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Large-eddy simulation of turbulent duct flow: heating and
curvature effects q

J�erôme H�ebrard a,*, Olivier M�etais a, Martin Salinas-Vasquez b

a L.E.G.I./Institut de M�ecanique de Grenoble, B.P. 53, 38041 Grenoble Cedex 09, France
b Instituto de Ingenieria, Unam, Mexico

Large eddy simulations of the turbulent gas flow within ducts of square cross-section are performed. The spatial development of

turbulent flow inside a heated straight duct is first considered with a higher temperature suddenly imposed at one of the duct walls.

The downstream development of the thermal boundary layer is then studied and compared with the fully developed turbulent case.

The gradual increase with temperature of the viscosity near the heated wall yields a progressive enhancement of the turbulent

structures and to a single ejection localized near the middle plane of the heated wall.

The use of curvilinear coordinates allows to consider ducts of more complex geometries and to investigate the combined effects of

heating and curvature. The case of an S-shape duct is then considered exhibiting both convex and concave curvatures. The pressure

gradient between the inner and outer wall of the curved sections leads to the apparition of intense counter-rotating Dean vortices

associated with an intense transverse flow with a maximum intensity of 22% of the bulk velocity. Downstream of the second curved

section of the duct, the flow exhibits a complex distribution of various vortices. In the heated case, the mutual interaction between

the heating and the Dean vortices is investigated. The heating is seen to enhance both the size and intensity of the Dean vortices

when situated close to the heated wall.

Keywords: Turbulence; Large eddy simulation; Heat transfer; Curvature
1. Introduction

For numerous engineering applications, it is impor-

tant to reach a deeper understanding and a better pre-

diction of the heat exchanges between a heated wall and

the adjacent turbulent flow. Among these applications

we are particularly interested in the enhancement of the

heat exchanges taking place within the ducts present in

the wall of the rocket engines to cool the system. For
these applications, it is important to note that the

intensity of the heat fluxes is very high. As far as

numerical modelling is concerned, the statistical mod-
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elling approach heavily relies on empirical laws to mimic
the near wall flow behaviour and the near wall heat

fluxes. In previous works, we have successfully applied

the large-eddy simulation (LES) technique based on the

structure function subgrid-scale model (see Lesieur and

M�etais, 1996) to study both the statistical characteristics

and the instantaneous three-dimensional structures of

the turbulent flow through a straight heated duct (see

Salinas-Vasquez and M�etais, 2001, 2002) at Mach ¼ 0:5.
In the work by Salinas-Vasquez and M�etais (2002) (re-
ferred to as SM), the temperature was imposed at all the

walls and a higher temperature value was prescribed on

one of the walls (referred to as the heated wall). These

boundary conditions for the temperature are compatible

with the use of periodic boundary conditions in the

streamwise direction. This periodic approach presents a

double advantage: first, it allows for a reasonably rapid
convergence of the statistical quantities, since the

streamwise flow homogeneity can be used. Second, for

subsonic flows, periodic boundary conditions are known
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to be well-posed from a numerical view point, at vari-

ance with open boundary conditions. However, in sev-

eral industrial devices involving heated boundary layers,

a given heat-flux is actually imposed at the heated wall
and the turbulent flow can no longer be assumed peri-

odic in the streamwise direction due to the continuous

energy increase along this direction. One has then to

deal with spatially developing turbulent flows which

require a proper prescription of inflow and outflow

boundary conditions: this is a challenging problem for

unsteady subsonic flows which has been previously

investigated by several authors (see e.g. Poinsot and
Lele, 1992; Grinstein, 1994).

Except for the work by SM, there exist no direct

numerical simulations and no LES devoted to the study

of the heat exchanges within closed heated ducts. In a

first part, we extend SM’s work by simulating the spatial

growth of the thermal boundary layer over a heated

wall. As pointed above, this configuration is in closer

correspondence with real industrial situations than a
fully developed thermal state.

