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Spatial development of turbulent flow within a heated duct

J. HÉBRARD,∗† M. SALINAS-VASQUEZ‡ and O. MÉTAIS†

†Equipe MoST/LEGI/ Institut de Mécanique de Grenoble, B.P. 53, 38041 Grenoble Cedex 09, France
‡Present address: Instituto de Ingenieria, UNAM, Mexico

Large eddy simulations (LES) of a turbulent field within a heated duct are presented. As opposed
to a previously performed LES which assumed periodicity in the flow direction, here we consider
spatially growing situations for which a thermal boundary layer grows in the longitudinal direction.
Characteristic wave boundary conditions previously proposed for subsonic flows are implemented and
shown to yield good results. Two different thermal boundary conditions are considered in the spatial
configuration: the first case corresponds to an imposed temperature at the wall and the second to an
imposed heat flux. As we move downstream in the duct, we observed the progressive formation of a
unique ejection of hot fluid localized in the middle plane of the heated wall. This induces significant
variations in thermal characteristics along the transverse direction of the heated wall.

1. Introduction

The improvement of heat transfer between a heated wall and the adjacent turbulent fluid
is crucial for numerous industrial applications (heat exchangers, cooling systems in rocket
engines, etc.). As far as numerical studies are concerned, statistical modelling relies heavily
upon empirical laws aimed at mimicking near-wall heat exchanges. Very few Direct Numerical
Simulations (DNS) or Large Eddy Simulations (LES) have been devoted to this subject.
Salinas-Vázquez and Métais [1] were the first to perform a LES of turbulent flow within a
straight square duct with a heated wall. The imposition of a fixed temperature at the walls
was compatible with the use of periodic boundary conditions in the longitudinal direction
allowing a fully developed turbulent regime to be reached. It was shown that, for a high
enough temperature ratio between the heated wall and the non-heated wall, the secondary
flow perpendicular to the mean flow is strongly reinforced and a unique ejection of hot fluid
localized in the middle plane of the hot wall takes place.

More recently, Hébrard et al. [2] have simulated, through LES, the spatial development of
turbulent flow within a straight heated duct. It is well known that the proper prescription of
boundary conditions in spatially growing subsonic flows is a challenging problem which has
been addressed by several authors (see e.g. [3] and [4]). After presentation of the governing
equations and the numerical scheme (section 2), section 3 completes the previous work by
Hébrard et al. [2] by providing a full validation of the boundary conditions implementation.

As compared with the periodic case, the spatially growing flow considered by Hébrard
et al. [2] is in closer correspondence with industrial situations where a fully developed thermal
regime is often not reached. As in [1], Hébrard et al. [2] considered a fixed temperature on
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the duct walls. In several industrial devices, the heating is imposed through a constant heat
flux rather than through a constant wall temperature. In section 4, we therefore present LES
results where the two types of heating, constant wall temperature and constant wall heat flux,
are compared.

2. Governing equations

We consider a Cartesian frame of reference x , y, z that we will also designate as x1, x2 and x3
for convenience. The compressible Navier–Stokes equations are written here in the so-called
fast-conservation form details of which can be found in [5]:

∂U
∂t

+ ∂Fi

∂xi
= S (1)

U is a five-component vector defined by:

U =T (ρ, ρu1, ρu2, ρu3, ρe) (2)

Here u = (u1, u2, u3) is the velocity vector and ρ is the density. In the course of this paper,
we will also write u = (u, v, w). Equation (1) represents the evolution of density (continuity
equation), momentum and total energy defined by, for an ideal gas,

ρe = ρ Cv T + 1
2
ρ
(
u2

1 + u2
2 + u2

3
)

(3)

Fi are fluxes which, ∀i ∈ {1, 2, 3} and for a Newtonian fluid, are given by:

Fi =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρui

ρuiu1 + pδi1 − 2μSi1

ρuiu2 + pδi2 − 2μSi2

ρuiu3 + pδi3 − 2μSi3

(ρe + p)ui − 2μu j Si j − k
∂T
∂xi

⎞
⎟⎟⎟⎟⎟⎟⎠

(4)

k = ρCpκ being the thermal conductivity and κ the thermal diffusivity. δi j is the Kronecker’s
index and Si j is the deviatoric part of the deformation tensor. Neglecting bulk viscosity, Si j is:

