
The near field of coaxial jets: A numerical study

Guillaume Balaraca! and Olivier Métais
Équipe MoST/LEGI, Boîte Postale 53, 38041 Grenoble Cedex 09, France

The near-field behavior of coaxial jets is studied through direct numerical simulationsDNSd with a
particular focus on the influence of the inner shear layer steepness characterized by its momentum
thicknessu01 thus mimicking the variation in the lip thickness of a real jet nozzle. We investigate the
two distinct jet regimesru. ruc for which a recirculation bubble is present near the jet inlet and
ru, ruc without any recirculation bubble,ru being the velocity ratio between the outer jet and inner
jet velocities. It is shown that small values ofu01 lead to a fast transition to turbulence. The various
mechanisms leading to this transition are investigated in detail: the three-dimensionality growth, the
appearance of secondary vortices superimposed on the main ring vortices, and the subsequent
longitudinal stretching of streamwise vortices. This stretching mechanism is shown to play a
dominant role in the transition processes towards a fully developed turbulent state. For high enough
values ofru, a pinching of the jet is observed near the inlet and it is shown that this pinching
phenomenon lasts on a shorter downstream distance for small values ofu01 due to a more efficient
turbulent mixing. In theru. ruc case, variations ofu01 strongly affect the shape and the downstream
extent of the recirculation bubble. The DNS allow to show the strong dependency of the inner and
outer potential core lengths and of the critical value ruc on the jet inlet velocity profile. We finally 
revisit the theoretical model originally proposed by Rehab, Villermaux, and Hopfinger f“Flow 
regimes of large-velocity-ratio coaxial jets,” J. Fluid Mech. 345, 357 s1997dg first aimed at the 
prediction of the variations of various jet characteristics as a function of ru. The model is extended 
to determine the dependency of the jet characteristics with u01. A very good correspondence 
between the theoretical predictions and the numerical results is obtained. 

I. INTRODUCTION

Coaxial jets are present in various industrial devices:
they effectively constitute an efficient way of mixing species
for combustion applications. They are also used in aeroa-
coustics: the noise produced by a single jet can indeed be
reduced thanks to the addition of a surrounding coaxial
streamse.g., Williams, Ali, and Anderson1d.

Coaxial jets are composed of an inner jet issued from a
nozzle of diameterD1 and an outer annular jet issued from
an outer annulus of diameterD2sD2.D1d. U1 andU2 desig-
nate the respective velocities of the inner and outer jets. One
of the important parameters characterizing the coaxial jet dy-
namics is the ratio between the outer to the inner jet momen-
tum flux, M =r2U2

2/r1U1
2 wherer1 and r2 are, respectively,

the inner and outer densityssee Favre-Marinet and Camano
Schettini2d. For constant density jetssr1=r2d, the momentum
flux ratio reduces to the velocity ratio,ru=U2/U1.

In the present study, we consider constant density co-
axial jets for which the outer velocity is larger than the inner
one sru.1d. These jets are situated in-between two limiting
cases: a single round jetsru=1d and a purely annular jet
sru→`d. Purely annular jets are characterized by the pres-
ence of a big recirculation bubble near the jet axissKo and
Chan3d. This backflow region was experimentally observed
by Rehab4 and numerically by da Silva, Balarac, and Métais5

for ru@1. Since this backflow is absent for small enough
values ofru, there exists a critical velocity ratioruc which
separates the two different main flow regimes, without recir-
culation bubble for 1, ru, ruc and with recirculation bubble
for ru. ruc.

Rehab, Villermaux, and Hopfinger6 experimentally
showed that the coaxial jet dynamics and its vortex topology
are strongly dependent on the shape of the inlet nozzle. In-
deed, different shapes lead to significant variations of the two
shear layers which are present in the coaxial jet: the inner
shear layer at the interface between the inner and the outer
jets and the outer shear layer on the external border of the
outer jet. In the following, we will characterize the respective
thicknesses of the inner and outer shear layers by their mo-
mentum thicknessesu01 andu02. The previous experimental
works6 have mainly focused on the influence ofru consider-
ing very small values ofu01 andu02. However, even for high
Reynolds number jets, a variation of the inner lip thickness
of the jet yields a significant variation ofu01. The present
paper completes the previous experimental and numerical
works on coaxial jets by investigating the influence ofu01 on
the transitional processes in the jet near field. We also vary
the ratioru and the two distinct jet regimes are successively
considered: the case without recirculation bubblesru, rucd
and with recirculation bubblesru. rucd. In particular, we will
show that the value ofruc varies widely withu01. This com-
pletes Rehab, Villermaux, and Hopfinger7 observationsadElectronic mail: guillaume.balarac@hmg.inpg.fr
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showing a strong dependence ofruc with the jet nozzle shape
with values located between 7 and 9.

As far as numerical investigations of coaxial jets are
concerned, da Silva, Balarac, and Métais5 sreferred to as
SBMd previously performed direct numerical simulations
sDNSd of spatially growing coaxial jets for two values of
ru: ru=3.3 andru=23.5. The ratio of the jet radius to the
initial momentum thicknesses was fixed withR1/u01=13 and
u01=u02. In the present study, we widely vary the values of
u01/R1 and ru. We furthermore develop simple theoretical
models inspired by the ones originally proposed by Rehab,
Villermaux, and Hopfinger6 allowing to predict the variation
laws of various statistical quantities in function ofu01/R1

and ru.
In Sec. II, the numerical method, physical, and compu-

tational parameters of the DNS are detailed. Section III in-
vestigates howu01 influences the near-field jet dynamics and
the mechanisms of transition towards a fully developed tur-
bulent state. The two flow regimesru, ruc and ru. ruc are
successively considered. Section IV extends the theoretical
model originally proposed by Rehab, Villermaux, and
Hopfinger6 to predict the variation laws of various jet statis-
tics as a function ofu01 and ru.