The second part is devoted to the study of the com-

bined effects of curvature and heating. Curvature effects

are indeed often present in heat exchangers: this is the

case for the cooling ducts in the walls of the combustion

chamber and of the divergent section of a rocket engine.

We here consider an S-shape duct which mimics the

double curvature effect encountered in the cooling ducts
of a combustion chamber. Although this constitutes a

simplified geometry, this study allows one to reach a

better understanding of the turbulent structures

responsible for the heat exchanges and will serve as a

database to test and hopefully improve the empirical

laws used in classical statistical models of turbulence. To

our knowledge, no experimental data are available

concerning the heated curved duct: this unfortunately
makes any experimental validation impossible. Note

that the duct flow is a very challenging problem for the

classical statistical models of turbulence since it is

characterized by weak secondary flows which cannot be

reproduced by classical eddy-viscosity models of k–�
type. A correct prediction of the curvature effects and of

the flow modifications associated with heating repre-

sents an even bigger challenge for statistical modelling.
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Fig. 1. Numerical configuration.
2. Numerical configuration

All the ducts simulated here have a square cross-

section and Dh designates the hydraulic diameter. We

use the same numerical code as the one used by Salinas-

Vasquez and M�etais (2002) which solves the three-
dimensional compressible Navier–Stokes equations. The

system of equations is solved in generalized curvilinear

coordinates (see Salinas-Vasquez and M�etais, 2002 for

details). We use the same corrector-predictor scheme as
2

the one proposed by Gotlieb and Turkel (1976), but the

finite difference approximation is replaced here by the

compact scheme under McCormack’s formulation, sec-

ond order in time and fourth order in space, devised by
Kennedy and Carpenter (1997). All simulations are

performed at a bulk Reynolds Reb ¼ 6000 and Mach ¼
0:5. The Reynolds and Mach numbers are based on the

bulk velocity (Ub), the bulk density (qb), the hydraulic

diameter (Dh) and the wall temperature (Tw).
As previously pointed out, it is a challenging problem

to impose proper boundary conditions for subsonic

unsteady flows which exhibit a spatial growth. First, to
obtain a fully developed turbulent field at the entry of

our computational domain, the inlet conditions for the

spatially growing duct flow are provided, at each time

step, by a periodic isothermal duct which is concurrently

computed (see Fig. 1).

The periodic duct boundary conditions at the walls

are no-slip and isothermal with an imposed temperature

Tw. The wall pressure is obtained by solving the Navier–
Stokes equations at the wall. For the spatial duct, the

wall boundary conditions are also no-slip and the wall

pressure is determined as previously. The spatial duct is

linked to the periodic duct by the characteristic

boundary conditions proposed by Poinsot and Lele

(1992) (see also Poinsot and Veynante, 2001). The

velocity and the temperature field computed at the last

section of the periodic duct is used to specify the inflow
conditions at the first section of the spatial duct. At the

outlet, the subsonic partially reflective outflow boundary

conditions have been implemented (see Poinsot and

Veynante, 2001).

For the straight duct, the size of the computational

domain is taken equal to 31Dh � Dh � Dh for the spatial

duct and 6:4Dh � Dh � Dh for the precursory periodic

duct with the first length corresponding to the stream-
wise direction and the other two to the two transverse

directions. The corresponding number of grid points are

respectively 318 · 50 · 50 and 64 · 50 · 50. Through grid

refinement, we have checked that the results are almost

independent of the grid resolution.

In the case of the S-shape duct, the size of the domain

is taken equal to 15Dh � Dh � Dh. The corresponding

number of grid points are respectively 160 · 50 · 50. The
precursory periodic duct is identical to the previous case.
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Fig. 2. S-shape duct configuration.
Note that the S-shape duct possesses two curved wall:

one with a succession of a concave curvature followed

by a convex curvature when the opposite wall exhibits a

convex–concave curvature. We here use a right-handed

curvilinear coordinates system s, n and z where s follows
the flow direction; n corresponds with the direction
normal to the curved walls with n=Dh ¼ 0 taken on the

concave–convex wall; z is normal to the lateral walls.