Si j = 1
2

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
(∇· u)δi j

)
(5)

Molecular viscosity is prescribed through the Sutherland empirical law (see e.g. [6]):

μ(T ) = μ(Tref)
(

T
Tref

)1/2 1 + S/Tref

1 + S/T (6)

where S, Tref and μ(Tref) are functions of the gas. The molecular conductivity k(T ) is obtained
assuming the molecular Prandtl number is given by:

Pr = ν

κ
= Cpμ(T )

k(T )
(7)

and here is taken equal to 0.7. The classical equation of state for an ideal gas between the
static pressure p, the temperature T and the density ρ

p = RρT (8)

closes the system, with R = Cp − Cv . We recall also that γ = Cp/Cv is constant.
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LES techniques consist of deterministically simulating only the large scales of the flow: the
LES equations are then obtained by applying a low-pass spatial filter to the Navier–Stokes
equations. Scales smaller than the filter width are then filtered out, but statistically influence
the large-scale motion (see [7] for details). For any quantity f (x, t), we designate as f̄ (x, t)
the large-scale field obtained by application of a low-pass spatial filter to f . The derivation
of the compressible LES equations is trickier than in the incompressible case. Details may be
found in [8] and [9]. Indeed, application of a low-pass filter to the equations of motion, in the
compressible case, leads to quantities of the following form:

ρ�

where �(x, t) = ui (x, t), e(x, t), T (x, t), etc. These are not easily expressible as a simple
function of ρ̄ and �̄. To overcome this difficulty it is customary (see [10]) to introduce the
density-weighted Favre average (here density-weighted filter) denoted ˜:

�̃ = ρ�

ρ̄
(9)

A closed system of equations for the variables �̃ and ρ̄ can then be derived (see [8]). In
particular, the equations for ρ̄ũi are closed by introducing a turbulent eddy viscosity νt(x, t)
such that:

τi j = ρ̄νt S̃i j (10)

where τi j is the isotropic part of the subgrid stress tensor ¯̄T of components

Ti j = −ρuiu j + ρ̄ũi ũ j (11)

The expression for νt used in our compressible formulation corresponds to the incompressible
models described in [7]. The only difference being that νt is here deduced from the density-
weighted filtered velocity field ũ. Our subgrid-scale model is the selective structure function
model (see [7] and [1] for details). The closure of the energy equation is achieved by introducing
an eddy-conductivity kt(x, t):

kt(x, t) = Cp
νt (x, t)

Prt
(12)

where Prt is the turbulent Prandtl number taken equal to 0.6. In the following, for the sake of
simplicity, f̃ or f̄ will be designated simply as f .

Before starting a description of the computations, one first has to define the various statistical
quantities used in the article. The various statistical quantities are noted in a similar way to
[1]. However, at variance with the periodic case, all statistical quantities in spatially growing
simulations vary with the streamwise distance x . Thus, for the mean quantities, 〈 f 〉(x, y, z)
stands for the time average of the variable f ; for the bulk quantities, fb(x) refers to the mean
quantity integrated along both y and z directions at a given x-plane:

fb(x) = 1
LyLz

∫ Lz

0

∫ Ly

0
〈 f 〉 (x, y, z) dy dz (13)

Ly and Lz are the transverse dimensions of the computational domain. The bulk velocity
Ub(x) involves the density and is defined as:

Ub(x) = [ρu]b (x)
ρb(x)

(14)

where ρb is the bulk density. The fluctuation f (x, t) from the mean satisfies f (x, t) =
f (x, t) − 〈 f 〉(x). We will designate u = (u, v, w) as the velocity vector and its components.
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For convenience, we denote U (x) = 〈u〉(x); V (x) = 〈v〉(x); W (x) = 〈w〉(x). Dh stands for
the duct hydraulic diameter.