II. NUMERICAL METHOD AND COMPUTATIONAL
PARAMETERS

All the simulations presented here were performed with
the same numerical code as the one used by SBM. The full
three-dimensional incompressible Navier–Stokes equations,
assuming constant density, are solved with a very precise
numerical technique combining sixth-order “compact”
sLele8d scheme in the flow direction and pseudospectralsCa-
nuto et al.9d schemes in the two-transverse directions. This
code was originally developed by Gonze10 and has been in-
tensively validated both for round jets and plane jets configu-
rations ssee da Silva and Métais,11 da Silva and Métais12d.
The detailed discretization procedure is described by
Gonze10 and by da Silva13.

The velocity vector is decomposed asUW =sux,uy,uzd,
whereux designates the streamwise component,uy anduz are
the two-transverse components. We also use a cylindrical
coordinate systemsx,r ,ud with x the streamwiseslongitudi-
nald distance along the jet axis,r the distance from the jet
axis, andu the azimuthal angle. Any vectoraW will be decom-
posed, in this system, asaW =sax,ar ,aud For all the simulated
cases, the inlet velocity profile is given by

UW sxW0,td = UW medsrd + UW noisesxW0,td, s1d

where UW sxW0,td is the instantaneous inlet velocity vector,
which is prescribed at each time step. The inlet velocity pro-

file UW medsrd mimics a realistic experimental profile: it is con-
structed with two hyperbolic tangent velocity profiles as
shown in Fig. 1. It consists in a one-dimensional flow orien-
tated along thex direction whose modulus is given by

Umedsrd =H U1+U2

2 +
U1−U2

2 tanhs r−R1

2u01
d for r , Rm

U2+U3

2 +
U2−U3

2 tanhs r−R2

2u02
d for r . Rm,

J
s2d

where U1 is the inner coaxial jet velocity,U2 is the outer
velocity, and U3 is a very small coflow.R1, R2, and Rm

=sR1+R2d /2 are the inner, outer, and averaged radii, andu01

and u02 are the inlet momentum thicknesses from the inner
and outer shear layers, respectively. For each stationx, the
inner and outer momentum thicknesses are defined bys3d
and s4d,

u1sxd =E
0

RmFUxsx,rd − Uminsxd
Umaxsxd − UminsxdG

3 F1 −
Uxsx,rd − Uminsxd
Umaxsxd − UminsxdGdr, s3d

u2sxd =E
Rm

` FUxsx,rd − Uminsxd
Umaxsxd − UminsxdG

3 F1 −
Uxsx,rd − Uminsxd
Umaxsxd − UminsxdGdr, s4d

whereUmaxsxd and Uminsxd are, respectively, the maximum
and minimum mean streamwise velocities for the inner or
outer streams andUxsx,rd is the local mean streamwise ve-
locity. The mean normal and spanwise velocities are set to
zero at the inlet

VmedsxW0d = WmedsxW0d = 0. s5d

Note that the mean values are obtained through a temporal
averaging based on a time interval long enough to reach
statistical convergence. In the following,kflsx,rd designates

FIG. 1. Sketch of the inlet velocity profile.u01 andu02 are the momentum
thicknesses for the inner shear layersvelocity jump fromU1 to U2d and for
the outer shear layersvelocity jump fromU2 to U3d, respectively.
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the mean value of any quantityfsx,r ,u ,td : kfl is independent
of the azimuthal angleu due to the axisymmetry of the flow
configuration.

UW noisesxW0,td is the noise superimposed on the inlet pro-
file. It is given by

UW noisesxW0,td = AnUbasesxW0df8W . s6d

An is the maximum amplitude of the incoming noise and
UbasesxW0d is a function that mainly locates the noise in the
shear layer gradients:

UbasesxW0d =5
0.5 if 0.85. r/R1

1.0 if 0.85, r/R1 , 1.15

1.0 if 0.85, r/R2 , 1.15

0 otherwise,
6

f8W is a random noise designed to satisfy a given energy spec-
trum ssee SBM for detailsd. The random noise is applied on
the three velocity components.

All simulations are carried out on the same computa-
tional grid consisting in 23133843384 points for a domain
size of 10.8D1310.65D1310.65D1, along the streamwise
sxd and the two transverse directionssy,zd, the mesh size
being uniform in all three directions. In all simulations, the
Reynolds number and the ratio of the outer to the inner di-
ameter are ReD1

=U2D1/n=3000 andD2/D1=2, respectively.
The ratio of the jet outer radius to the outer initial shear layer
momentum thickness is fixed withR2/u02=25. The maxi-
mum noise amplitude is set toAn=3.0%. A very small cof-
low is imposed such thatU3/U2=0.04: it was shown not to
influence the jet dynamicsssee da Silva13d.

As previously pointed out, the goal of the present study
is mainly to look at the influence of the parameteru01. ru is
also varied to investigate the two flow regimes, with and
without recirculation bubble. Table I synthesizes the various
runs which were carried out:u01/R1 varies from 0.04 to 0.1
andru widely ranges from 3 to 30. Note that each simulation
series DNSiswith i varying from 1 to 5dcorresponds with a
fixed value of the parameteru01/R1. For convenience, both
parametersu01/R1 and its oppositeR1/u01 will be succes-
sively used.