The Dean number constitutes the characteristic number

for closed flows submitted to curvature effects: in the

present case, Dn ¼ Re� ðDh=RcÞ1=2 � 2353 where

Rc ¼ 6:5 is the curvature radius on the duct centerline. A

hyperbolic stretching is used in the n and z directions

and the distance of the first grid point from the walls is
given by y=Dh ¼ z=Dh ¼ 0:0046 (straight duct) and

n=Dh ¼ z=Dh ¼ 0:0046 (S-shape duct) corresponding

with yþ ¼ zþ ¼ nþ ¼ 1:8 in wall units of the precursory

periodic duct. The detailed configuration for the S-shape

duct is described in Fig. 2.

As far as the mean quantities are concerned,

hf iðx; y; zÞ (resp. hf iðs; n; zÞ) stands for the time average

of the variable f . The bulk quantity fb refers to the
mean quantity hf i integrated along both transverses

directions at a given cross-section x (straight duct) or s
(S-shape duct): fb is therefore a function of the

streamwise location. We note the root mean square

quantities as urms, vrms, wrms, Trms and the Reynolds

stress components as hu0v0i, hu0w0i and hv0w0i.
Fig. 3. Turbulent structures in the straight heated duct. Left: Fluctuant

streamwise velocity near the hot wall, zooms near the inlet and the

outlet of the duct. Middle: Fluctuant temperature near the hot wall.

Right: Instantaneous Q isosurfaces Q ¼ 0:5ðUb=DhÞ2 on the hot wall,

zooms near the inlet and the outlet of the duct.
3. Results

3.1. Straight duct

As a validation of our numerical procedure, a spatial

duct with all its walls at the imposed temperature Tw has

first been considered. A correct prescription of the outlet

boundary conditions should yield a flow statistically
identical with the flow in an isothermal periodic duct as

the one studied through direct numerical simulation

(DNS) by Gavrilakis (1992) and the statistics should

therefore be independent of the streamwise direction.

We have checked that, despite the relatively low reso-

lution of our LES, a very good concordance is observed

between our computation and the DNS results of
3

Gavrilakis (1992) both for the first and second order

statistics.

We next study the spatial development of the thermal

boundary. The temperature of one of the four walls is
abruptly changed from Tw to Th ¼ 2:5Tw for x=Dh P 0:4.
The other three walls have a constant temperature Tw
over the whole length of the duct. As shown by SM, an

important factor in the flow development is the viscosity

enhancement due to the temperature increase close to

the heated wall which induces a global augmentation of

the characteristic size of the turbulent boundary layer

structures. For high enough heating, SM showed that, in
the periodic duct, the size of the flow ejections from the

heated wall becomes such that these concentrate near

the duct middle plane and tend to disappear in the

other regions. The advantage of a spatially growing



simulation is the ability to visualize the progressive

change of the flow structures near the heated wall. Fig. 3

shows a top view looking at the heated wall of the

fluctuating fields for the temperature and the streamwise
velocity in a plane parallel to the heated wall in the

vicinity of the latter at y=Dh ¼ 0:01 (yþ ¼ 4). Positive

streamwise fluctuations (in light grey) correspond to fast

fluid transported towards the wall (sweeps) and negative

streamwise fluctuations (in dark grey) are associated

with slow fluid ejected from the wall (ejections). The

former correspond to cold fluid transported towards the

hot wall and are consequently associated with negative
temperature fluctuations (in dark grey) and the latter

correspond to hot fluid ejected into the colder outer

region (positive temperature fluctuations in light grey).