3. LES of the spatially growing duct flow: boundary conditions
and computational details

The system of equations is solved with the use of generalized curvilinear coordinates (see [1]
for details). It is a corrector–predictor scheme, as proposed by Gottlieb and Turkel [11] for the
periodic case, but the finite difference approximation is now replaced by the compact scheme
McCormack formulation, second order in time and fourth order in space, devised by Kennedy
and Carpenter [12]. It is given by:

aDB
i−1 + (1 − a)DB

i = 1

x

( fi − fi−1) (15)

aDF
i+1 + (1 − a)DF

i = 1

x

( fi+1 − fi ) (16)

where D is the numerical approximation to the spatial derivative of the function f (see
[13]).The exponents B and F stand respectively for forward and backward differencing and a
is a coefficient taken such that a = 1

2 − 1
2
√

3
(see [13]). The advantage of the compact scheme

is that it is more precise when highly distorted grids are used, thus allowing us to take into
account more complex duct geometries. Another advantage is the high performance of its
boundary stencils (see [12] and [13]).

As previously pointed out, it is a challenging problem to impose proper boundary conditions
for subsonic unsteady flows that exhibit spatial growth. First, to obtain a fully developed
turbulent field at the entry of our computational domain, the inlet conditions for the spatially
growing duct flow are provided, at each time step, by a periodic non-heated duct that is
computed concurrently. The periodic duct boundary conditions at the walls are no-slip and
non-heated with an imposed temperature Tw. The wall pressure is obtained by solving the
Navier–Stokes equations at the wall.

For the spatial duct, the wall boundary conditions are also no-slip and the wall pressure is
determined as previously. The spatial duct is linked to the periodic duct by the characteristic
boundary conditions proposed by Poinsot and Lele [3] (see also [14]). Both periodic and
spatial simulations use the same time step Min(
tp, 
ts) corresponding to the minimum time
step found for the periodic and spatial configurations. The velocity and the temperature field
computed at the last section of the periodic duct are used to specify the inflow conditions at
the first section of the spatial duct (see figure 1). This condition corresponds to a subsonic
inflow with fixed velocities and temperature as described by Poinsot and Veynante [14]. For a
subsonic flow, four characteristic waves enter the domain with speeds λi = u, u, u and u + c
and one of them leaves the domain at the speed λ1 = u − c, see figure 1. c is the speed of
sound given for an ideal gas by: c = (γ p/ρ)0.5, where p and ρ are, respectively, the local
instantaneous pressure and the local density at the boundary. u is the local instantaneous flow
velocity normal to the boundary.

Since only the velocity components and the temperature can be prescribed, the density ρ

(or the pressure p) has to be determined through a so-called numerical boundary condition
(see [14]): the corresponding characteristic wave leaving the domain is therefore determined
through the values of the variable at the internal points.

At the outlet, the subsonic partially reflective outflow boundary conditions have been im-
plemented [14]. Similarly to the inflow, four waves leave the domain with speeds λi = u, u, u
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Figure 1. Inlet and outlet boundary conditions in the spatial duct.

and u +c and one enters the domain at speed λ1 = u −c. The four leaving waves are estimated
from the value of the variables at the internal points. The entering waves are computed from
a soft boundary condition by specifying a given static pressure p∞ at infinity. As described
by Poinsot and Veynante [14], reflected waves enter the domain to bring the mean pressure
back to a value close to p∞. A constant K sets the amplitude of the reflected waves [14]. The
constant K has an arbitrary value and the number of reflected waves depends of this value.
For this work K = 0.99 [14].

As a validation, we first consider a LES of a non-heated spatial duct with all the four
walls at the imposed temperature Tw. Figure 2 allows evaluation of the convergence rate of
the characteristic waves boundary conditions. Based on the mass conservation, the boundary
condition is converged when the value |Qout − Qin| is close to zero. Qin is the mass flux at the
duct inlet (x/Dh = 0.0) and Qout the corresponding mass flux at the outlet (x/Dh = Lx ). Lx
stands for the longitudinal length of the duct. The mass flux is defined as:

Q =
∫

0

Dh
∫

0

Dh

u(y, z, t)ρ(y, z, t) dy dz (17)

A transitional period is observed until t ≈ 90Dh/Ub with strong fluctuations at first and
which are then damped indicating a convergence of the boundary conditions. In this paper,
flow structures are identified using the so-called Q criterion [15, 16], which is based on the
second invariant of the velocity gradient tensor. Positive Q regions correspond to flow regions
where the vorticity dominates the deformation and have been shown to be a good indicator of
coherent vortices.