It is important to note that the potential sources of nu-
merical and modeling errors have been minimized in the
present study. Indeed, precise numerical methods, a well-
resolved regular mesh and direct numerical simulations are
used. The price to pay is that the Reynolds number for our
simulationssReD1

=3000d is lower than the values usually
encountered in the experimental studiesssee, i.e., Rehabet
al.,6 Warda, Kassab, Elshorbagy, and Elsaadawy,14 Buresti,
Petagna, and Talamelli15d. Furthermore, to properly dis-
cretize the velocity gradient, relatively large values ofu01

andu02 have to be considered. The values usually considered
in previous experiments are usually much smaller: this ren-
ders any validation by comparison with experimental data
difficult. Previous experimental studiessKo and Kwan16 and
Ko and Chan3d have however shown that in the far field of
coaxial jets a self-similar state is reached similar to the one
reached in a single jet. SBM recovered this result with the

present numerical codessee their Fig. 7d. We here complete
this previous validation by considering the near-field behav-
ior in the vicinity of the jet inlet. Figure 2 displays the down-
stream evolution of the rms velocity component
ku8x

2l1/2sx,rd at the jet centerline for the two simulations
DNS4_3 sru=3; R1/u01=20d and DNS5_17sru=17; R1/u01

=25d. Note that the first simulation corresponds with the case
with no recirculation bubble while a bubble is present in the
second simulation. The numerical results are compared with
two different experiments: the first by Burestiet al.15 corre-
sponding toru=3, ReD1

<160 000,R1/u01<70, andR2/u02

<130, the second by Rehabet al.6 sru=9, ReD1
<200 000,

R1/u01<100, andR2/u02<100d. In the first experiment,ru

, ruc while ru. ruc in the second. Despite the difference in
the Reynolds numbers and the steepness of the velocity gra-
dients a good agreement is observed between the numerical
and experimental data. Note that a virtual originx0, with x0

<1D1 has been used for the two DNS to account for the
Reynolds number difference with the experimental value: in-
deed, the turbulence develops at much shorter downstream
distance in a high Reynolds number jet.

III. INFLUENCE OF THE INNER SHEAR LAYER
THICKNESS ON THE JET DYNAMICS

A. Coaxial jet without recirculation bubble ru < ruc

1. Mechanisms leading to turbulent transition

We first consider the case where no recirculation bubble
is present. The influence of the shear layer thicknessu01 is
investigated by first focusing on the comparison of the three
simulations DNS1_10sru=10; u01/R1=0.1d, DNS2_10sru

TABLE I. Description of the various runs.

Category Name ru R1/u01 u01/R1

DNS1_3 3 10 0.1

DNS1 DNS1_10 10 10 0.1

DNS1_17 17 10 0.1

DNS2_3 3 12.5 0.08

DNS2_5 5 12.5 0.08

DNS2_6 6 12.5 0.08

DNS2 DNS2_7 7 12.5 0.08

DNS2_10 10 12.5 0.08

DNS2_13 13 12.5 0.08

DNS2_17 17 12.5 0.08

DNS2_30 30 12.5 0.08

DNS3_11 11 15 0.0667

DNS3 DNS3_13 13 15 0.0667

DNS4_3 3 20 0.05

DNS4_10 10 20 0.05

DNS4 DNS4_12 12 20 0.05

DNS4_17 17 20 0.05

DNS5_10 10 25 0.04

DNS5 DNS5_11 11 25 0.04

DNS5_17 17 25 0.04

3



=10; u01/R1=0.08d, and DNS5_10sru=10; u01/R1=0.04d.
To characterize, the transition from a quasilaminar regime
near the inlet to a fully developed turbulent regime we first
consider the downstream evolution ofku8x

2l1/2sx,rd sFig. 3d.
r is here taken equal toR1 corresponding to the radial loca-
tion of the vorticity local maximum within the inner shear
layer of the inlet profile. For the three considered cases, theturbulence first undergoes a slow downstream growth before

exhibiting a sudden transition characterized by a much faster
growth. The transition location is situated further and further
downstream asu01 increases: it is indeed located around
x/D1<5 for DNS1_10,x/D1<4 for DNS2_10, andx/D1

<2 for DNS5_10. This faster transition can be explained by
the fact that the instability of the inner shear layer leads to
the generation of smaller scales for smaller values ofu01 and
the transition towards turbulence is consequently faster.

This is clearly illustrated by Fig. 4 which shows isosur-
faces of positiveQ for the three simulations DNS1_10,
DNS2_10, and DNS5_10. We recall thatQ is the second
invariant of the velocity gradient tensor defined as

Q = 1
2sVi jVi j − SijSijd, s7d

whereVi j and Sij are the antisymmetrical and symmetrical
part of the velocity gradient tensor, respectively. The positive
Q criterion was first proposed by Hunt, Wray, and Moin17

and is now well recognized as a good way to identify the
flow coherent vorticesssee, e.g., Dubief and Delcayre18d. In

FIG. 2. Downstream evolution of the axial velocity component rms
ku8x

2l1/2sx,r =0d at the jet centerline:sad DNS4_3 andsbd DNS5_17. The
numerical results are compared with the measurements by Burestiet al.
sRef. 15dand Rehabet al. sRef. 6d.

FIG. 3. Downstream evolution of the axial velocity component rms
ku8x

2l1/2sx,r =R1d at the inner shear layer for the three simulations
sDNS1_10, DNS2_10, and DNS5_10d.

FIG. 4. Visualization of the coherent structures for the three simulations
DNS1_10sad, DNS2_10sbd, and DNS5_10scd. Cut view of isosurfaces of
positiveQ=0.5sU2/D1d2 colored by the azimuthal vorticity. Light gray cor-
responds with negative values and dark gray with positive values.
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particular, it can been showed that the positiveQ regions are
in good correspondence with low-pressure regions and thus
constitute good tracors of intense vorticesssee Métais19d.
Figure 4 shows the coherent structures development near the
jet inlet s0,x/D1,7d. As pointed out by SBM, we assist in
the shedding of both outer and inner vortices, respectively,
associated with the instability of the outer and inner shear
layers. Forru, ruc, the outer vortices impose their shedding
frequency to the inner vortices and the latter are trapped
between two consecutive larger vortex rings.20 As previously
pointed out, the instability develops faster whenu01 is de-
creased and the inner layer vortices are shed at shorter and
shorter locations when we go from DNS1_10 to DNS5_10
simulation. Although the value ofu02 is identical in the three
simulations, it is interesting to note that the outer vortices are
also shed at shorter downstream distances for the smaller
values ofu01. This is attributable to the mutual interaction
between the inner and outer shear layers: the faster growth of
the disturbance within the inner shear layer induces an earlier
destabilization of the outer layer. Since the DNS5_10 case is
associated with an early development of the vortices, these
are more rapidly subject to a three-dimensionalization pro-
cess. It is clearly illustrated on Fig. 5 which shows the down-
stream evolution ofEr andEu for the inner shear layer and

the outer shear layer. Only the two runs DNS2_10 and
DNS5_10 are compared here. These quantities are the con-
tributions of the radialsErd and azimuthalsEud Reynolds
stresses to the turbulent kinetic energy at a givenx location
ssee SBMd. They are defined as