Near the duct inlet, we recognize the characteristic sys-

tem of low and high speed streaks with their elongated

and narrow shape. From x=Dh � 8:0, these become

longer and wider as we move downstream and eventu-

ally their width is such that only two or three streaks are
visible near the duct outlet. It is now well recognized
Fig. 4. Instantaneous temperature and transversal vel
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that the Q criterion based upon the second invariant

of the velocity derivative tensor is a good way to iden-

tify the coherent structures. We recall that Q ¼
1
2
ðXijXij � SijSijÞ with XijXij the antisymmetric and SijSij

the symmetric part of the velocity gradient tensor (Hunt

et al., 1988; Dubief and Delcayre, 2000). Fig. 3 shows

that the turbulent structures, identified with the positive

Q isosurfaces, are very numerous at the inlet, but their

number decreases in function of the streamwise direc-

tion. They concentrate around the middle wall plane

and their longitudinal length is larger near to the outlet.

It is well known that the near wall structures such as the
streaks and the ejections scale with the viscous length.

The progressive enhancement of the size of the turbu-

lent structures is therefore directly linked with the pro-

gressive viscosity increase due to the temperature

augmentation as we move downstream. By the end of

the duct, only one ejection from the heated wall can

occur and it is situated in the vicinity of the duct middle

plane. The progressive formation of this central ejection
is clearly illustrated in Fig. 4 which displays the
ocity vector fields for x=Dh ¼ 10, 20, 25 and 30.



instantaneous temperature contours and the instanta-

neous transversal velocity vectors at four different x
cross-sections. For increasing downstream distance, we

assist in the expulsion of hot fluid towards the duct core
from the near wall region situated near the middle plane

of the heated wall. This ejection is associated with a

secondary flow transverse to the duct longitudinal

direction consisting of fluid going away from the heated

wall near the duct central plane bordered with cold fluid

going towards the hot wall in a mushroom shape fash-

ion. The downstream formation of this secondary flow is

illustrated by Fig. 5 which shows the mean velocity field
projected on several cross-sections for increasing x.
From the left to the right of Fig. 5, x=Dh ¼ 0, 10, 20 and
z/Dh = 0.5

y / Dh

–〈

Fig. 6. Zoom on �hu0v0i profiles close the hot wall as a function of the dis

z=Dh ¼ 0:25 from the lateral wall. Periodic heated duct (N); periodic non-heat

(––); x=Dh ¼ 15 (� � �); x=Dh ¼ 23 (– - –); x=Dh ¼ 30 (–– ––). Values are norma

Fig. 5. Mean transversal velocity vector fields in a half section for z=Dh extend
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30. Note that x=Dh ¼ 0 correspond to the non-heated

case.

The secondary flow is progressively amplified both in

intensity and size and reaches an intensity of 2.2% of Ub

near the duct inlet up to 3.5% near the duct outlet. The

gradual downstream development of the ejections is

confirmed by Fig. 6 which displays the �hu0v0i profiles as
a function of y=Dh at various x-locations. This Reynolds

stress component is a well known tracer of the ejections

and sweeps mechanisms and SM demonstrated the

strong enhancement of this component in the periodic

heated duct. The viscosity increase associated with the
heating reduces the turbulence in the near wall region.

Consequently, the amplitude of �hu0v0i is progressively
z/Dh = 0.25

u'v'〉

tance y=Dh from the wall and at two fixed distances z=Dh ¼ 0:5 and

ed duct (�). Spatial duct for different distances from the inlet: x=Dh ¼ 0

lized by the local bulk velocity.

ing from 0 to 0.5 at x=Dh ¼ 0, 10, 20 and 30 (from the left to the right).
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Fig. 7. Pressure coefficient cp at a fixed distance z=Dh ¼ 0:5 from

the lateral walls. Non-heated S-shape duct: (––) n=Dh ¼ 0 (concave/

convex wall); (– – –) n=Dh ¼ 1 (convex/concave wall). Heated S-

shape duct (Th=Tw ¼ 2): (� � �) n=Dh ¼ 0; (– - –) n=Dh ¼ 1. Heated S-

shape duct (Th=Tw ¼ 3): (–– ––) n=Dh ¼ 0; (–– - ––) n=Dh ¼ 1. The

vertical dotted lines represent the beginning and end of the curved

sections.
reduced as we move downstream of the spatial duct.

