtered structure-function model (FSF), for which turbulence gets rid
of large-scale inhomogeneities before the SF model is applied.

5.2 Selective structure-function model

In the selective structure-function (SSF) model (David [27]), the eddy-
viscosity is switched off when the flow is not three-dimensional enough.
We need for that a criterion of three-dimensionalization, defined as follows:
one considers at a given time the angle between the vorticity vector at a
given grid point and the arithmetic mean of vorticity vectors at the six
closest neighbouring points (or the four closest points in the four-point for-
mulation). If one carries out LES of isotropic turbulence at a resolution
of 323 ∼ 643, one finds that the p.d.f. peaks for an angle of 200, which is
thus the most probable value. Then, the eddy viscosity will be cancelled at

6With a nearly flat compensated k5/3E(k) spectrum.
7With CS still given by equation (3.22).
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points where this angle is smaller than 200. We will give various applica-
tions of this model to various heated or compressible flows throughout the
book.

5.3 Filtered structure-function model

5.3.1 Formalism

The filtered structure-function model was developed by Ducros ([31], see also
Ducros et al. [33]). The filtered field ūi is now submitted to a high-pass filter

(̃.) consisting in a Laplacian operator discretized by second-order centered
finite differences and iterated three times. We first apply relation (5.5) to
the high-pass filtered field

F̃2(�x, ∆x) = 4

∫ kC

0

Ẽ(k)

(
1 − sin(k∆x)

k∆x

)
dk, (5.10)

where F̃2(�x, ∆x) is the second-order structure function of the high-pass fil-
tered field ˜̄ui, and Ẽ(k) its spectrum. This allows (for isotropic turbulence)
to relate F̃2 to Ẽ(kC), and hence to E(kC) thanks to the transfer function of
the “tilde” operator, determined with the aid of isotropic test fields. Using
equation (5.1) yields for the eddy viscosity

νFSF
t (�x, ∆x) = 0.0014 C

−3/2
K ∆x [F̃2(�x, ∆x)]1/2. (5.11)

A further advantage of the FSF model is that it does not contain adjustable
constants. We will show below very satisfactory applications of this model
to mixing layers and boundary layer on a flat plate.

5.4 A test case for the models: The temporal mixing layer

We present now in Figure 14 a comparison between Smagorinsky’s model,
the plain spectral plateau-peak model (not dynamic)) and the various struc-
ture function models (original, selective and filtered versions). The compari-
son is carried out in the case of a temporally-growing mixing layer. Pseudo-
spectral numerical methods are here used. We take a three-dimensional
initial isotropic perturbation, but the domain contains now only two funda-
mental longitudinal most-unstable wavelengths, so that no helical pairing
develops. Instead, we see two big rollers oscillating in phase8, and stretching
longitudinal haipins exactly as in the model of Bernal and Roshko [11], with

8Such a configuration corresponds to “translative instability”, from the work of
Pierrehumbert and Widnall [93] on secondary instabilities (Floquet-type analysis) of
Stuart vortices.
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Fig. 14. Comparison of various SGS models (Smagorinsky, Structure-Function,

Plateau-Peak, FSF, SSF) applied to a temporal mixing layer, visualized by iso-

surfaces ωx = ωi (black), ωx = −ωi (light grey) and ωz = ωi = −2U/δi (dark

grey).
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very neat alternate longitudinal vortices. Notice the strong resemblance be-
tween the results obtained with the plateau-peak, filtered structure-function
and selective structure-function models. They give bigger spanwise and lon-
gitudinal vortices than Smagorinsky and the SF models, and much more
small-scale variability. This confirms that both modifications of the orig-
inal structure-function model go in the right direction, since the primary
and secondary instabilities are less damped with the new models. Note
also that the SF model seems to be here only slightly less dissipative that
Smagorinsky’s model.

5.5 Spatially growing mixing layer

The temporal approximation is only a crude approximation of a mixing
layer spatially developing, where one works in a frame traveling with the
average velocity between the two layers. We consider now an incompressible
mixing layer spatially-developing between two streams of velocity U1 and
U2 (U1 > U2). Further details can be found in Comte et al. [25]. The inflow
consists of an hyperbolic-tangent velocity profile

ū(y) =
U1 + U2

2
+

U1 − U2

2
tanh

2y

δi
, (5.12)

where δi is the upstream vorticity thickness. The Reynolds number is here
built on δi and half the velocity difference U = (U1 − U2)/2. A weak ran-
dom perturbations is superimposed onto the mean profile. The same mixed
spectral-compact code already discussed for the channel and the wake is used
here. Periodicity is assumed in the spanwise direction z. Sine/cosine ex-
pansions are used in the transverse direction y, enforcing free-slip boundary
conditions. Non-reflective outflow boundary conditions are approximated
by a multi-dimensional extension of Orlansky’s discretization scheme, with
limiters on the phase velocity (see Gonze [43] for a detailed description of
the numerical code). We first compare a DNS at low Reynolds number
(Re = 100) with a LES (without molecular viscosity) using the FSF model.
The upstream forcing consists here in a quasi-twodimensional random per-
turbation.

Figure 15 (top) shows an isosurface of the vorticity modulus obtained
in the DNS. The vortex sheet undergoes oscillations leading to a first roll-
up further downstream. Subsequently, various pairings of Kelvin–Helmholtz
vortices are observed. Again, thin intense longitudinal vortices are stretched
as in Bernal and Roshko’s [11] experiment. For the DNS, the vorticity mag-
nitude during the run peaks at 2ωi, where ωi = 2U/δi is the maximal vortic-
ity magnitude introduced at the inlet. Although less computational points
are used in the LES, the LES (Fig. 15, bottom) is obviously much more
turbulent than the DNS, and has also a lot of oblique waves propagating
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Fig. 15. Perspective views of isovorticity surface: top, DNS, ‖�ω‖ = ωi/3; bottom,

run LES, ‖ω‖ = (2/3)ωi.

along the upstream vortex sheet. The latter breaks down much faster, and
the longitudinal vortices are stretched much more efficiently. Indeed, the
maximal vorticity magnitude is now ≈4 ωi for the whole run. Roll-up and
pairing events occur much faster than in the DNS. Notice the complexity
of the dynamics with a cluster of three fundamental Kelvin–Helmholtz vor-
tices undergoing a first pairing and, at its downstream end, a billow made of
4 fundamental KH vortices whose second pairing is in progress.

Similar simulations but with a domain of spanwise size doubled (still
with a quasi-twodimensional random forcing) show that the vortical struc-
ture changes quite radically when the spanwise direction is increased.
Figure 16, taken from Comte et al. [25], indeed shows respectively the
low-pressure and vorticity fields in that case. It is clear at least on the
pressure that helical pairing develops, as in the experiments of Browand
and Troutt [15].
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Fig. 16. Wide domain, LES. Top, low pressure; bottom, high vorticity.