A visual method of checking the cleanness of the inlet boundary conditions is given in
figure 3 and animation 3 which show that the turbulent structures identified through the positive
Q isosurfaces exhibit no discontinuity while crossing the border between the periodic and the
spatial duct. We have checked that similar continuity is observed on all the instantaneous
variables (velocity, density or temperature).

As compared with the periodic duct for which spatial averaging in the flow direction can be
combined with temporal averaging to reach a faster convergence of the statistical quantities,
the spatial duct requires a much longer time integration to obtain a statistical convergence.
Furthermore, as stressed above, the usable computation starts only when the initial oscillations
due to the establishment of correct boundary conditions are damped out. For the present LES,
about six times the time period of crossing Tc = Lx/Ub is needed for boundary condition
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Figure 2. Boundary conditions convergence. The figure shows the difference between the mass flux at the outlet
(x/Dh = Lx ), Qout/(Ubρb D2

h) and the mass flux at the inlet, Qin/(Ubρb D2
h) (x/Dh = 0) as a function of the time.

The time is non-dimensionalized by Dh/Ub. Top, heated ducts (—— LES-temp, – – – LES-flux); bottom, non-heated
duct (——).

convergence and about 14Tc in addition to reach an acceptable statistical convergence. Due
to the long time integration required, a relatively low spatial resolution has to be used in the
present LES. The size of the computational domain is taken equal to 15Dh × Dh × Dh (in
the x streamwise, y and z transverse directions, respectively) for the non-heated spatial duct,
31Dh × Dh × Dh for both heated spatial ducts and 6.4Dh × Dh × Dh for the precursory periodic
duct. The computational grid consists of 160 × 50 × 50 nodes in x , y and z for the non-heated
spatial duct, 318 × 50 × 50 nodes for both heated ducts and 64 × 50 × 50 nodes in x , y and

Figure 3. Visualization of the crossing of the turbulent structures from the periodic duct to the spatial duct. Positive
Q isosurfaces with Q = 0.5(Ub/D2

h). Click here for animation.
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z for the periodic inlet duct. A non-uniform grid with a hyperbolic-tangent stretching is used
in the y and z directions for both ducts. Distribution and discretization points are identical in
the y and z direction for both ducts. A uniform grid is used in the streamwise direction for the
periodic duct as well as for the non-heated spatial duct until x/Dh = 14.6 and for both heated
ducts until x/Dh = 30.5. Further downstream, a longitudinally refined grid is used to avoid
the creation of spurious reflected waves. All simulations are performed at a bulk Reynolds
number Reb = 6000 and Mach = 0.5. The Reynolds and Mach numbers are based on the bulk
velocity (Ub), the bulk density (ρb), the hydraulic diameter (Dh) and the wall temperature (Tw).
To properly determine the grid point distribution close to the walls, one first has to estimate
the viscous length. It can be determined a priori through the friction velocity obtained by the
Jones equation [17] (see [1]). Based on this estimation, the grid distribution varies from 1.8 to
14 wall units in the y and z directions for both ducts. The grid spacing in the flow direction x
is 
x+ = 48 for the periodic duct and varies from 48 to 2.5 in the spatial configuration. The
Reynolds number based upon the friction velocity is Reτ = 393. For all the cases, the heated
wall will correspond to y = 0.

4. LES of the spatially growing non-heated duct

We here consider a non-heated duct with all the walls at the given temperature Tw. Ub and ρb
correspond to the bulk velocity and bulk density of the precursory periodic duct. To check that
the inlet field for the spatial duct corresponds to a well-developed turbulent field and to test
the compact scheme formulation, we first consider a non-heated periodic duct. The results are
compared with the DNS results of Gavrilakis [18] in figure 4. Despite the low resolution of the
LES computation, a very good agreement is observed between the DNS and the LES for both
first and second order statistics. As far as the non-heated spatial duct is concerned, a perfect
prescription of the outlet boundary conditions (that is to say the pressure at infinity) should
yield a flow statistically identical to the flow in the non-heated periodic duct: the statistics
should therefore be independent of the streamwise direction.