This is observed in both planes z=Dh ¼ 0:25 and

z=Dh ¼ 0:5. In the duct middle plane z=Dh ¼ 0:5, the

maximum of the �hu0v0i profile is however progressively
shifted away from the heated wall as the downstream

distance increases: this indicates a gradual increase in

the size of the ejections. Note that, even by the end of

the duct, the size of the ejections is far from the one

observed in the periodic heated duct of SM. Indeed,

both the position and the amplitude of the �hu0v0i peak
are lower than the values observed in the periodic case.

This indicates that a fully developed thermal state takes
a very long downstream distance to establish and that

31Dh are not sufficient to reach this state. In the plane

z=Dh ¼ 0:25, we assist in the progressive damping of

�hu0v0i maximum and a decrease in the size of the

ejections: this indicates than these are more and more

concentrated around the duct central plane.
3.2. S-shape duct

Many works have been devoted to the study of the

laminar flow within curved ducts focusing on the

development of the coherent vortices called Dean vor-

tices and the dependence of the flow structure on the

Dean number (see e.g. Mees et al., 1996). As far as

turbulent curved ducts are concerned, previous works

were mainly devoted to comparisons between experi-
mental works and statistical numerical modelling at high

Reynolds numbers (see e.g. Sotiropoulos and Ventikos,

1998). Experimental works on the S-shape duct were

performed by Bandyopadyhay and Ahmed (1993) or

Bruns et al. (1999) in order to study the effect of two

successive inverse curvatures. Since the Reynolds num-

ber in this experimental work is too high to be reached

with our LES technique, only qualitative comparisons
can be made: we have checked that our results provide

the right trends as compared to experimental results.

We here consider a duct of square cross-section and

concentrate on the turbulent structures present within

the flow and the effect of heating on these structures.

The previous works have shown that, both in the lami-

nar and turbulent cases, the pressure gradient between

the inner and outer wall of the curved section leads to
the formation of an intense secondary flow constituted

of large counter-rotating vortices called Ekman or Dean

vortices. Fig. 7 illustrates the formation of a radial

pressure gradient: it shows the pressure coefficient in the

middle plane (z=Dh ¼ 0:5) of the concave–convex wall

and of the convex–concave wall

cp ¼
hpð~xÞ � p0i

1
2
U 2

bqb

ð1Þ

where p is the pressure at the corresponding wall and p0
designates the pressure at the duct inlet. We first notice
6

the global decrease of cp over the total length of the duct

associated with the longitudinal mean pressure gradient

within the duct. In the curved part of the duct situated

near the inlet (1 < s=Dh < 3), the pressure coefficient is

enhanced on the concave wall (n=Dh ¼ 0) owing to

centrifugal effects (Fig. 7). Conversely, cp is reduced on

the convex wall (n=Dh ¼ 1): this indicates the presence of

a radial pressure gradient directed from the convex wall
towards the concave wall which drives a secondary flow

from the concave wall to the convex wall. A similar

pressure gradient is observed in the duct second curva-

ture, but the concave wall now corresponds to n=Dh ¼ 1

while the convex wall corresponds to n=Dh ¼ 0. The

progressive formation of the secondary mean flow is

illustrated in Fig. 8 which shows the mean velocity

vector projected on several cross-sections located at
increasing values of s along the duct. In the straight part

of the duct near the inlet, the flow exhibits two weak

counter-rotating vortices in the four corners of the duct.