5.6 Vortex control in a round jet

Our goal here is to demonstrate the ability of the LES to properly reproduce
the coherent-vortex dynamics in the transitional region of the jet. We also
show the possibility of controlling the jet behaviour by manipulating the in-
flow conditions. The control of the turbulent jets find numerous industrial
applications in thermohydraulics, aeronautics, industrial processes or even
the dispersion of pollutants. For these applications, it is particularly inter-
esting to control certain flow characteristics such as the mixing efficiency,
the acoustic generation, etc. We will show below that an efficient control re-
quires a precise knowledge of the spatial and temporal flow organization to
manipulate the three-dimensional coherent vortices. In the last ten years,
the progress in the experimental methods of detection and identification
has made possible a detailed investigation of the complex three-dimensional
coherent vortices imbedded within this flow. For instance, the influence of
the entrainment of the secondary streamwise vortices has been studied by
Liepmann and Gharib [74]. On the numerical side, several simulations of
two-dimensional or temporally evolving jets have been performed. Very few
have however investigated the three-dimensionnal spatial development of the
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round jet. We here show how LES can be used to perform a precise study of
the spatial growth of the round jet from the nozzle up to several diameters
downstream. Round jets and there control have been numerically studied
in details by Urbin [108], Urbin and Métais [109] and Urbin et al. [110]. We
here briefly present recent results obtained by Silva [103] with the mixed
compact/spectral numerical code previously described. The use of LES
techniques allow us to reach high values of the Reynolds number. We here
use the Selective Structure Function Model which is well adapted for tran-
sitional flows. We consider a computational domain starting at the nozzle
and extending up to several jet diameters downstream. We successively
consider two jets configurations: the “natural” jet (Re = 25 000) which is
forced upstream by the top-hat profile to which is superposed a weak 3D
white noise; the “excited” jet development (Re = 10 000) is controlled with
the aid of a given deterministic inflow forcing (plus a white noise) designed
to trigger a specific type of three-dimensional coherent structures.

Experimental studies by Michalke and Hermann [83] have clearly pointed
out the capital effect of the inflow momentum boundary layer thickness θ
and of the ratio R/θ (R: jet radius) on the jet downstream development.
It was shown that the detailed shape of the mean velocity profile strongly
influences the nature of the coherent vortices appearing near the nozzle:
either axisymmetric structures (vortex rings) or helical structure can indeed
develop. Here, the flow inside the nozzle was not simulated, but a mean
axial velocity profile of top-hat shape in accordance with the experimental
measurements was imposed:

W (r) =
1

2
Wo

[
1 − tanh

(
1

4

R

θ

(
r

R
− R

r

))]
(5.13)

where Wo is the velocity on the axis. Here, R/θ = 20. For such an inlet pro-
file, linear stability analysis predicts a slightly higher amplification rate for
the axisymmetric (varicose) mode than for the helical mode (see Michalke
and Hermann [83]).

We first consider the “natural” jet which is forced upstream by the
top-hat profile given by equation (5.13), to which is superposed a weak
three-dimensional white noise. The frequency spectra revealed the emer-
gence of a predominant vortex-shedding Strouhal number (normalized by
D and W0), StrD = 0.375, in good agreement with the experimental value.
The LES shown in Figure 17 shows that the Kelvin–Helmholtz instability
along the jet edge yields further downstream vortices having mainly an ax-
isymmetric toroidal shape. One sees in Figure 17b that an original vortex
arrangement can be observed subsequent to the varicose mode growth: the
“alternate pairing”. Such a vortex interaction was previously observed by
Fouillet [36] and Comte et al. [23] in the DNS of a temporally evolving
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round jet at low Reynolds number (Re = 2000). The direction normal to
the toroidal vortices symmetry plane tends, during their advection down-
stream, to differ from the jet axis. The inclination angle of two consecutive
vortices appears to be of opposite sign, eventually leading to local vortex
reconnections with an alternate arrangement. Note that vortex loop’s in-
clination at the end of the potential core was experimentally observed by
Petersen [92]. Experimental evidence of “alternate pairing” was given by
Broze and Hussain [16]. This alternate-pairing mode corresponds to the
growth of a subharmonic perturbation (of wavelength double of the one
corresponding to the rings) developing after the formation of the primary
rings. It therefore presents strong analogies with the helical-pairing mode
observed in plane mixing layers (see above).

We here now show how a deterministic inflow perturbation can trigger
one particular flow organization. We apply a periodic fluctuation associated
with a frequency corresponding to StrD = 0.375 for which the jet response
is known to be maximal. The inflow excitation is here chosen such that
alternate-pairing mode previously described is preferentially amplified. The
resulting structures are analogous to Figure 17 except that the alternatively
inclined vortex rings now appear from the nozzle (see Fig. 18). One of the
striking features is the very different spreading rates in different directions.
Note that the present jet exhibits strong similarities with the “bifurcating”
jet of Lee and Reynolds [63]. One of the important technological application
of this peculiar excitation resides in the ability to polarize the jet in a
preferential direction.

5.7 LES of spatially developing boundary layers

The standard Structure-Function model permits to go beyond transition in a
temporal (periodic in the flow direction) compressible boundary layer upon
an adiabatic wall at Mach 4.5 (see Ducros et al. [32]). But it does not work
for transition in a boundary layer at low Mach (or incompressible) where,
like Smagorinsky, it is too dissipative and prevents small perturbations to
degenerate into turbulence. Conversely, it has been used with success in
its filtered version (FSF model) for the simulation of a quasi-incompressible
(M∞ = 0.5) boundary layer of an ideal gas developing spatially over an adi-
abiatic flat plate with a low level of upstream forcing (Ducros et al. [33]).
Although it gives interesting qualitative information on the structure of
turbulent boundary layers, the above LES did not have a sufficient resolu-
tion close to the wall (first point at y+ = 5 ≈ 6) for good predictions of
average quantities such as the friction coefficient at the wall or the shape
factor. Here, we present new results with a finer resolution at the wall
(y+ = 1 or 2), at a lower Mach number (0.3). The computations are per-
formed with the COMPRESS numerical code briefly described in Section 10.
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Fig. 17. LES of the natural jet at Re = 25 000: instantaneous visualizations

at two different times. White: low pressure isosurface; dark: regions of Q > 0

(courtesy Silva).

The details of this computations are presented in Briand [14]. It is known
that transition in the boundary layer on a flat plate depends upon the
type of perturbations exerted upstream on the flow (see Lesieur [67]). In
Klebanoff et al. [51], the boundary layer was forced upstream with a thin
metal ribbon parallel to the wall and stretched in the spanwise direction,
which vibrates two-dimensionally close to the wall. In this experiment, the
3D forcing was harmonic. This corresponds to what is referred to as the
K-mode, where the crests of the TS waves oscillate in phase in the spanwise
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Fig. 18. Bifurcation of the jet with alternate-pairing excitation: forced jet at

Re = 10 000. Instantaneous vizualisations of regions of Q > 0 at the same instant

but seen from two different perpendicular directions (courtesy Silva).

direction. The resulting vortex filaments are therefore aligned in the flow
direction. On the other hand, if the perturbation is subharmonic, the crests
oscillate out of phase. This is called H-mode, from Herbert [45], and corre-
sponds to a staggered organization of vortex filaments. Herbert could show
for the temporal problem9, that the staggered mode was more amplified
than the aligned mode. This should favour the emergence of H-mode dur-
ing transition in natural situations, and explain why the transition above
seems to be of subharmonic type.

We now return to the LES of the spatially-developing boundary layer
over a flat plate. It is started with a set of upstream conditions (harmonic
K-mode or subharmonic H-mode) obtained with the aid of nonlinear parab-
olized stability expansion (PSE) calculations (Bertolotti and Herbert [12],
Airiau [5]). To the upstream state corresponding with a Reynolds number
Rδi

= 1000 (δi being the upstream displacement thickness), one superposes
a 3D white-noise of amplitude 0.2 the amplitude of the PSE perturbation.
In the K-case, one sees in the transitional region formation of big longi-
tudinal Λ-shaped vortices lying on the wall, and in phase in the spanwise

9Using a secondary-instability analysis where a perturbation is superposed on a TS
wave of finite amplitude.
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Fig. 19. LES of a spatial boundary layer at Mach 0.3; top and bottom, K- and

H-transition respectively; the l.h.s. and r.h.s. correspond respectively to velocity

and vorticity fluctuation components (dark, positive, light grey, negative); dark

grey marks isosurfaces of positive Q (courtesy Briand).

direction (see Fig. 19, top). In the H-case, the vortices are staggered (see
Fig. 19, bottom). The figures show at the end of transition the longitudinal
components of velocity and vorticity, and also positive Q. One sees that the
Λ vortices are very well correlated with a system of induced high and low-
speed streaks10. Remark also on the vorticity plots that the big Λ’s induce
“antivorticity” close to the wall, due to the zero velocity condition at the
wall. Downstream of ≈440 δi, the streaks become purely longitudinal. This
is accompanied by the fast shedding of small arch vortices ejected from the
tip of the Λ’s, as indicated by Q-isosurfaces.