Due to the slightly incorrect prescription of p∞, we observe a slight difference between the
mass flux in the periodic duct and that of the spatial duct. The mass flux goes indeed from Q =
1ρbUb D2

h in the periodic duct to Q ≈ 1.07ρbUb D2
h in the spatial duct: the bulk velocity shows

an increase of ≈5% between the two ducts. The most strongly affected variable is the friction
velocity, for which the differences reach ≈12% due to the simultaneous changes in velocity
and density close to the walls. This slight discrepancy could be solved by trying several outlet
pressures p∞, but these tests are very consuming as far as CPU time is concerned since the
boundary conditions must have converged in order to know the precise mass flux in the spatial
duct.

Despite this change in the flow mass flux, the normalized statistical quantities at various
downstream locations of the spatial duct are almost identical to those measured in the periodic
duct in [1]. Figure 5 compares the mean profiles of various quantities as a function of the
distance y from the wall at a fixed distance z/Dh = 0.5 corresponding to the centre line of the
square duct. The profiles are computed at six different x locations for the spatial duct when
streamwise averaging is performed in the periodic case. Very good agreement between the
spatial duct and the periodic duct measurements is observed for the mean transversal velocity
profiles (mean secondary flow) as well as for the various second order velocity statistics. It
is important to note that the profiles vary only very slightly as a function of the x location,
showing that the implemented boundary conditions allow for a good reproduction of the
streamwise flow statistical homogeneity. A variable that is very sensitive to the quality of
the computation is the wall shear stress plotted in figure 6. Similar to the other statistical
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Figure 4. Periodic non-heated duct. Comparison between the results of the present LES (
) and Gavrilakis’ DNS
[18] (– –) for five different lateral locations z/Dh = 0.05, 0.15, 0.25, 0.35 and 0.5. Values are normalized by the bulk
velocity (Ub) or the friction velocity (Uτ ).
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Figure 5. Non-heated spatial duct statistics at five different x-planes. Profiles as a function of the distance y from
the wall and at five different fixed distance z/Dh = 0.05, 0.15, 0.25, 0.35 and 0.5 from the lateral wall. x/Dh = 1.0,
– - –; x/Dh = 3.0, . . . . .; x/Dh = 7.0, — —; x/Dh = 10.0, –·-·–; x/Dh = 12.0, ——; x/Dh = 15.2, – – –; periodic
duct results, 
. The values are normalized by the local bulk velocity.
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Figure 6. Local wall shear stress (τ ) normalized by the local averaged wall shear stress (τa) as a function of the
distance from the lateral wall z. x/Dh = 1.0, – - –; x/Dh = 3.0, . . . . .; x/Dh = 7.0, — —; x/Dh = 10.0, –·-·–;
x/Dh = 12.0, ——; x/Dh = 15.2, – – –; periodic duct results [1], 
.

quantities, the normalized shear stress profile as a function of the distance z from the lateral
wall compares very well with the periodic results obtained in [1] and is identical for all the
considered downstream locations.

5. LES of spatially growing heated ducts

Two distinct LESs of spatial heated ducts are performed, differing in the way wall heating is
applied: in the first LES, the temperature of one of the four walls is abruptly changed from
Tw to Th = 2.5 Tw for x/Dh ≥ 0.4. The other three walls have a constant temperature Tw over
the whole length of the duct. Some of the results corresponding to this first configuration have
been presented in [2]. This will be referred to as LES-temp. The second LES, referred to as
LES-flux, corresponds to heating with a constant heat flux associated with a Nusselt number

Nu = Hw/(k(Tw)Tw/Dh) (18)

equal to 30. Hw is the imposed heat flux Hw(x, z) = κ(T ) ∂〈T (x,y,z)〉
∂y |y/Dh=0 at the wall and κ(Tw)

is the fluid diffusivity at temperature Tw determined through the Sutherland law. Heating is
also applied for x/Dh ≥ 0.4. As pointed out in the Introduction, the LES-flux simulation
is in closer correspondence with numerous industrial situations. In both cases, the inflow
conditions correspond to a fully developed turbulent field issued from a non-heated periodic
duct computation. The results are compared with the periodic duct LES conducted by Salinas-
Vázquez and Métais [1]. The parameters of this previous LES are in close correspondence
with LES-temp and LES-flux simulations with a bulk Reynolds number Reb = 6000 and a
Mach number Mach = 0.5. In this periodic simulation, a constant temperature was imposed
at the walls with a ratio Th/Tw = 2.5 between the temperature of the heated wall and the
temperature of the non-heated walls.