Within the first curved part, the radial pressure gradient

induces a strong current concentrated near the side wall

of the duct and directed from the concave towards the

convex wall. Conversely, near the duct middle plane, the

side wall current is compensated by a descending current
away from the convex wall. Two large scale counter-

rotating vortices eventually form near the convex wall

which are clearly visible in the straight part located be-

tween the two curvatures (location 3). In the second

curved part, the side wall current is inverted and now

flows from the top to the bottom in Fig. 8. By the same

mechanism as the one previously described this yields a

new pair of vortices in the vicinity of the convex wall
(bottom of the figure, locations 4 and 5). In the final

straight part of the duct, the two vortices near the top

wall are still distinguishable but an extra pair of vortices



Fig. 8. Non-heated S-shape duct: visualization of the mean secondary flows for six downstream locations. The bottom wall corresponds to the

concave–convex wall when the top wall corresponds to the convex–concave wall.
forms in the corners of this wall. The bottom wall also

exhibits a system of four vortices. Fig. 9 displays a three-

dimensional view of the mean vortices forming within

the duct that we will call Dean vortices. Note that the

maximum intensity of the secondary flow is 22% of the
bulk velocity. It is important to note that the instanta-

neous field is quite distinct from the mean field. Fig. 10

displays the instantaneous isosurfaces of positive Q and

shows that the large mean Dean vortices are indeed

constituted of several fragmented elongated vortices

which are unsteady. The presence of the radial pressure

gradient strongly modifies the mean flow and therefore

the turbulent production. We next consider the skin
friction coefficient in the middle plane (z=Dh ¼ 0:5) of

the concave–convex wall and of the convex–concave

wall (see Fig.11):
7

cf ¼
hswð~xÞi
1
2
U 2

bqb

ð2Þ

where sw is the shear stress at the wall sw ¼ l
�
ohUi
on

�
n¼0

. cf
is non-dimensionalized by the averaged friction coeffi-

cient calculated on the centerline of the wall

cfm ¼ 1
DhLc

R Lc
0
cfðsÞds, Lc is the length of the S-shape duct.

The downstream evolution of cf exhibits the same

characteristics than the coefficient experimentally mea-

sured by Bandyopadyhay and Ahmed (1993) (see their

Fig. 5). Let us first consider the behaviour of cf near the
concave–convex wall. As pointed out by Bandyopady-

hay and Ahmed (1993), the initial drop of cf near the
inlet is attributable to the radial pressure effect which

tends to push the fluid away from the concave wall.

Further downstream, the centrifugal effects push the



Fig. 9. Visualization of the Dean vortices through isosurfaces of the mean longitudinal vorticity in the S-shape duct.

Fig. 10. Instantaneous visualization of the turbulent structures through

positive Q isosurfaces: Q ¼ 0:7ðUb=DhÞ2.

s / Dh

cf / cfm

Fig. 11. Normalized friction coefficient: see legend on Fig. 7.
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flow towards the concave wall inducing an increase of cf .
At the end of the bend, cf tends to decrease towards the

value it would have in a straight duct. Just before the

second bend is reached, the pressure gradient is now
directed towards the wall which now presents a convex

curvature: this implies an increase of cf . Within the bend

the convex curvature induces a strong decrease of the

skin friction. The subsequent straight part is associated

with an increase corresponding to the return for cf to its

straight duct value. Note that an overshoot is observed

with a value of cf larger than one: this is certainly

attributable to the persistence of the Dean vortices after
the curved region. Fig. 12 displays the profile of the

turbulent kinetic energy per mass unit k ¼ 1
2
ðhu02iþ

hv02i þ hw02iÞ at the beginning and at the end of each

curved region of the duct. At the end of the first bend,

we observe a high level of turbulence production owing

to the velocity gradient enhancement near the concave

wall. Conversely, the turbulence intensity clearly

diminishes near the opposite convex wall due to the
reduced production in that flow region. In the second

bend, a turbulent kinetic energy peak appears near the

concavely curved wall (n=Dh � 1). Note that the turbu-

lence peak in the second curved region is driven away

from the convex–concave wall (n=Dh ¼ 1) towards the

duct core by the strong ejection induced by the Dean

vortices present near this wall.
3.3. Heated S-shape duct

To investigate the mutual effect of the heating and of

the Dean vortices, we have performed a LES of the same

S-shape duct as previously described but the concave–

convex wall (n=Dh ¼ 0) is now heated by imposing a



n / Dh

102 × k/Ub
2

Fig. 12. Profiles of the turbulent kinetic energy at a fixed distance z=Dh ¼ 0:5 from the lateral wall for four distances from the inlet, s=Dh ¼ 1, 3.1, 6.5