Figure 20 shows for the K-transition the downstream evolution of the
friction coefficient at the wall, with comparison against the theoretical pre-
dictions of Van Driest11 and Barenblatt and Prostokishin [7]. One sees a
good agreement of the LES with these predictions, a resolution of y+ = 1
improving the result. It is even better in the H-case. The peak in the

10This is not apparent on the figure for the H-case, due to an ill-chosen threshold.
11Discussed in Cousteix [26].
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Fig. 20. LES of a spatial boundary layer at Mach 0.3: friction coefficients

against downstream distance, compared with theoretical predictions of Cousteix

and Barenblatt (courtesy Briand).

friction coefficient is at 490 δi, much further than the change of regime of
the velocity streaks, and might be associated to an event such as the local-
ized creation of a big hairpin vortex observed in the simulations of Ducros
et al. [33]. Figure 21 shows for the K-case (but results are very close in
the H-case) the rms longitudinal velocity component u′ at a downstream
distance such that Rδ1

= 1670 (δ1 local displacement thickness), compared
with Spalart’s [106] DNS at Reynolds numbers of 1000 and 2000. Again, the
agreement is good, since the results are inbetween Spalart’s predictions. If
one looks at developed turbulence further downstream, various plots of vor-
ticity components and pressure, as well as Q, accompanied with animations,
show the very long longitudinal velocity streaks (about 1000 wall units for
the low speeds). Above these streaks are ejected hairpins through what
resembles a secondary Kelvin–Helmholtz instability occuring at a height of
about 30 ≈ 40 wall units. The hairpins first creep at the wall, then rise, due
to self-induction effects. Their length is about 300 wall units, so that there
are several hairpins (about 3) above a single low-speed streak. In this sense,
we have no more the perfect correlation hairpins-streaks which we observed
during the transitional stage. It is therefore difficult to associate in the
developed region the streaks to a system of purely longitudinal alternate
vortices at the wall.
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Fig. 21. Spatial boundary layer at Mach 0.3; rms velocity fluctuations compared

with Spalart’s DNS (courtesy Briand).

6 Dynamic approach in physical space

6.1 Dynamic models

We have shown already in Section 4.1 how a valuable information concern-
ing a given eddy viscosity (here the spectral plateau-peak eddy viscosity)
could be obtained thanks to a double filtering through the cutoff kC and a
fictitious cutoff k′

C = kC/2, and the calculation of explicit resolved trans-
fers across k′

C. This is the underlying philosophy of the dynamic model in
physical space (Germano [41]). The basic method applies to a LES using an
eddy-viscosity model. Most of the historical developments have been done
with Smagorinsky’s model, but the procedure may be applied to any eddy-
viscosity models. One starts with a regular LES corresponding to a filter
bar of width ∆x, operator associating to a function12 f(�x, t) the function
f̄(�x, t). One then defines a second “test filter” tilde of larger width α∆x
(for instance α = 2), associating f̃(�x, t) to f(�x, t). We then have two filter
operators bar and tilde which apply on the functions, the product of them13

being tilde o bar. This product, applied to f(�x, t), means that we apply

first to f the bar filter (to yield f̄) then the tilde filter to obtain ˜̄f . Let us
first apply this filter product to the Navier–Stokes equation (with constant
density): the subgrid-scale tensor of the field ˜̄ui is readily obtained from

12Scalar, or vector, or tensor.
13In the sense of product of operators.
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equation (3.5) with the replacement of the filter bar by the double filter,
that is:

Tij = ˜̄ui ˜̄uj − ũiuj . (6.1)

We consider now the field ūi per se14, and evaluate the resolved turbulent
stresses obtained by application of the tilde filter. They write:

Lij = ˜̄ui ˜̄uj − ˜̄uiūj . (6.2)

We now apply the filter “tilde” to equation (3.5), which leads to

T̃ij = ˜̄uiūj − ũiuj . (6.3)

Adding equations (6.2) and (6.3), yields, with the aid of (6.1)

Lij = Tij − T̃ij . (6.4)

This expression is called Germano’s identity. In the r.h.s., Tij and T̃ij have
to be modelled, while the l.h.s. Lij (the resolved stresses) can be explicitly
calculated by applying the tilde filter to ūi.

We use Smagorinsky’s model expression defined by equation (3.21) and
“tilde-filter” it, to get

T̃ij −
1

3
T̃ll δij = 2ÃijC, (6.5)

whith C = C2
S and

Aij = (∆x)2 |S̄|S̄ij .

We have now to determine Tij , stress resulting from the filter product. This
is again obtained using Smagorinsky for the largest filter, which yields

Tij −
1

3
Tll δij = 2Bij , (6.6)

whith
Bij = α2(∆x)2 |˜̄S| ˜̄Sij .

Substracting equation (6.5) from equation (6.6) yields with the aid of
Germano’s identity

Lij −
1

3
Lll δij = 2BijC − 2ÃijC.

14As if it were the instantaneous field.
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This is a nice result relating the model coefficient (unknown) to the resolved
stresses. However there are some difficulties. First, one removes C from the
filtering as if it were constant15, leading to

Lij −
1

3
Lll δij = 2CMij , (6.7)

with
Mij = Bij − Ãij .

All the terms of equation (6.7) may now be determined with the aid of ū.
But there are five independent equations for only one variable C, so that
the problem is overdetermined. A first solution proposed by Germano [41]
is to multiply tensorially equation (6.7) by S̄ij , to get

C =
1

2

Lij S̄ij

MijS̄ij
(6.8)

(indeed, and due to incompressibility, S̄ii = 0). This provides finally a
dynamical evaluation of C(�x, t), which can be used in the LES of the bar

field ū. But problems still arise: in tests using channel flow data obtained
from DNS, Germano [41] could show that the denominator in equation (6.8)
could locally vanish or become sufficiently small to yield computational
instabilities. To get rid of this problem, Lilly [76] chose to determine the
value of C in equation (6.7) by minimizing the error using a least squares
approach, which gives

C =
1

2

LijMij

M2
ij

(6.9)

and removes the undeterminacy of equation (6.7). However, the analysis of
DNS data reveals that the C field predicted by the models (6.8) or (6.9)
varies strongly in space and contains a significant fraction of negative values,
with a variance which may be ten times higher than the square mean. So,
the removal of C from the filtering operation is not really justified and the
model exhibits some mathematical inconsistencies. The possibility of nega-
tive C is an advantage of the model since it allows a sort of backscatter in
physical space, but very large negative values of the eddy viscosity is a desta-
bilizing process in a numerical simulation, yielding a non-physical growth of
the resolved scale energy. The cure which is often adopted to avoid exces-
sively large values of C consists in averaging the numerators and denomi-
nators of (6.8) and (6.9) over space and/or time, thereby losing some of the

15This is in some way contradictory with the original aim of having a dynamic evalu-
ation of C depending on space and time.
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conceptual advantages of the “dynamic” local formulation. Averaging over
direction of flow homogeneity has been a popular choice, and good results
have been obtained by Germano [42] and Piomelli [94], who took averages
in planes parallel to the walls in their channel-flow simulation. Remark that
the same thing has been done, with success, when averaging the dynamic
spectral eddy viscosity in the channel-flow LES presented above. It can be
shown that the dynamic model gives a zero subgrid-scale stress at the wall,
where Lij vanishes, which is a great advantage with respect to the original
Smagorinsky model; it gives also the proper asymptotic behavior near the
wall.