Ersxd =Î 2p

LyLz
E

0

Rm

kur8
2lsx,rdr dr , s8d

Eusxd =Î 2p

LyLz
E

0

Rm

kuu8
2lsx,rdr dr s9d

for the inner shear layer and as

Ersxd =Î 2p

LyLz
E

Rm

`

kur8
2lsx,rdr dr , s10d

Eusxd =Î 2p

LyLz
E

Rm

`

kuu8
2lsx,rdr dr s11d

for the outer shear layer.ur8 and uu8 are, respectively, the
radial and azimuthal components of the fluctuating velocity
field. Note that, for a purely axisymmetric vortex ring with
no swirl, the componentEu would be identically zero.Eu

then represents the departure from axisymmetry and there-
fore constitutes a measure of the three-dimensionality level.
For both DNS2_10 and DNS5_10 cases,Er, associated with
the growth of the vortex rings, dominatesEu during the first
stage of the transition: this indicates a weak degree of three-
dimensionalization in this early stage. Further downstream,
Eu catches up with Er showing a full three-
dimensionalization of the jetssee da Silva and Métais11d. The
comparison of Figs. 5sad and 5sbdclearly indicates that the
three-dimensionalization processes become dominant on a
shorter downstream distance for the DNS5_10 simulation
than for the DNS2_10 simulation. A fully developed turbu-
lent state is reached atx/D1<8 for DNS5_10 when the com-
putational box is too short for such a state to be observed for
DNS2_10.

It is clear from Fig. 4 that the three-dimensionalization
process is strongly linked with the appearance of streamwise
secondary vortices. These appear much sooner whenu01 is
smaller and induce a strong three-dimensionalization of the
inner and outer vortices between which they are stretched
and consequently trigger an earlier transition towards a fully
turbulent regime. Figures 6sadand 6sbddisplay a zoom of the
three-dimensional coherent structures in the transition region
situated betweenx/D1=3 andx/D1=7 for DNS5_10 simu-
lation. The secondary streamwise vortices appear and are
stretched both between two consecutive inner vorticesfFig.
6sadgand between two consecutive outer vorticesfFig. 6sbdg.
Note that, for DNS5_10 simulation, the inner streamwise
vortices form at a shorter downstream distance than the outer
vortices which appear further downstream. This difference in
behavior between the inner and outer shear layer is explained
below.

The strong amplification of the streamwise vorticity as
one moves downstream is illustrated in Fig. 7 which shows
the profile ofkv8x

2lsx,rd as a function ofr for several down-

FIG. 5. Downstream evolution of radial and azimuthal contributions for the
turbulent kinetic energyEr andEu fsee Eqs.s8d–s11d for definitiong calcu-
lated in the inner and outer shear layer for the two simulations:sad DNS2_10
and sbd DNS5_10.
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stream locationsx/D1=1, 3, and 5. The two simulations
DNS2_10 and DNS5_10 are here compared. DNS2_10 cor-
responds with a case where the momentum thicknesses of the
inner and outer shear layers are identicalsu01=u02d. The
growth of the three dimensionality takes place at a similar
rate within both shear layers: this gives rise to two longitu-
dinal vorticity peaks of comparable intensity, respectively,
situated atr /D1<0.5 andr /D1<1. The longitudinal vortic-
ity stretching between the main jet vortices, previously men-
tioned, yields a significant increase of the vorticity peak am-
plitude as we move downstream. Conversely, DNS5_10
corresponds to a case where the two momentum thicknesses
differ: hereu01=u02/2. In that case, the streamwise vortices
are first stretched between two consecutive vortices of the
inner layer yielding a strong amplification forr /D1ø0.5 ssee
Fig. 7 atx/D1=3d. The stretching between two consecutive
outer vortices takes place only further downstream leading to

a later longitudinal vorticity enhancement in the outer shear
layer region nearr /D1<1 sFig. 7 atx/D1=5d.

Figure 8 compares the profiles of the three rms vorticity
componentskv8x

2lsx,rd ,kv8r
2lsx,rd, and kv8u

2lsx,rd for the
two simulations DNS2_10sx/D1=6d and DNS5_10sx/D1

=3d. This figure confirms that longitudinal stretching is the
dominant factor leading to transition to a fully developed
turbulent regime: indeed, the longitudinal vorticity compo-
nent clearly dominates the other two components. We have

FIG. 6. Zoom showing the secondary streamwise vortices in simulation
DNS5_10:sad vortices stretched between two consecutive inner vorticesscut
viewd; sbd vortices stretched between two consecutive outer vortices.
Isosurfaces of positiveQ=0.5sU2/D1d2 colored by the axial vorticity. Light
gray corresponds with negative values and dark gray with positive values.

FIG. 7. Radial profile ofkv8x
2lsx,rd at three downstream locationsx/D1

=1, 3, and 5dfor the two simulationssDNS2_10 and DNS5_10d.
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checked that the ratio between the peak values ofvx8 andvr8
reaches a maximum of 4.5 for DNS2_10 and 5 for DNS5_10
as we move downstream: this maximum being respectively
reached at x/D1=4.5 sDNS2_10d and at x/D1=2.5
sDNS5_10d. Similarly, the corresponding maximal ratio be-
tweenvx8 and vu8 are, respectively, 1.5 for DNS2_10 and 2
for DNS5_10 and take place atx/D1=6 andx/D1=3.5.