As pointed out in [1], the heating yields a strong amplification of the secondary flow in the
vicinity of the heated wall. At variance with the periodic case investigated by Salinas-Vázquez
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Figure 7. Zoom on the 〈W 〉/Ub profiles at five z-planes: z/Dh = 0.05, 0.15, 0.25, 0.35 and 0.5; LES-temp, �;
LES-flux, �; periodic heated duct [1], —; non-heated duct, – – –.

and Métais [1], which corresponds to a fully developed turbulent and thermal regime, the two
spatial configurations see a gradual increase of the thermal boundary layer with downstream
distance leading to a progressive modification of the turbulent field as we move downstream.
This is illustrated in figure 7 which shows the profiles for the transverse mean velocity profile
W .

A comparison of LES-temp and LES-flux simulations with the non-heated and heated
periodic case indicates progressive displacement of the secondary vortices from the corner
toward the duct centre as well as their progressive growth, both in size and intensity, as we
move downstream. Near the duct corner (z/Dh = 0.05), we indeed see an important reduction
of the transverse velocity between both stations x/Dh = 15 and x/Dh = 30, indicating a shift
of the vortices towards the duct middle plane. Conversely, at z/Dh = 0.25 and z/Dh = 0.35,
the secondary flow is amplified and its positive extremum shifts away from the heated wall. As
will be confirmed through examination of the thermal variables, the LES-flux simulation sees
a progressive increase of the heated wall temperature from Th near the inflow to 3.6Th at the
duct outlet. The amplification of the secondary flow is therefore much more gradual than in the
LES-temp simulation and the transverse flow remains lower even near the duct exit. Figure 7
also shows that the secondary flow is of comparable intensity for the spatially growing cases
and for the periodic heated case. However, the vertical extension of the vortex is much more
pronounced in the periodic case: this is particularly clear for the profile at z/Dh = 0.35 which
exhibits a negative extremum for W at a greater distance from the heated wall.

This is confirmed in figure 8 which shows the mean velocity field projected on constant-x
sections. The inflow conditions for both LES-temp and LES-flux correspond to a non-heated
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Figure 8. Heated duct mean secondary flows for three x-planes, x/Dh = 0, 15 and = 30.
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Figure 9. (a) Fluctuating streamwise velocity near the hot wall. (b) Fluctuating temperature near the hot wall.

Figure 10. Fluctuating temperature near the hot wall for LES-temp configuration. Click here for animation.
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duct for which counter-rotating pairs of secondary vortices are present near the four corners
of the duct. As we go further downstream, the size of the two recirculating vortices near
the heated wall is gradually increased and their companion near the adjacent vertical wall
is gradually reduced (see also [2]). By the end of the duct, the two vortices are very close
together and generate a very strong flow normal to the heated wall. These have a slightly
larger extension for LES-temp than for LES-flux. In the periodic case, these vortices are more
developed than for the two spatially growing cases. On the wall opposite the heated wall, the
pair of two counter-rotating vortices is clearly modified with an enhancement of the size of
the vortex adjacent to the lateral wall. This modification is not so apparent for LES-temp and
LES-flux.

An important result obtained by Salinas-Vázquez and Métais [1] is related to the viscos-
ity increase near the heated wall associated with the temperature increase. This viscosity
enhancement induces an augmentation in size of the characteristic turbulent structures of the

Figure 11. Mean temperature contours, 〈T 〉/Tw, for two different x-planes (step 0.1Tw).

14



boundary layer leaving a unique ejection near the middle plane of the heated wall associated
with slow and hot fluid expelled from the heated wall (low-speed streak).