As already stressed, the use of Smagorinsky’s model for the dynamic
procedure is not compulsory, and any of the models described in the present
paper can be a candidate. As an example, El Hady and Zang [34] have
applied the dynamic structure-function model applied to a compressible
boundary layer above a long cylinder.

7 Alternative models

7.1 Generalized hyperviscosities

One of the drawback of the structure-function model given by equation (5.6)
is the absence of a cusp near kC. However, EDQNM data show that the
exponential form given in equation (4.14) can be correctly approximated by
a power law of the type:

ν∗
t

(
k

kC

)
=

(
1. + ν∗

tn

(
k

kC

)2n
)

, (7.1)

with 2n ≈ 3.7. Lesieur and Métais [69] have shown that ν∗
tn can be deter-

mined by considering the energy balance between explicit and subgrid-scale
transfers. This yields:

ν∗
tn = 0.512

(
3n

2
+ 1

)
. (7.2)

In fact, the EDQNM value of 2n = 3.7 is not so far from the exponent
2n = 4 which would be obtained with a Laplacian operator iterated twice.
Therefore, Lesieur and Métais [69] proposed a physical-space turbulent dis-
sipative operator based upon the structure-function model and taking into
account the “cusp” behaviour:
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where S̄ij is the deformation tensor of the field ūi.
(
∂2/∂x2

j

)3
designates

the Laplacian operator iterated three-times. νSF
t is given by the r.h.s. of

equation (5.6) multiplied by 0.441/(2/3), ν
(2)
t = νSF

t × ν∗
t2, and ν∗

t2 is given
by equation (7.2) with n = 2. The expression (7.3) is interesting in the sense
that it provides an eddy dissipation combining the structure function model
with a hyperviscosity (∇2)3ui. The latter represents in physical space the
action of the cusp in Kraichnan’s spectral eddy viscosity.

7.2 Hyperviscosity

The model given by equation (7.3) bears some resemblance to hyper-
viscosity models which are widely used in the study of geophysical flows
because of their simplicity. Indeed, the hyperviscosity consists in replacing
the molecular dissipative operator ν∇2 by (−1)α−1να(∇2)α, where α is a
positive integer. As opposed to equation (7.3), να is here a constant (pos-
itive) coefficient which has to be adjusted. This has been widely used in
two-dimensional isotropic turbulence (see [10]), with α = 2 or α = 8, as a
way to shift the dissipation to the neighbourhood of kC. This allows for a re-
duction of the number of scales strongly affected by viscous effects, and has
rendered possible in the case of two-dimensional turbulence to demonstrate
the existence of coherent vortices.

In three-dimensional turbulence, it was used by Bartello et al. [9] to
study the influence of a solid-body rotation, with surprisingly good results.

7.3 Scale-similarity and mixed models

The lack of correlation between the subgrid-scale stress and the large-scale
strain rate tensors has led Bardina et al. [8] to propose an alternative
subgrid-scale model called the scale similarity model. This is based upon a
double filtering approach and on the idea that the important interactions
between the resolved and unresolved scales involve the smallest eddies of
the former and the largest eddies of the latter. They suggest that the real
subgrid tensor is similar to the stress tensor constructed from the resolved
velocity field. One then writes:

Tij = ¯̄ui ¯̄uj − ūiūj . (7.4)

The analysis of DNS and experimental data [8, 77] have shown that the
modelled subgrid-scale stress deduced from (7.4) exhibits a good correla-
tion with the real (measured) stress. However, when implemented in LES
calculations, the model hardly dissipates any energy. It is therefore neces-
sary to combine it with an eddy-viscosity type model such as Smagorinsky’s
model to produce the “mixed” model (see e.g. Meneveau and Katz [82]).
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In the line of Bardina et al. model, new formulations have been proposed to
correct this lack of dissipation. Liu et al. [77] have proposed the following
model:

Tij = CL

(
˜̄ui ˜̄uj − ˜̄uiūj

)
, (7.5)

where CL is a dimensionless coefficient. The operator ˜ consists in a second
filter of different width [77].

7.4 Anisotropic subgrid-scale models

As stressed above, the subgrid-scale tensor and buoyancy flux given
by (3.14) are assumed to be strictly proportional to the grid-scale strain rate
tensor and buoyancy flux, respectively. Abbà et al. [1] have proposed an
anisotropic formulation of (3.14) using eddy-viscosity and eddy-diffusivity
tensors instead of scalar ones:

Tij −
1

3
Tll δij = 2

∑

r,s

νt
ijrsS̄rs −

2

3
δij

∑

l,r,s,

νt
llrsS̄rs. (7.6)

This formulation allows for a better description of the small-scale anisotropy.
This model in conjunction with the dynamic procedure previously described
has been used successfully in Large-Eddy Simulations of turbulent natural
convection [1]. The reader is referred to the book by Sagaut [98] for a
presentation of other anisotropic models.

8 LES of rotating flows

Our purpose here is to show the ability of LES and DNS to accurately repro-
duce the detailed vorticity dynamics and flow statistics even in the presence
of external forces like solid-body rotation. Rotating flows are extremely
important in engineering for studies related to turbo-machinery of turbines,
pumps, or air-intakes of jet engines. They are also crucial in internal geo-
physics16, oceanography, meteorology, planetary or stellar physics. We will
first consider rotating shear flows (free or wall bounded), where the effects
of rotation are extremely spectacular in terms of modification of the vorti-
cal structure and of the statistics. Then we will review studies concerning
homogeneous turbulence submitted to rotation.

16To understand the Earth magnetic-field generation.
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8.1 Rotating shear flows

We assume a purely incompressible flow submitted to solid-body rotation.
We consider a parallel basic (or mean17) velocity 〈u〉 (y), and assume that
the axis of rotation is parallel to the spanwise direction, such as for the
channel of Figure 8 We work in a relative rotating frame of angular-rotation
vector �Ω. Coriolis acceleration−2�Ω×�u is added to Navier–Stokes equations,
while centrifugal effects are incorporated in the pressure gradient. Let

Ro(y, t) = − 1

f

d 〈u〉
dy

(8.1)

(with f = 2Ω) be the local Rossby number. It characterizes the ratio of
the local relative basic vorticity upon the entrainment vorticity f associated
to the solid-body rotation. Regions with a positive (resp. negative) local
Rossby will be called cyclonic (resp. anticyclonic). We recall also that the
absolute vorticity vector is �ωa = �ω + f�z, and satisfies Helmholtz theorem
in its conditions of applicability, within which absolute-vortex elements are
material.