2. Jet spreading and potential cores

We now investigate the influence ofu01 on more global
quantities. We first consider the jet spreading rate defined
through a global shear layer thickness by analogy with the
definition used for single jets. Letrmaxsxd be the radial dis-
tance for which the mean streamwise velocity reaches its
maximum value, maxfUxsx,rdg=Uxsx,rmaxsxdd. dsxd is then
chosen as the radial distance such that

Uxsx,dsxdd = 1
2fUxsx,rmaxsxdd − U3g, s12d

where U3 is the streamwise velocity in the irrotational re-
gion. Since we are interested in the global spreading rate of
the jet, we furthermore choosedsxd such that dsxd
. rmaxsxd :dsxd therefore characterizes the jet width. The
downstream evolution ofdsxd for the three simulations
DNS1_10, DNS2_10, and DNS5_10 is shown in Fig. 9. The
simulation DNS2_3 corresponding to a smaller value of
ru sru=3; u01/R1=0.08d is also shown for comparison. For

the simulation with moderateru sDNS2_3d, dsxd behaves
similarly to a single jet: it is indeed almost constant for
x/D1,7 and undergoes a sudden transition with a rapid
growth for x/D1.7. In this second stage, transition to tur-
bulence has taken place and the linear growth characteristic
of the turbulent regime is observed. We have checked that
the slope in the linear regime closely coincides with the
slope for a single jet. For the cases with largerru sDNS1_10,
DNS2_10, and DNS5_10d, a decrease ofd is observed before
transition. This corresponds to a so-called pinching phenom-
enum of the coaxial jet which has previously been observed
experimentally.4 For large enough values ofru, the velocity
difference between the outer jet and the inner jet induces a
curvature of the outer mean streamlines towards the jet axis.
This is directly related to the fluid entrainment by the outer
coaxial jet: a limited amount of fluid can indeed be entrained
from the slow part of the jet core and this entrainment even-
tually leads to a fluid depletion in the core region. This fluid
depletion is accompanied by a pressure drop within the jet
core leading to a curvature of the streamlines towards the jet
axis. As previously mentioned, forru larger than the critical
value ruc it eventually yields a reverse backflow near the jet
axis.

The comparison of DNS1_10, DNS2_10, and DNS5_10
allows to show that the pinching phenomenon is also
strongly influenced by the value of the momentum thickness
u01. For a fixed value ofru, the decrease ofu01 is indeed
associated with a decrease of the inner jet bulk velocity. One
can then anticipate that the fluid depletion leading to a low-
pressure region within the jet core will be more pronounced
for small values ofu01 since a smaller quantity of fluid is
injected within the core by the inner jet. This is confirmed by
Fig. 9 which shows that the initial decrease ofd is more and
more pronounced as we go from DNS1_10 to DNS5_10. The
transition towards a turbulent linear growth occurs however
at a shorter downstream location whenu01 is small. This is
due to a faster transition to turbulence in that case as shown
in Fig. 3. It is important to remark that the linear growth rate
in the turbulent regime is identical for all the considered
cases and becomes independent of the initial transitional
stage. Note that the comparison of Figs. 3 and 9 indicates

FIG. 8. Comparison betweenkv8x
2lsx,rd ,kv8r

2lsx,rd, and kv8u
2lsx,rd pro-

files: sad simulation DNS2_10 at the locationx/D1=6; sbd simulation
DNS5_10 atx/D1=3.

FIG. 9. Downstream evolution of jet spreading rate for the four simulations
DNS1_10, DNS2_3, DNS2_10, and DNS5_10.
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that the effect of the turbulence growth has a delayed effect
on the spreading rate. Indeed, it was observed on Fig. 3 that
the rapid growth ofku8x

2l1/2 due to transition was taking
place atx/D1<5, x/D1<4, and x/D1<2 for DNS1_10,
DNS2_10, and DNS5_10, respectively. As shown on Fig. 9,
this turbulence amplification has a direct effect on the
spreading rate only forx/D1ù7, x/D1ù7, andx/D1ù5 for
DNS1_10, DNS2_10, and DNS5_10, respectively. This is
attributable to the fact that the turbulence originates from the
inner shear layer and requires some downstream distance to
diffuse towards the jet exterior and efficiently affect the jet
spreading rate.

We now investigate how the two potential cores of the
jet are affected by a variation in the value ofu01. For a single
jet, the potential core is the region where the flow remains
free from the influence of viscosity. In this cone shaped re-
gion the flow is potential and conserves the streamwise ve-
locity it had at the inlet. For the coaxial jet, we can define
two potential cores, one for the inner round jet 0, r ,R1 and
another for the outer annular flowR1, r ,R2. For these two
inner and outer flow regions, the center of the respective
potential cores can be identified as the radial locations at
which the inlet streamwise velocity is conserved on the long-
est downstream distance. We callrPC1 and rPC2 these two
radial locations for the inner and outer potential cores. Note
thatrPC1=0. We define the length of the potential cores as the
two longest distances we just defined: they are designated as
LPCi with i =1 for the inner potential core andi =2 for the
outer one. From a practical point of view,LPCi are deter-
mined as the two downstream distances from the inlet at
which the mean streamwise velocity starts to differ by more
than 5% from its value at the inlet.