and 8.7 (from the left to the right). Non-heated S-shape duct (––); heated S-shape duct (Th=Tw ¼ 2: (–– ––) and Th=Tw ¼ 3: (� � �)).
temperature Th higher than the one of the other three

walls Tw. Two heating intensities are here considered

corresponding with Th=Tw ¼ 2 and Th=Tw ¼ 3. As shown

by SM and as we have seen in the first section devoted to

the straight heated duct, the heating reinforces the

ejection mechanism from the heated wall. Fig. 13 clearly
shows that the same mechanism is here at play. By the

end of the duct, the two Dean vortices observed near the

heated wall (bottom wall on the figure) are enhanced

both in size and intensity: their intensity is indeed in-

creased by 1.5% for Th=Tw ¼ 2 and 3% for Th=Tw ¼ 3 in

the second curvature as compared to the non-heated

case. The presence of these vortices of larger size implies

that the pair of Dean vortices near the opposite wall are
squeezed and therefore exhibit a smaller and smaller size

as the heating is increased. This reduction in size can be

seen in Fig. 12: at the end of the second curve

(s=Dh ¼ 8:7), the kinetic energy peak associated with the

Dean vortices near the convex wall is progressively

shifted towards the convex wall as the heating is in-

creased. Conversely, the turbulent intensity is globally

reduced near the heated wall due to the viscosity increase
with temperature. This trend is clearly noticeable on the

pressure and friction coefficients (see Figs. 7 and 11). The

pressure drop within the duct is clearly enhanced when

heating is applied ought to the larger energy dissipation.

The skin friction on both concave–convex and convex–

concave walls are similarly reduced indicating that the

velocity gradients are reduced by viscosity.

In Fig. 14, we plot the downstream evolution of the
heat flux at the heated-wall for both heated cases

Th=Tw ¼ 2 and Th=Tw ¼ 3.

The heat flux is defined by the Nusselt number:

Nuðs; zÞ ¼ Hwðs; zÞ=ðjðTwÞTw=DhÞ ð3Þ

with Hwðs; zÞ ¼ hjðT Þi ohT ðs;n;zÞi
on jn=Dh¼0 the mean wall heat

flux. jðT Þ is the thermal conductivity obtained assuming

the molecular Prandtl number is constant and equal to
9

0.7. The temperature dependence of the molecular vis-

cosity is prescribed through a Sutherland empirical law

(see e.g. White, 1991).

In the straight part of the duct near the inlet, strong

ejections in the middle plane of the heated wall induce a

strong reduction of the heat flux in that plane: indeed,
the transport of the hot fluid away from the heated wall

gives rise to a region where the temperature is quasi-

homogeneous (see SM). It is associated with weak

temperature gradients and therefore weak heat fluxes.

As we move downstream, the early decrease of the heat

flux in the straight part is followed by a strong increase

on the concave heated wall. This is attributable to the

formation of the Dean vortices on the opposite convex
wall which induce an intense transport of cold fluid

away from the convex wall towards the concave hot

wall: this amplifies the temperature gradients near the

concave wall and consequently the heat flux. A dimi-

nution due to the oblique straight part follows, since the

intensity of the secondary flow, driving cold fluid from

the core toward the heated wall, decreases. When the

heated wall becomes convex, the formation of two new
counter-rotating structures near this wall enhance the

ejection of hot fluid implying a sharp decrease of the

heat flux. The heat flux increases in the final straight part

of the duct due to the gradual attenuation of the Dean

vortices near the heated wall. Note that the heat flux is

maximal at the end of the first curve and minimal at the

end of the second curve: the ratio between these two

extrema is of the order of five. Fig. 15 shows the
instantaneous heat flux on the hot wall. The strong val-