8.1.1 Free-shear flows

We synthesize first results concerning free-shear layers coming both from
3D linear-stability studies (Yanase et al. [112]), and DNS or LES (Lesieur
et al. [73], Métais et al. [78]). As in instability studies, we start with a basic
parallel velocity profile, weakly perturbed. There is a critical local Rossby
number of −1 such that:

• in regions where initially Ro(y) ≥ −1, the shear layer is two-
dimensionalized. In a mixing layer for instance, 3D perturbations
are damped, and straight Kelvin–Helmholtz billows form18. This re-
sult agrees in particular with Proudman–Taylor’s theorem when the
Rossby number modulus is small;

• for Rmin
o < Ro(y) < −1 (“weak” anticyclonic rotation), where

Rmin
o ≈ −10 ∼ −20 decreases as the Reynolds increases, the flow

is highly three-dimensionalized, with production of intense Görtler-
like alternate longitudinal rolls. This flow three-diemnsionalization
results from the development of the so-called “Shear-Coriolis instabil-
ity”. Examination of the vorticity fields shows that they correspond
in fact to the condensation of absolute-vortex lines into very long

17In the sense of an ensemble average.
18Without stretching of longitudinal vortices nor helical pairing.
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hairpins which are oriented in a purely longitudinal direction. As a
result, their spanwise vorticity component is zero, which implies that
the mean velocity gradient becomes constant and equal to f , so that
the local Rossby number uniformizes to the value −1. This has been
clearly shown in the mixing layer DNS by Métais et al. [78] as well as
in the anticyclonic region of a wake. There is in fact universality of
this result for all shear flows (free or wall bounded), since this law is
also found for the channel as shown below.

8.1.2 Wall flows

As already stressed, and due to their numerous applications in turbo-
machinery and also in oceanography, the turbulent flow in a rotating channel
of spanwise rotation axis has been subject to extensive studies. Experimen-
tally, it is not easy to cover a wide range of rotation regimes. Conversely, the
introduction of the Coriolis acceleration is rather straightforward in numer-
ical codes simulating the three-dimensional Navier–Stokes equations. This
may explain why more numerous numerical studies based either on DNS (see
e.g. Kristoffersen and Andersson [55]) or LES (see e.g. Kim [50], Miyake and
Kajishima [84], Tafti and Vanka [107], and Piomelli and Liu [96]) have been
devoted to this topic than experimental ones (see e.g. Johnston et al. [48],
Nakabayashi and Kitoh [86]). These previous works have mainly focussed
on weak-rotation regimes, and the analysis restricted to statistics directly
issued from the velocity field, or studies of the large-scale flow organization.
We here recall the main results obatined by Lamballais et al. [57, 61]. We

precise again the notations. �Ω is oriented along the spanwise direction z,
and may be positive or negative. For the channel flow, the vorticity vector
associated with the mean velocity profile 〈�ω〉 = (0, 0,−d 〈u〉 /dy)) is parallel

to �Ω near one wall and antiparallel near the opposite wall: we refer to the
two particular walls as cyclonic and anticyclonic. Various other terms are
currently used. The names suction and pressure sides originate from the
pressure gradient due to the Coriolis force, and the terms trailing and lead-
ing sides are borrowed from turbo-machinery. The initial Rossby number

(already defined above for the channel) turns out to be equal to Rog =
3 Um

2Ω h
where Um is the bulk velocity.

The previous studies have clearly shown that, due to the action of mod-
erate rotation, the flow becomes very asymmetric with respect to the chan-
nel center, with a turbulent activity much reduced on the cyclonic side as
compared with the anticyclonic side.

We first show a LES of a rotating channel flow based upon the spectral-
dynamic model with the same characteristic parameters than Piomelli and
Liu [96]) in their LES using a localized version of the dynamic model:
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Fig. 22. Mean velocity and turbulence intensities (Re = 5700, Rog = 21). —, ◦,��
u′2

�
/uτ ; ...,⊔,

��
v′2
�
/uτ ; - - -, △,

��
w′2

�
/uτ . Lines: spectral-dynamic LES;

symbols: LES of Piomelli and Liu [96]; courtesy Lamballais.

Rog = 21 and Re = 5700. Figure 22 shows that the mean and rms ve-
locity profiles predicted by the two models are in excellent agreement.

We next investigate rotation regimes for which anticyclonic destabiliza-
tion is achieved: this corresponds to rotation rates such that Rog > 1.
For these rotation rates, the shear-Coriolis instability should be at hand,
as in the free-shear case, at least if the Rossby number is not too high.
The computations are here performed at Rog = ∞, 18, 6, 2. We also study
Reynolds number effects by comparing spectral-dynamic model based LES
at Re = 14 000 with DNS at Re = 5000.

We here examine the three-dimensional flow structure. Figure 23 clearly
shows that rotation strongly modifies the vortex organization. We observe
the following trends:

- the turbulent activity is gradually reduced near the cyclonic wall as
the rotation rate is increased. For Rog = 2, the very flat isosurfaces
indicate an almost complete flow relaminarization. This will be con-
firmed by the statistics;

- on the anticyclonic region, the flow presents a strong turbulence ac-
tivity. We have checked in the DNS (see Lamballais et al. [61]) the
existence of large-scale longitudinal roll cells similar to those already
observed in the laboratory experiments of Johnston et al. [48] and
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in the numerical simulations of Kristoffersen and Andersson [55] and
Piomelli and Liu [96]. The roll cells are no longer present for Rog = 2;

- the vortical structures are more and more organized as rotation is in-
creased, and their inclination with respect to the wall is reduced. This
is clearly demonstrated by considering the statistics of the inclination
angle of the vorticity vector (see Lamballais et al. [61]).

It is important to note that the LES are capable to reproduce all the char-
acteristic features of the flow organization. The subgridscale model is in-
deed able to capture cyclonic relaminarization with inactive turbulent mo-
tions as well as detailed turbulent flow organization on the anticyclonic side
(Fig. 23).

Rog = 6, Re = 5000 (DNS)

Rog = 6, Re = 14000 (LES)

Rog = 2, Re = 5000 (DNS)

Rog = 2, Re = 14000 (LES)

Fig. 23. Isosurfaces of vorticity modulus ω = 3 Um/h for Rog = 6 or ω =

2.25 Um/h for Rog = 2 (for the DNS results, only a quarter of the computational

domain is presented).
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As far as the statistical quantities are concerned, Figure 24, taken from
Lamballais et al. [61] clearly shows that the important physical result corre-
sponding to the establishment of the Ro(y) = −1 plateau, predicted by the
DNS, is well reproduced by the LES. Furthermore, Lamballais et al. [61]
have thoroughfully checked various statistical quantities based upon the
mean velocity field, the fluctuating velocity field or the fluctuating vorticity
field. An excellent agreement with the DNS is obtained and the LES are able
to correctly reproduce all the anisotropy characteristics of the flow. It is im-
portant to note that the rotating channel is quite a challenging test case for
the one-point closure models based of a Reynolds Averaged Navier–Stokes
approach and quite sophisticated models have to be designed to obtain sat-
isfactory results. Subgrid-scale models turn out to be much more universal,
since identical models can be used for different flows submitted to various
external forces.

Fig. 24. Final local Rossby in the DNS (left, global Reynolds number 5000) and

LES (right, Reynolds 14 000) of a rotating channel. From top to bottom, initial

Rossby at the wall: 18, 6 and 2.
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8.1.3 Homogeneous turbulence

Bartello et al. [9] have performed numerical simulations investigating the
formation and stability of quasi-twodimensional coherent vortices in rotat-
ing homogeneous three-dimensional flow. Isolated coherent two-dimensional
vortices obtained from a purely two-dimensional decay simulation, were su-
perposed with a low-amplitude three-dimensional perurbation, and used
to initialize a first set of simulations. In the non-rotating case, a three-
dimensionalization of all vortices was observed. Conversely, when 2Ω ≈
[�ω · �Ω]rms, a rapid destablization of the anticyclones was observed to occur,
whereas the initial two-dimensional cyclonic vortices persisted throughout
the simulation. At larger Ω, both cyclones and anticyclones remained two-
dimensional, consistent with the Taylor–Proudman theorem. A second set
of simulations starting from isotropic three-dimensional fields was initial-
ized by allowing a random field to evolve with Ω = 0 to a fully-developed
state. When the simulation were continued with 2Ω ≈ [�ω · �Ω]rms, the three-
dimensional flow was observed to organize into two-dimensional cyclonic
vortices. At large Ω, two-dimensional anticyclones also emerged from the
initially-isotropic flow.