The faster transition to turbulence associated with the
decrease ofu01, is clearly illustrated by Fig. 10 which shows
the variations withR1/u01 of LPC1 and LPC2 at fixed rusru

=10d. The parameterR1/u01 is used here for a better read-
ability of the figures: the simulations DNS1_10, DNS2_10,
and DNS5_10 correspond toR1/u01=10, 12.5, and 25. The
increasingly efficient mixing of momentum due to turbulence
when u01 decreases yields a diminution of bothLPC1 and
LPC2. Note thatLPC1 varies withru ssee belowdwhile previ-
ous studies showed thatLPC2 is independent ofru ssee Rehab,
Villermaux, and Hopfinger7d.

B. Recirculation bubble

We here consider the regime such thatru. ruc. To inves-
tigate the influence ofu01 two simulations are here compared
DNS2_17 sru=17; u01/R1=0.08d and DNS5_17 sru=17;
u01/R1=0.04d. Asru increases the entrainment by the outer
annular jet and the depletion of the inner fluid is more and
more pronounced. Whenru exceedsruc, the inner potential
core breaks and a backflow region establishes associated
with negative streamwise velocity near the jet axis. Figure 11
displays the downstream evolution of the mean axial velocity
on the jet axis for the two simulations DNS2_17 and
DNS5_17. In both cases, a region of negative velocity is
apparent near the jet inlet. The longitudinal extent of the
recirculation region varies withu01 with a smaller value for

sharper velocity gradients: the end of the recirculation
bubble is located aroundx/D1<2.5 for DNS5_17 when it
ends aroundx/D1<3.5 for DNS2_17.

The variation in size of the recirculation bubble is con-
firmed by Fig. 12 which shows positiveQ isosurfaces for
DNS2_17 and DNS5_17. In both cases, a recirculation
bubble is seen to appear near the jet inlet but its longitudinal
extension is significantly reduced for DNS5_17. Figure 13
displays a zoom on the recirculation bubble for both simula-
tions. In both cases, the backflow region is centred atx/D1

<2 but the shape of the bubble significantly varies in func-
tion of u01: for DNS2_17 which corresponds to a relatively
large value ofu01, the Kelvin–Helmholtz vortices of the in-
ner shear layer have not yet developed at this downstream
location. Conversely, DNS5_17 corresponds with a value of
u01 which is twice smaller yielding an earlier formation of
the Kelvin–Helmholtz vortices. In the first case, the bubble is
then surrounded by a quasilaminar flow and it exhibits a very
smooth shape. This is no longer the case in the second case
where the recirculation bubble is significantly perturbed by
the surrounding vortices of the inner shear layer. This has a
significant impact on the flow turbulent behavior. Figure 14
indeed shows the downstream evolution of the rms velocity
componentku8x

2l1/2sx,rd at the jet centerline for both simu-
lations DNS2_17 and DNS5_17, this rms quantity being a

FIG. 10. sad Evolution of the inner potential core lengthLPC1 with R1/u01 sat
ru=10d. sbd Evolution of the outer potential core lengthLPC2 with R1/u01 sat
ru=10d.
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measure of the turbulent activity in the backflow regions1
,x/D1,4d. The recirculation bubble is seen to be laminar
for DNS2_17 with ku8x

2l1/2<0 within the bubble. Con-
versely, the turbulent activity in the bubble is important for
DNS5_17. Note that, in DNS2_17, a peak is present at
x/D1<0.75 due to the turbulent production associated with
the strong streamwise gradient of the mean streamwise ve-
locity component corresponding to the flow deceleration in
the stagnation region at the upstream part of the bubblessee
SBMd.

As already shown by SBM, Fig. 12 confirms that very
elongated and intense longitudinal vortices form just down-

stream of the bubble. The downstream end of the recircula-
tion bubble corresponds with an important longitudinal gra-
dient of longitudinal velocity and consequently with a
significant production of streamwise vorticity. This is con-
firmed by Figs. 15sadand 15sbdwhich, respectively, repre-
sent the downstream evolution of the maximum value of the
longitudinal vorticity rms kv8x

2l. The two simulations,
DNS2_17 and DNS5_17, with a recirculation bubble are
compared with the corresponding simulations without a re-
circulation bubble, DNS2_10 and DNS5_10. A strong in-
crease of the longitudinal vorticity component in the flow
region just downstream of the recirculation bubble is ob-

FIG. 11. Downstream evolution of the axial mean velocity at the centerline
sr =0d for the two simulations DNS2_17 and DNS5_17.

FIG. 12. Visualization of the coherent structures of DNS2_17sad and
DNS5_17sbd simulations near the jet inlet. Cut view of the isosurfaces of
Q=0.5sU2/D1d2 colored by the streamwise vorticity. Light gray corresponds
with negative values and dark gray with positive values.

FIG. 13. Isosurface of zero velocityslight grayd showing the recirculation
bubble and contours of vorticity modulus in the jet central plane:sad
DNS2_17 andsbd DNS5_17.

FIG. 14. Downstream evolution of the axial velocity component rms
ku8x

2l1/2sx,r =0d at the jet centerline for the two simulations DNS2_17 and
DNS5_17.

9



served for both simulations DNS2_17 and DNS5_17. The
peak value reached by this maximum is much larger than for
the corresponding cases without a recirculation bubble: this
indicates that the vortex stretching mechanisms are much
more efficient in the presence of the bubble.

The streamwise vorticity generation just downstream the
recirculation bubble triggers a fast transition towards a fully
developed turbulent regime. This is illustrated by Figs. 16sad
and 16sbdwhich show the downstream evolution of the jet
spreading ratedsxd fsee Eq.s12d for definitiong: DNS2_17
and DNS5_17 are, respectively, compared with DNS2_10
and DNS5_10. The previously mentioned pinching phenom-
enum is observed in the two cases with the recirculation
bubble and is even more pronounced than for the cases
where the bubble is not present. However, for the two values
of u01 here considered, the enhanced turbulent activity down-
stream of the recirculation bubble leads to an earlier linear
turbulent growth. It is important to note that the pinching
phenomenum reaches a limiting value for theru. ruc: indeed
the minimum value reached byd is almost identical for
DNS2_17 and for DNS5_17. This is confirmed by Fig. 17
which shows the variation withru of the radial location of
the outer potential corerPC2 ssee preceding sectiond. The
DNS2 series of simulations are here considered correspond-
ing to R1/u01=12.5. Due to the pinching phenomenum pre-
viously mentioned, the radial extension of the outer potential

core is more and more reduced whenru is increased. This is
confirmed by the experimental observations of Rehab.4 We
remark that a plateau is reached whenru exceeds the critical
value ruc for which a recirculation bubble appearsshereruc

=13d, showing a limitation of the pinching phenomenum in
the presence of a reverse flow region.