In the spatial configuration, we are able to observe the progressive flow transformation due
to the growth of the thermal boundary layer. As already observed [2], the streaky structures
lengthen and widen as we move in the downstream direction until only one low-speed streak
remains, close to the middle of the hot wall. It is then bordered by two high-speed streaks.
Figure 9 shows the fluctuating fields for the temperature and the streamwise velocity close
the heated wall, in a plane located at y/Dh = 0.01, for LES-temp and LES-flux. Figure 10
completes the animation for LES-temp. The red colour corresponds to positive values of the
fluctuating fields and the blue colour to negative ones. The figure shows that the streaks found
close to the end of the duct are quasi-steady indicating that their motion is confined by the
limited lateral expansion of the duct.The downstream evolution of the turbulent structures is
very similar in both LES-temp and LES-flux cases.

Figure 11 shows the mean temperature contours at two different downstream sections of the
duct for LES-temp and LES-flux. The periodic heated case is also added for comparison. The
thermal boundary layer is far less developed in the two spatially growing cases, indicating that
a very long duct is indeed required to reach the fully developed thermal state corresponding
to the periodic case.

This is confirmed by comparing figure 12, which corresponds to the periodic LES [1], and
figure 13 obtained in the LES-temp and LES-flux cases. Both figures 12 and 13 show isocon-
tours in a y–z cross-section of the duct of the instantaneous temperature and the fluctuating
temperature. For figure 12, the instantaneous streamwise velocity component u(x, t)/Ub and
the instantaneous fluctuations of the streamwise velocity component u′(x, t)/Ub are shown for
comparison. For figure 13, the section is chosen located near the end of the duct at x/Dh = 30.
The red colour indicates maximal values and blue indicates minimal values. Yellow and green
are in between. The appearance of an ejection of hot fluid above the heated wall is clearly
shown in all the figures. This violent ejection can be observed through the temperature field

Figure 12. Instantaneous and fluctuating fields for the periodic LES performed by Salinas-Vázquez and Métais
[1]. Left: instantaneous, u(x, t)/Ub, (top) and fluctuating, u′(x, t)/Ub, (bottom) longitudinal velocity. Right: in-
stantaneous, T (x, t)/Tw, (top) and fluctuating, T ′(x, t)/Tw, (bottom) temperature. For the instantaneous fields: red,
maximal values; blue, minimal values. For the fluctuating field: red, positive values; blue, negative values.

15



Figure 13. Instantaneous (left) and fluctuating (right) temperature at x/Dh = 30. For the instantaneous fields: red,
maximal values; blue, minimal values. For the fluctuating fields: red, positive values; blue, negative values. Click
here for animation (a), (b), (c), (d).

(total and fluctuations) and also through the longitudinal velocity component (figure 12). In-
deed, the instantaneous temperature field shows (in red) the expulsion of hot fluid from the
heated wall. This region corresponds to a low-speed region of slow fluid coming away from the
wall (blue–green). This large-scale structure generates pockets of high-amplitude fluctuating
temperature and longitudinal velocity. The ejection is associated with T ′(x, t)/Tw > 0 (red)
and u′(x, t)/Ub < 0 (blue) zones since it transports hot and slow fluid away from the wall.
Around it, the engulfment of cold and high-speed fluid from the core duct (sweeps) towards the
wall create regions with T ′(
x, t)/Tw < 0 (blue) and u′(
x, t)/Ub > 0 (yellow–red). It is clear,
when comparing figures 12 and 13, that the extension towards the duct core of the hot fluid
ejection is much reduced for the two spatially growing simulations LES-temp and LES-flux.

Going back to figure 11, the gradual increase of the wall temperature for LES-flux yields
a much slower growth of the thermal boundary layer than for LES-temp: at x/Dh = 15, the
boundary layer extension is indeed much less pronounced for LES-flux. It becomes comparable
near the duct end at x/Dh = 30. It is important to note that the presence of the secondary flow
is associated with very large variations of the thermal properties along the transverse direction
of the heated wall.
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Figure 14. Profiles of the wall heat flux at the heated wall, LES-temp case: x/Dh = 15, – –; x/Dh = 30, – · –.