9 LES of flows of geophysical interest

Most of the flows encountered in the atmosphere or the ocean are com-
posed of interacting waves and turbulence. Geophysical eddies and turbu-
lence often originate from the development of instabilities resulting from
the combined effects of density gradients and rotation, and these strongly
affect the dynamics over a large range of scales. We summarize here the
results of DNS and LES aimed at investigating the effects of stable or un-
stable density stratification and/or solid-body rotation on turbulence and
coherent vortices, and we particularly focus our study on three-dimensional
processes.

9.1 Baroclinic eddies

The baroclinic instability results from the combined effects of horizon-
tal temperature gradients and fast rotation on a stably-stratified fluid.
It corresponds to a very efficient mechanism of conversion of poten-
tial energy into horizontal kinetic energy. When one considers hori-
zontal scales of the order of the internal Rossby radius of deformation
(≈1000 km in the atmosphere and ≈50 km in the ocean, at mid-latitude),
this instability becomes very active and gives rise to “baroclinic” eddies.
Garnier [37], Garnier et al. [38, 39] have performed direct and large-eddy
simulations of baroclinic jet flows instabilities with the goal to study the
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nature of the coherent vortices and in particular the asymmetry between
cyclonic and anticyclonic eddies. Garnier et al. [38, 39] have considered a
stably-stratified medium associated with a constant vertical mean density
gradient characterized by a constant Brunt–Vaissala frequency N . The ini-
tial basic state consits in an horizontal density front oriented in the merid-
ional direction �y. The rotation vector �Ω is oriented in the z direction. Let
f = 2Ω be the Coriolis parameter. In the limit of fast rotation and strong
stratification, it can be shown that the density front has to be associated
with a basic velocity profile. Indeed, the geostrophic equilibrium corre-
sponding to a balance between the Coriolis force and the pressure gradient
and the hydrostatic balance imply that this basic state has to satisfy the
thermal wind equation:

∂�uH

∂z
= − g

ρ0f
�z × �∇Hρ, (9.1)

where �aH stands for the horizontal projection of the vector �a on the hor-
izontal plane. The meridional density gradient then give rise to a mean
velocity corresponding to a jet, sheared along the vertical direction and di-
rected to the east at the top of the domain and to the west at the bottom.
When a small random perturbation is superposed to this basic state the flow
becomes unstable. The nature of the instability is however very different de-
pending upon the characteristic parameters. The two non-dimensionalized
parameters are the Rossby (Ro) and Froude (Fr) numbers (see Garnier
et al. [38, 39]).

First, Garnier et al. [38] have used direct numerical simulations to carry
out linear stability studies. They have shown the existence of a critical value
of the ratio Ro/Fr = 1.5 constituting the threshold between to distinct
regimes:

1) Ro/Fr > 1.5: the instability is weak and mainly barotropic: it is of
Kelvin–Helmholtz type and is associated with the inflexional nature
of the mean velocity profile;

2) Ro/Fr ≤ 1.5: the baroclinic instability corresponding to a conversion
of potential energy associated with the horizontal density gradient
into horizontal kinetic energy can develop. The amplification of the
perturbations is much stronger than in the barotropic case.

We now concentrate on the second regime Ro/Fr ≤ 1.5: here Ro/Fr = 0.5.
The Rossby number is fixed to 0.1. The numerical code is similar to the
channel flow study previously described except that compact differences
schemes are here used into two spatial directions. The Reynolds number is
low in the DNS (Re = 400) and much higher in the LES (Re = 10 000).
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Fig. 25. Iso-surfaces of vertical vorticity; n light-gray: cyclonic vorticity, black:

anticyclonic vorticity (courtesy Garnier).

9.1.1 Synoptic-scale instability

Figure 25 shows the vorticity structure obtained by DNS once the insta-
bility has fully developed. We observe the formation of cyclonic eddies of
strong intensity, composed of nearly two-dimensional cores between which
braids of very high cyclonic vorticity are formed. The vorticity maxima are
observed within these braids and correspond here to ≈8 times the vorticity
maximum of the initial mean velocity profile. The vorticity intensification
in the anticyclonic eddies is weaker (3 times the initial vorticity): we have
checked that those are far more three-dimensional than the cyclonic eddies
and strongy stretched by them. The asymmetry cyclones/anticyclones is
clear and the vorticity maxima are cyclonic and are localized in very con-
centrated regions of the space. Contrarily, the anticyclonic vorticity is much
more spread.
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9.1.2 Secondary cyclogenesis

In the previous DNS, the late stage of the cyclogenesis was dominated by
dissipative and diffusive effects. We have thus performed high Reynolds
number LES at Re = 10 000 to study the flow development subsequent
to the occlusion process. The subgrid-scale structure function model with
a cusp given by equation (7.3) have been used. Here the grid is non-
isotropic ∆x �= ∆y �= ∆z and the formulation for non-uniform gird, given by
equations (5.7) and (5.8), is used.

Figure 26 shows a time evolution of the vorticity contours of a cyclonic
eddies. As compared with the DNS presented in the preceeding section,
one may notice that the spiralling of the vorticity contours inside the core
of the cyclonic eddies is much more pronounced. Due to viscous effects,
the vorticity was indeed homogenized in the DNS. We have checked that
the frontal region are much steeper in the LES indicating more energy near
the wavenumber cut-off. The steepening of the fronts is associated with
the appearance of a secondary instability resulting in a local intensification
of the vertical vorticity. This instability seems to take place in regions
where the local values of the Rossby and Froude number Ro(�x) and Fr(�x)
verify the criterion Ro(�x)/Fr(�x) ≤ 1.5. The potential energy associated
with local horizontal fronts is then converted into horizontal kinetic energy
and gives rise to vertical vorticity intensification. It is important to notice
that if the structure model without cusp is used excessive accumulation of
energy is observed at the smallest scales eventually leading to numerical
divergence. This demonstrates the importance of the cusp-like behaviour
and the feasibility of the subgrid-scales previously described for the LES
of geophysical flows with quasi-twodimensional regions and sharp frontal
regions.

Note that the present results have been compared by Lesieur et al.

[70] with satellite observations corresponding to the severe storm of 26
Dec. 1999. This storm, together with its companion on 28 December, caused
casualties and immense damage in France and neighbouring countries.
Lesieur et al. [70] discuss possible analogies and differences, as well as some
consequences in terms of numerical weather forecasting.

Note that the same subgrid-scale models and the same numerical code
has also been successfully used to study the combined effects of unstable
density stratification and rotation. Padilla–Barbosa and Métais [91] have
indeed performed LES of rotating turbulent convection with an application
to oceanic deep-water formation.
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Fig. 26. LES simulation at Re = 10 000: time evolution of the vertical vorticity

isocontours at the top of the computational domain. Solid-lines cyclonic vorticity;

dashed lines anticyclonic vorticity.