FIG. 15. Downstream evolution of the maximal value ofkv8x
2l: sad

DNS2_10 and DNS5_17;sbd DNS5_10 and DNS5_17.

FIG. 16. Downstream evolution of the jet spreading rated: sad DNS2_10
and DNS2_17;sbd DNS5_10 and DNS5_17.

FIG. 17. Evolution withru of the radial localizationrPC2 of the outer poten-
tial sat R1/u01=12.5d.

10



IV. THEORETICAL MODELS

Rehabet al.6 sreferred to as RVHdproposed a theoretical
model aimed at the prediction of the variation withru of the
inner potential core lengthLPC1. Since for their experimental
setup, the inner jet profile was very steep withR1/u01

<100 they restricted their model to the caseR1/u01→`. We
here extend their model to predict the variations laws with
R1/u01 of both LPC1 and the critical ratioruc. We next vali-
date the extended model by comparing our results with our
numerical data.

A. The inner potential core length LPC1

The basic ideas of RVH’s model to predictLPC1 are the
following: the potential core is assumed to be perfectly coni-
cal with a basis of radiusR1 and a lengthLPC1. The entrain-
ment velocity of the fluid within the inner core due to the
shear layer on the jet border is assumed to be equal toue ssee
Fig. 18d.ue is assumed to have a constant intensity and to be
normal to the side surface of the cone. The mass flux injected
in the inner core is equalized with the mass flux crossing the
side with the entrainment velocityue. For an incompressible
fluid, the mass conservation equation can then be written as

pD1
2

4
u1 =

pD1

2
ÎD1

2

4
+ sLPC1d2ue, s13d

which leads to

LPC1

D1
=

1

2
ÎSu1

ue
D2

− 1. s14d

Hereu1 stands for the inner jet bulk velocity. To evaluate the
entrainment velocity, RVH used a so-called entrainment hy-
pothesis assuming that the entrainment velocity is propor-

tional to the rms value of the streamwise velocity fluctuation
uxrms8 within the shear layer,

ue < Cuxrms8 , s15d

whereC is a proportionality constant which depends on the
shear flow under consideration. For the coaxial jet, we will
determinedC through fitting with our numerical results.
RVH and Hussain and Zedan21 experiments showed that the
uxrms8 within a mixing layer is given by

uxrms8 /U1 < 0.17sru − 1d. s16d

A similar value is found in our numerical simulationsssee
Fig. 19d. Equationss15d and s16d yield the following varia-
tion law for the entrainment velocity:

ue/U1 < 0.17Csru − 1d. s17d

For the hyperbolic tangent profile given by Eq.s2d, u1 is
given by

pD1
2

4U1
u1 =

2p

U1
E

0

R1

Umedsrdr dr

= 2pE
0

R1 F ru + 1

2
+

ru − 1

2
tanhS r − R1

2u01
DGr dr .

s18d

It gives

u1

U1
=

ru + 1

2
+ sru − 1dBS R1

u01
D , s19d

with BsR1/u01d verifying

BS R1

u01
D =

1

R1
2E

0

R1

r tanhS r − R1

2u01
Ddr. s20d

Equationss14d, s17d, ands19d provide a new formulation
of RVH’s model taking into account the variations of
LPC1/D1 with R1/u01,

FIG. 18. Schematic diagram of the inner potential core:u1 designates the
inner jet bulk velocity andue the entrainment velocity of the inner jet fluid
into the mixing layer.

FIG. 19. Radial profiles of the mean axial velocityscontinuous linedand of
the rms of the longitudinal velocity fluctuationsdashed linedfor DNS2_5
simulation. The profiles are computed atx/D1=1.
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LPC1

D1
<

1

2
Î 1

s0.17Cd2F1

2

ru + 1

ru − 1
+ BS R1

u01
DG2

− 1. s21d

Note that original RVH’s model is based on a top-hat veloc-
ity profile at the inlet withu1<U1 which leads to the follow-
ing expression forLPC1 which is independent ofR1/u01:

LPC1

D1
=

1

2
ÎSU1

ue
D2

− 2 <
1

2
Î 1

s0.17Cd2

1

sru − 1d2 − 1.

s22d

Figure 20 compares the modified model and RVH’s
model predictions with the results of our numerical simula-
tions. We found thatC=0.85 corresponds to the best fit be-
tween the theoretical model and the numerical results. As far
as the dependence ofLPC1 with ru is concerned, the modified
model yields a better agreement with the numerical values
than the original RVH’s model. It reproduces the decrease of
the inner potential core length with increasingru due to the
enhanced turbulence level and the amplified entrainment.
The advantage of the modified model lies in its ability to
reproduce the correct variations ofLPC1 with u01 and in par-
ticular its decrease when the shear layer becomes steeper.