Let us first consider the LES-temp case. Figure 14 shows the profiles of the mean wall heat
flux at two downstream locations x/Dh = 15 and x/Dh = 30 as a function of the distance
to the duct corner. The wall heat flux is defined through the Nusselt number (see equation
(18)). Since the wall heat flux is proportional to the mean temperature gradient at the wall, the
ejection in the central plane is associated with a minimal value of the flux. At this location,
the hot fluid from the heated wall is indeed transported towards the duct core, generating a

Figure 15. Heat flux at the heated wall (LES-temp). Red colours correspond to strong heat flux and blue to low heat
flux. Click here for animation.
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Figure 16. Profiles of Th/Tw at seven different x-planes of the LES-flux: x/Dh = 0, �; x/Dh = 5, —; x/Dh = 10,
- - -; x/Dh = 15, · · · · · ·; x/Dh = 20, – - –; x/Dh = 25, – –; x/Dh = 30, �; LES-temp, ——.

weak temperature gradient. Conversely, on the external borders of the secondary flow (see
figure 8), cold fluid from the duct core is transported towards the heated wall yielding a large
temperature gradient and therefore locally enhanced values of the heat flux. This is associated
with a local inflexion point in the profiles of Nu located around z/Dh = 0.15.

Figure 17. Instantaneous temperature at the heated wall (LES-flux). Red colours indicate maximal values and blue
minimal values. Click here for animation.
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This important variation of the wall heat flux is confirmed by figure 15 which shows the
instantaneous heat–flux at the heated wall. Near the duct exit, we clearly see that the low
values of the wall heat flux (in blue) are concentrated near the duct middle plane when higher
values are observed in the impacting regions of the secondary flow.

We now consider the LES-flux case. Figure 16 shows the variation with distance from
the lateral wall of the mean temperature at the heated wall. Several downstream locations
are considered here. We note the gradual increase of the temperature as we move down-
stream with an important growth of the thermal boundary layer in the duct middle plane.
It is important to note that high values of the mean temperature are reached at z/Dh = 0.5
with Th ≈ 3.6Tw near the duct downstream end. The presence of quasi-steady secondary
flows yields an important temperature variation with z: similarly to the wall heat flux pre-
sented in figure 14, for large enough downstream distances the temperature profile exhibits
an inflexion point near z/Dh = 0.15. This is associated with the impinging jets of cold
fluid from the duct core situated on the external sides of the secondary vortices. Once this
cold fluid has been brought near the wall, it is then transported by the secondary flow to-
wards the duct middle plane. During this process, it is heated by the hot wall and reaches
a maximum temperature in the duct middle plane before being expelled towards the duct
core.

This is confirmed by figure 17 which shows the instantaneous temperature at the heated
wall for the LES-flux case. Near the duct outlet, the hot regions are concentrated near the duct
middle plane and very strong temperature gradients are present in the transverse direction of
the heated wall.

6. Conclusions

Large eddy simulations have been performed to investigate the heating influence on turbu-
lent flow within a square duct. Previous LES results [1] were obtained for a longitudinally
periodic duct with a higher temperature imposed on one of the duct walls. Recent LESs per-
formed by Hébrard et al. [2] have completed the work by Salinas-Vázquez and Métais [1]
by considering the spatial development of a thermal field in a heated duct. Starting from a
state where all the duct walls have the same temperature, the temperature of one of the walls
is suddenly increased at a given downstream location. It has been shown that the boundary
conditions proposed by Poinsot and Lele [3] based on characteristic waves and aimed at the
simulation of spatially developing flows provide good results in the case of the heated duct. To
simulate flows in closer correspondence with industrial situations, previous results [2] were
compared with a case for which a constant heat flux was imposed on the heated wall. For
these two spatially growing cases, we observed similar trends to the fully developed situation
investigated in [1]. Further downstream, we noted the progressive reinforcement and growth
of secondary flow near the heated wall and the formation of a unique ejection of hot fluid
near the latter. Despite the relatively important length of the spatial duct (more than 30 hy-
draulic diameters), the thermal state is very different from the fully developed thermal state
reached in the periodic case. In particular, the ejection is reduced both in size and intensity.
Furthermore, we have shown that the secondary flows play a major role in the distribution
of heat flux and temperature at the heated wall. Due to the presence of these secondary vor-
tices, the thermal characteristics are found to vary significantly in the transverse direction
of the heated wall. This may have very important implications in industrial heat exchangers
since these strong thermal variations cause important mechanical stress within the duct wall
materials.
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