10 LES of compressible turbulence

Compressible turbulence has extremely important applications in subsonic,
supersonic and hypersonic aerodynamics. More generally, and even at low
Mach numbers, strong density differences due to an intense heating (in com-
bustion for instance) may have profound consequences on the flow structure
and the associated mixing. Heating a wall may, for instance, completely
destabilize a boundary layer, due to the generalized inflexion-point instabil-
ity. Examples and details are given below.
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10.1 Compressible LES equations

We here briefly recall the specific difficulties attached to the filtered com-
pressible Navier–Stokes equations. Details may be found in Lesieur and
Comte [68] and Métais et al. [81]. The momentum equation with variable
density, ρ(�x, t), and for a newtonian fluid can be written in the so-called
conservative form as:

∂

∂t
(ρui) +

∂

∂xj
(ρujui) = − ∂

∂xj

[
p δij +

2µ

3

(
�∇ · �u

)
δij − 2µDij

]
. (10.1)

Similarly, the continuity equation can be expressed as:

∂ρ

∂t
= − ∂

∂xj
(ρuj) . (10.2)

These equation have to be completed by an equation representing the evo-
lution of the total energy defined by, for an ideal gas,

ρe = ρ Cv T + 1
2ρ(u2

1 + u2
2 + u2

3) (10.3)

as well as the equation of state.
The application of the filter operator to these equations yields quan-

tities of the following form:
ρΦ

where Φ(�x, t) = ui(�x, t), e(�x, t), T (�x, t), etc. These are not easily express-
able as a simple function of ρ and Φ. To overcome this difficulty it is
customary (see Favre [35]) to introduce the density-weighted Favre average

(here density-weighted filter) denoted as ˜ :

Φ̃ =
ρΦ

ρ
· (10.4)

One then tries to write a closed system of equations for the variables Φ̃
and for ρ. For instance, the equation for ρ is obtained through the filtered
continuity equation:

∂ρ

∂t
= − ∂

∂xj
(ρuj)

∂ρ

∂t
= − ∂

∂xj
(ρũj) . (10.5)

The application of the filter to the momentum equation gives rise to the
subgrid-scale stress tensor, whose form, in the compressible case, is:

Tij = ρũiũj − ρuiuj . (10.6)
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The filtered momentum equation may be closed through a classical turbulent
viscosity assumption. The closure of the energy equation may be resolved
by introducing an eddy-conductivity kt(�x, t):

kt(�x, t) = Cp
νt(�x, t)

Prt
(10.7)

where νt(�x, t) is the turbulent viscosity. Note that the difficulties associated
with the trace of the subgrid-scale tensor Tll may be nicely overcome by the
introduction of a “macro-pressure”

̟ = p − 1

3
Tll (10.8)

and of a “macro-temperature”

ϑ = T̃ − 1

2Cvρ
Tll (10.9)

as proposed by Lesieur and Comte [68]. Except for these differences, the
formulation of the subgrid-scale model is identical to the incompressible
case but νt(�x, t) is now determined from the density-weighted filtered ve-
locity field ũi. Another important difference with the incompressible case
is that the dynamic viscosity varies with temperature through the classical
Sutherland empirical law.

10.2 Heated flows

The compressible results presented here are based upon the COMPRESS
code developed in Grenoble. The details on the numerical procedure can be
found in [22]. The numerical code uses curvilinear co-ordinates. The system
is solved in the transformed grid by means of a extension of the fully-explicit
McCormack scheme, second order in time and fourth in space, devised by
Gottlieb and Turkel [44]. High-Mach number boundary layer simulations
have been performed by Normand et al. [87, 88] which constitute a valida-
tion of the numerics and SGS model. It showed in particular the ability
of the code to reproduce the effect of strong heating on Reynolds stresses.
It thus can be considered as a suitable tool for prediction of heat fluxes in
situations for which experimental data are absent or sparse. Indeed, the
understanding of the dynamics of turbulent flows submitted to strong tem-
perature gradients is still an open challenge for numerical and experimental
research. It is of vital importance due to the numerous industrial applica-
tions such as the heat exchangers, the cooling of turbine blades, the cooling
of rocket engines, etc.
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10.2.1 The heated duct

We want here to show the ability for LES to adequately reproduce the
effects of an asymetric heat flux in a square duct flow. The details of the
computations are reported in [99] and [100]. We solve the three-dimensional
compressible Navier–Stokes equations with the COMPRESS code previ-
ously mentioned. The subgrid-scale model is the selective structure function
model. We have successively considered the isothermal duct, at a Reynolds
number Reb = 6000 (based on the bulk velocity), with the four wall at the
same temperature and the heated duct for which the temperature of one of
the walls is imposed to be higher than the temperature of the three other
walls (Reb = 6000). It is important to note that moderate resolutions are
used: the grid consists of 32 × 50 × 50 nodes in the isothermal case and
of 64 × 50 × 50 nodes in the heated case along x (streamwise), y and z
(transverse) directions. This moderate resolution renders the computation
very economical compared with a DNS. One crucial issue in LES is to have
a fine description of the boundary layers. In order to correctly simulate the
near-wall regions, a nonuniform (orthogonal) grid with a hyperbolic-tangent
stretching is used in the y and z directions: the minimal spacing near the
walls is here 1.8 wall units. The Mach number is M = 0.5 based upon the
bulk velocity and the wall temperature.

We have first validated our numerical procedure by comparing our re-
sults, for the isothermal duct, with previous incompressible DNS results [40]:
a very good agreement was obtained at a drastically reduced computer cost.
The flow inside a duct of square cross section is characterized by the exis-
tence of secondary flows (Prandtl’s flow of second kind) which are driven
by the turbulent motion. The secondary flow is a mean flow perpendicu-
lar to the main flow direction. It is relatively weak (2 − 3% of the mean
streamwise velocity), but its effect on the transport of heat and momentum
is quite significant. If a statistical modelling approach is employed, elab-
orate second-order models have to been utilized to be able to accurately
reproduce this weak secondary flow. Figure 27a shows the contours of the
streamwise vorticity in a quarter of a cross section. The secondary flow
vectors reveal the existence of two streamwise counter-rotating vortices in
each corner of the duct. The velocity maximum associated with this flow is
1.169% of the bulk velocity: this agrees very well with experimental mea-
surements. It shows the ability for LES to accuratly reproduced statistical
quantities. Figure 27b shows the instantaneous flow field for the entire
duct cross-section. As compared Figure 27a, it clearly indicates a very pro-
nounced flow variability with an instantaneous field very distinct from the
mean field. The maximum for the transverse fluctuating velocity field is
of the order of ten times the maximum for the corresponding mean veloc-
ity field. As far as the vorticity is concerned, the transverse motions are
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a) b)

Fig. 27. a) Ensemble averaged streamwise vorticity contours; b) vectors of the

instantaneous velocity field (courtesy Salinas–Vasquez).

associated with streamwise vorticity generation, whose maximum is about
one third of the transverse vorticity maximum.

In the heated case, Salinas and Métais [100] have investigated the effect
of the heating intensity by varying the temperature ratio between the hot
wall and the other walls. When the heating is increased, an amplification
of the mechanism of ejection of hot fluid from the heated wall is observed.
Figure 28 shows temperature structures near the heated wall of the duct.
Only one portion of the duct is here represented. As shown in Figure 28,
these ejections are concentrated near the middle plane of the heated wall.
This yields a strong intensification of the secondary flow. It is also shown
that the turbulent intensity is reduced near the heated wall with strong
heating due to an increase of the viscous effect in that region.

10.2.2 Towards complex flow geometries

Several applications of LES to compressible flows in geometries of inductrial
interest are presented in Lesieur and Comte [68] and Métais et al. [81]. We
here briefly mentioned two of these applications.