B. The critical velocity ratio ru

The theoretical determination of the critical ratioruc pro-
posed by RVH is based upon pressure arguments. Due to the
curvature of the mean streamlines, the pressure within the
inner jet core is lower than the outer pressure. Using phe-
nomenological arguments, Villermaux, Rehab, and
Hopfinger22 estimate this pressure jumpDP to be of the or-
der of 1/2ruxrms82 with uxrms8 the streamwise rms velocity fluc-
tuation within the external shear layer of the inner core andr
the fluid density assumed to be constant. Figure 21 shows the
isocontours of the mean pressure near the jet inlet for
DNS1_13. The pressure is normalized by 1/2ruxrms82 and con-
firms the above phenomenological arguments. The ambient
pressure within the inner core is then of the order ofPext

−1/2ruxrms82 , where Pext is the reference external pressure.
The apparition of a reversed flow is necessarily associated
with a stagnation point near the end of the inner potential
core. The pressure at this stagnation point will be of the order
of PS=Pext−1/2ruxrms82 +1/2ru1

2. If PS, Pext, a reverse flow
takes place and the limiting case therefore corresponds to the
balance:

1/2ruxrms82 = 1/2ru1
2. s23d

Using the estimation ofuxrms8 given by Eq.s16d, it yields

0.17sruc − 1dU1 = u1. s24d

Replacingu1 by its expression given in Eq.s19d, we obtain

0.17sruc − 1d =
ruc + 1

2
+ sruc − 1dBS R1

u01
D , s25d

whereBsR1/u01d is defined by Eq.s20d. Therefore the model
to evaluateruc is

FIG. 20. sad Evolution with ru of the inner potential core lengthLPC1 sfor
R1/u01=12.5d. sbd Evolution with R1/u01 of the inner potential core length
LPC1 sfor ru=10d. The points represent our simulations, the continuous lines
the model given by Eq.s21d and the dashed lines RVH’s modelfsee Eq.
s22dg.

FIG. 21. Normalized mean pressuresP−Pextd / ss1/2druxrms8 2d with Pext refer-
ence external pressure plotted in the jet symmetry plane.
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ruc =
Bs R1

u01
d − 0.67

Bs R1

u01
d + 0.33

. s26d

Figure 22 shows that the model is able to satisfactorily
predict the variation ofruc with R1/u01 and confirms the
importance of this parameter for the limit between the two
flow regimes of coaxial jet. Note that the limiting case
R1/u01→` leads toruc→7: our computations therefore in-
dicate that no backflow region can exist forru,7.

V. CONCLUSION

The goal of the present study is to complete previous
experimental and numerical works devoted to the study of
coaxial jets. The influence of the velocity ratio between the
outer jet and the inner jetru=U2/U1 has experimentally been
investigated by Rehabet al.6 In these previous studies very
small values of the inner and outer jet shear layers thick-
nesses were considered. However, Rehabet al. showed that
the shape of the inlet nozzle strongly influences the near jet
behavior and the dynamics of the coherent vortices, since
different nozzle shapes induce a variation in the steepness of
the inner and outer shear layers. Here, we characterize the
respective thicknesses of the two shear layers by their mo-
mentum thicknesses calledu01 and u02. Even for high Rey-
nolds number jets, a variation of the inner lip thickness of the
jet yields a significant variation ofu01. The present paper
uses a series of direct numerical simulations to investigate
the influence ofu01 on the transitional processes in the jet
near-field. As shown by Rehabet al., whenru exceeds a
critical valueruc, the jet exhibits a reverse flow region in its
inner part called a recirculation bubble. We therefore vary
the ratioru and the two distinct jet regimes are successively
considered: the case without a recirculation bubblesru

, rucd and with a recirculation bubblesru. rucd.
We show that, both forru, ruc and for ru. ruc, small

values ofu01 are associated with an earlier jet transition to
turbulence due to a faster destabilization of the inner shear
layer. We then study in detail the mechanisms responsible for

this transition towards a fully developed turbulent state. For
ru, ruc, we show that the three dimensionality of the primary
jet vortices is greatly enhanced for smallu01 and leads to the
appearance of secondary streamwise vortices which are
stretched between consecutive vortices of the inner and of
the outer shear layer. We observe that the transition towards
a fully developed turbulent state is strongly linked with the
formation and stretching of these streamwise vortices. The
critical valueruc separating the regime without and with re-
circulation bubble is found to be strongly dependent onu01.
For ru. ruc, the shape and the length of the recirculation
bubble is seen to be strongly affected by the shape of the
inlet profile: the bubble is indeed significantly shortened
when u01 is small. The downstream region of the bubble is
the siege of intense longitudinal vorticity production yielding
the generation of intense streamwise vortices. Again these
vortices are associated with a fast flow three-
dimensionalization and rapid transition to turbulence.

The thickness of the inner shear layer also affects the
evolution of the global quantities such as the jet spreading
rate and the length of its two potential cores. For large
enough values ofru, the entrainment by the outer jet leads to
an important depletion of the fluid situated near the jet axis.
This depletion is associated with a low-pressure region in the
jet core and with a curvature of the main velocity streamlines
towards the jet axis: this creates a diminution of the jet width
corresponding to a pinching phenomenon. This pinching
phenomenon is more and more pronounced whenu01 de-
creases. The initial pinching stage is followed by a stage of
linear spreading characteristic of a turbulent regime. The lin-
ear growth is reached at shorter downstream distances when
u01 is small due to the faster turbulence growth within the jet
core. The pinching phenomenon is seen to reach a saturation
level for ru. ruc.

Rehabet al.6 proposed a theoretical model based on phe-
nomenological arguments to predict the variations of the in-
ner potential core length withru. The direct numerical simu-
lations allow to verify that the main assumptions of Rehab’s
model are justified. This initial model was however limited
to an inlet velocity profile with a top-hat shape correspond-
ing with u01→0. We here extend the model to nonzero val-
ues ofu01 to theoretically predict the variation laws withu01

of the inner potential core length and of the critical ratioruc.
The variation law of the inner potential length withru was
also determined for finite values ofu01.

The present numerical study allows one to reach a better
understanding of the transitional mechanisms leading to tur-
bulence in coaxial jets. This knowledge could be used for
control purposes by making possible an efficient manipula-
tion of the flow coherent vortices.
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