ues of the heat flux (dark grey) on the concave wall of the

first curvature are seen to be concentrated near the wall’s

middle part and near the corners: these are due to cold

fluid impacting the hot wall. In the straight part near the

duct outlet, the appearance of the Dean vortices close

to the hot wall leads to an enhancement of the heat

flux close to the duct corners. As we move away from



Fig. 13. Comparison between the non-heated and the heated S-shape ducts: visualization of the mean secondary flows at locations three and six

of Fig. 8.
the curved part, the attenuation of the Dean vortices

leads to a progressive diminution of the heat flux inten-

sity.
4. Conclusion

Through large-eddy simulation (LES) techniques, we
have simulated the heat exchanges taking place within

closed turbulent ducts of square cross-section. The case

of a gas was considered here and we simulated the fully

compressible Navier–Stokes equations.
10
We first considered the spatial development of the

thermal boundary layer in a straight duct with one of its

walls suddenly heated at a higher temperature than the

other three walls. This study was motivated by the

numerous applications where the flow in cooling pas-

sages undergoes a spatial growth before eventually

reaching a fully developed turbulent state. As far as the

heated straight duct is concerned, previous numerical
studies by Salinas-Vasquez and M�etais (2002) related to

the fully developed turbulent regime have clearly

demonstrated the dominant role played by the viscosity

increase near the heated wall. This increase yields a



Nu

s / Dh

First
Curvature

Second
Curvature

Fig. 14. Local Nusselt number at the heated wall at z=Dh ¼ 0:5

and n=Dh ¼ 0 in function of the streamwise direction s=Dh (Th=Tw ¼ 2

(– – –) and Th=Tw ¼ 3 (� � �)).

Nu (s,z) = 50

Nu (s,z) = 0

Fig. 15. Local Nusselt number at the heated wall (Th=Tw ¼ 3).
global augmentation of the size of the turbulent struc-

tures which leads to the widening of the low- and high-

speed streaks system and to the formation of a single

ejection of fluid away from the heated wall localized

near the central plane of the latter. This ejection is

associated with an enhancement of the transverse mean

secondary flow characteristic of the flow in a closed duct

of square cross-section. The advantage of simulating the
spatial growth of the flow relies upon its ability to

investigate the progressive downstream formation of the

flow turbulent structures.

Although the simulation displays the progressive

enhancement of the size of the characteristic turbulent

structures of the boundary layer and a progressive

amplification of the transverse secondary flow, the

present LES showed that the establishing of a fully
developed thermal state requires a downstream distance

longer than 31 Dh which was considered here.

In several industrial configurations of heat exchang-

ers, heating and curvature effects are often simulta-

neously present. To study these combined effects,

we next simulated a S-shape duct which presents the
11
interesting particularity of exhibiting two successive in-

verted curvatures. Indeed, one of the curved wall pre-

sents a concave–convex curvature while the opposite

curved wall has a convex–concave curvature. In agree-
ment with the previous experimental works, we found

that the pressure gradient between the inner and outer

wall of the curved section leads to the apparition of

intense counter-rotating Dean vortices associated with

an intense transverse flow with a maximum intensity of

22% of the bulk velocity. These are found to be located

near the convex wall. Furthermore, we investigated how

these Dean vortices are affected by the second curvature.
In the heated case, we varied the heating intensity to

determine the mutual interaction between the heating

and the Dean vortices. The heat flux on the heated wall

is found to be strongly influenced by the various vorti-

ces: impinging regions with the heated wall indeed cor-

respond with important heat fluxes, when ejections are

associated with low heat fluxes. Furthermore, the heat-

ing is seen to enhance both the size and intensity of the
Dean vortices situated close to the heated wall. Some

previous experimental works have been devoted to S-

shape duct in the non-heated case but, to our knowl-

edge, no previous work has been devoted to the heated

case. The present work may hopefully be used as a test

case for turbulence modelling approaches which heavily

rely on empirical laws.
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