The first application is a LES of the detached boundary layer over a
curved compression ramp at Mach 2.5 modelling the wind-side region of the
body-flap of HERMES during its projected re-entry. Note that the simu-
lated Mach number is lower than for real situations. Indeed, the external
Mach number relevant to the shuttle is about 10 (altitude 50 km, incidence
30◦, flap extension angle α0 = 20◦). The whole computational domain is
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z

x

Fig. 28. Large scale motion over the hot wall in a heated duct (Th/Tw = 2.5).

Instantaneous transversal vector field and a isosurface of temperature (T/Tw =

2.1) (courtesy Salinas–Vasquez).

contained within the bow shock. The grid used is shown, upside down, in
Figure 29. The simulation is therefore performed at the maximal Reynolds
number permitted by our resolution, that is Reδi

= 280, where δi is the up-
stream displacement thickness of the boundary layer. The first part of the
boundary (up to 13.6 m away from the nose) is curved. It corresponds to the
wind side of the body. The ramp corresponds to the body flap, assumed to
be flat. For computational reasons, it is prolonged by a fictitious horizontal
surface introducing a cut-off with the lee-side of the flap and the after-body.
This enables the prescription of well-posed boundary conditions at the exit
of the domain. The wall temperature is Tw = 290 K and the “external”
(outside of the boundary layer, but inside the bow shock) temperature is
T∞ = 460 K. The adiabatic recovery temperature, defined by

Tad = T∞

(
1 +

√
Pr

γ − 1

2
M2

∞

)
, (10.10)

is Tad = 1047 K, yielding Tw/Tad = 0.277. The ramp is therefore very cool
with respect to the fluid, which models the radiative balance of the true
shuttle during its re-entry.

Experimental evidence of (streamwise counter-rotating) Görtler vortices
in a similar case was brought in particular by [101], but the consequence of
these vortices on the wall heat flux has remained an open question. Figure 30
shows such Görtler vortices, obtained from a 3D simulation performed with
the selective structure-function model in a domain of spanwise extension
equal to 4.5 δi. One clearly sees two large structures, cross-cuts of which
show that each of them corresponds to a pair of counter-rotating Görtler
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Fig. 29. Transverse section of the 220×140×25 – point grid used for the simulation

of the transition on a the curved ramp (angle 20◦). The axes are graded in metres,

counted from the nose of the full-size shuttle. The spanwise size of the domain is

4.5 the displacement thickness δi of the boundary layer prescribed at the upstream

boundary.

vortices. We have checked that the extreme values of the temperature fluc-
tuations close to the wall associated with these structures are ±90 K. These
30% of temperature fluctuations induce huge fluctuations of the Stanton
number (normalized heat-flux), between 2 × 10−3 and 14 × 10−3, with an
average of about 6 × 10−3. The rms of the Stanton-number fluctuations is
thus 133%. The same trend is observed for the skin-friction coefficient Cf .
Note that LES is the only available tool able to reproduce such a strong
variability for high-Reynolds number flows. Time-averaged plots also prove
that the Görtler vortices are, in this simulation, fairly stable in time. This
is likely to enhance considerably their destructive effects on the material of
the body flap.

The second example is taken from the recent work by Dubief and
Delcayre [30]. It consists in the LES of a transonic flow past a rectan-
gular cavity. It required the implementation of domain decomposition in
the COMPRESS code. The Reynolds number is here 1.25×106 based upon
the external velocity and the depth of the cavity and the Mach number is
0.95. The Figure 31 displays, through the Q criterion, the vortices which
are shed by the cavity. The main interest of this flow is related with aeroa-
coustical aspects and with the noise generated by the various eddies. It
has been checked that the present LES is able to correctly reproduce the
characteristics frequencies which are experimentally measured. This makes
the LES a precious tool for aeroacoustics studies.
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Fig. 30. Ramp flow. Zoom on the hinge and body-flap region showing an isosur-

face of the vorticity magnitude. This surface is coloured by temperature. This

shows clearly that hot fluid in the outer part of the boundary layer is being down-

washed to the wall, which brings about wall-heat-flux fluctuations.

Fig. 31. LES of a transonic flow past a rectangular cavity at Re = 1.25×106 and

Mach = 0.95. White: vortices identified through the Q-criterion.
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11 Conclusion

Turbulence plays a major role in the aerodynamics of cars, trains and planes,
combustion in engines, acoustics, cooling of nuclear reactors, dispersion of
pollution in the atmosphere and the oceans, or magnetic-field generation
in planets and stars. Applications of turbulence, industrial in particular,
are thus immense. Since the development of computers in the sixties, so-
called industrial numerical models have been created. These models solve
Reynolds ensemble-averaged equations of motions (RANS), and they require
numerous empirical closure hypotheses which need to be adjusted on given
particular experimentally-documented cases. RANS are widely used in the
industry. However, it has become clear than RANS models suffer from a
lack of universality and require specific adjustments when dealing with a flow
submitted to such effects as separation, rotation, curvature, compressibility,
or strong heat release.

Classical turbulence modelling, based on one-point closures and a sta-
tistical approach allow computation of mean quantities. In many cases, it
is however necessary to have access to the fluctuating part of the turbu-
lent fields such as the pollutant concentration or temperature: LES is then
compulsory. Large-eddy simulations (LES) of turbulent flows are extremely
powerful techniques consisting in the elimination of small scales by a proper
low-pass filtering, and the formulation of evolution equations for the large
scales. The latter have still an intense spatio-temporal variability. History
of large-eddy simulations (LES) started also at the beginning of the sixties
with the introduction of the famous Smagorinsky’s [105] eddy viscosity. Due
to the tremendous progress in scientific computing and in particular of par-
allel computing, LES, which were first confined to very simple flow configu-
rations, are able to deal with more and more complex flows. We have here
shown several examples of applications showing that LES are an invaluable
tool to decipher the vortical structure of turbulence. Together with DNS,
LES is then able to perform deterministic predictions (of flows containing
coherent vortices, for instance) and to provide statistical information. The
last is very important for assessing and improving one-point closure models,
in particular for turbulent flows submitted to external forces (stratification,
rotation, ...) or compressibility effects. The ability to deterministically cap-
ture the formation and ulterior evolution of coherent vortices and structures
is very important for the fundamental understanding of turbulence and for
designing efficient turbulent flow control.

The complexity of problems tackled by LES is continuously increasing,
and this has nowadays a decisive impact on industrial modelling and flow
control. Among the current challenges for LES in dealing with very com-
plex geometries (like the flow around an entire car) are the development
of efficient wall functions, the use of unstructured meshes and the use of
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adaptative meshes. However, the design of efficient industrial turbulence
models will necessarily require an efficient coupling of LES and RANS tech-
niques.

The results presented have greatly benefitted from the contributions of E. Briand,
P. Comte, E. David, F. Delcayre, Y. Dubief, E. Garnier, E. Lamballais, M. Lesieur,
M. Salinas-Vasquez, C. Silva, G. Silvestrini, G. Urbin. We are indebted to P. Begou for
the computational support. Some of the computations were carried out at the IDRIS
(Institut du Développement et des Ressources en Informatique Scientifique, Paris).
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[73] M. Lesieur, S. Yanase and O. Métais, Phys. Fluids A 3 (1991) 403-407.

[74] D. Liepmann and M. Gharib, J. Fluid Mech. 245 (1992) 643-668.

[75] D.K. Lilly, in Lecture Notes on Turbulence, edited by J.R. Herring and J.C.
McWilliams (World Scientific, 1987) pp. 171-218.

[76] D.K. Lilly, Phys. Fluids A 4 (1992) 633-635.

68



✐

[77] S. Liu, C. Meneveau and J. Katz, J. Fluid Mech. 275 (1994) 83-119.
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