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Abstract. We propose a modified version of the selective structure function
(SSF) model originally proposed by David (1993 PhD Thesis National Polytechnic
Institute, Grenoble). As compared with the SSF model, the modified selective
structure function (MSSF) model respects in a better way the energetic exchanges
between the supergrid and the subgrid scales and automatically adjusts itself to
the discretization thinness of the most energetic scales. Using the PRICELES
industrial code, we first simulate decaying homogeneous isotropic turbulence at
high Reynolds number. The MSSF model is shown not to dissipate the supergrid
scale energy when the kinetic energy is present at large scale only. It leads to
a good prediction of the time decay law and to kinetic energy spectra with a
well defined k−5/3 spectral range extending up to the cut-off wavenumber. The
results of the MSSF model are found to be very close to those obtained with
Smagorinsky’s dynamic model of Germano et al (1991 Phys. Fluids A 3 1760–5).
For low Reynolds number isotropic turbulence, a very satisfactory comparison
with the experimental data of Comte-Bellot and Corrsin (1971 J. Fluid Mech.
48 273–337) is obtained. In the turbulent channel flow, the MSSF model was
shown to allow for a much better prediction of the friction velocity owing to its
less dissipative character in the near-wall region as compared to the SSF model.

PACS numbers: 47.27.Gs, 47.27.Jv
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1. Introduction

A subgrid-scale model which parametrizes the small scales in a Large-Eddy Simulation (LES)
approach is properly designed when its action on the supergrid scales is limited to the most
active turbulent flow regions. Smagorinsky’s model in his original formulation (Smagorinsky [4];
see also Lesieur and Métais [5]) is known to be too dissipative when one uses a Smagorinsky’s
constant (called CS) analytically determined by assuming that the cut-off scale between the
subgrid and the supergrid scales is located within a Kolmogorov cascade (see Lilly [6]). For a
Kolmogorov constant of 1.4, this analytical determination yields CS ≈ 0.18. Deardorff [7] in his
pioneering LES of a turbulent channel flow took CS = 0.1, which represents a reduction by nearly
a factor of four of the eddy viscosity. For this value, Smagorinsky’s model behaves reasonably
well for the turbulent channel flow with wall laws (Deardorff [7], Moin and Kim [8]) and for
free-shear flows. Despite the reduction of CS , it can be shown (see, e.g., Meneveau and Katz [9])
that Smagorinsky’s model does not allow for a proper decay of the turbulent viscosity near a
wall. It then yields too large a dissipation in this region unless one uses an ad hoc wall function
(see, e.g., Deardorff [7], Moin and Kim [8]). For this reason, it does not work for transition in a
boundary layer developing upon a flat plate: it artificially relaminarizes the flow if the upstream
perturbation is not high enough. Inspired by a spectral eddy-viscosity formulation, Métais and
Lesieur [10] derived the so-called structure function (SF) subgrid-scale model based upon the
second-order structure function of the velocity. Although this model yields a better behaviour
than Smagorinsky’s model for decaying isotropic turbulence (see Métais and Lesieur [10]), it also
turns out to be too dissipative for transition in a boundary layer again yielding relaminarization.

These defects of the original models led to the development of new models which
automatically adjust to the local flow conditions. In Smagorinsky’s dynamic approach (Germano
[11], Germano et al [2]), Smagorinsky’s constant (which is no longer a constant) is determined
in each point and at each instant through a double-filtering approach. Note that this dynamic
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procedure can also be applied to any eddy-viscosity model such as the SF model. The reader
can, for instance, refer to El-Hady and Zang [12] for an application of the dynamic SF model
to a compressible boundary layer above a cylinder. As far as spectral models are concerned,
Lamballais et al [13] proposed the spectral-dynamic model consisting of a refinement of spectral
eddy-viscosity models taking into account non-developed turbulence in the subgrid scales. This
model is based on an instantaneous adjustment of the turbulent eddy-viscosity coefficient to
the deviation, at small scales, of the spectral slope with respect to the standard Kolmogorov
law. The selective (David [1]) and the filtered (Ducros et al [14]) SF models also constitute
self-adjusting subgrid-scale models. In the filtered version, the SF is computed not from the raw
supergrid scale velocity field but from the supergrid scale velocity field previously submitted to
a high-pass filter: this pre-filtering operator removes the contribution to the eddy viscosity of
the non-turbulent low-frequency oscillations. This model has allowed the successful study of the
full transition to turbulence in a weakly-compressible spatially developing boundary layer over a
flat plate (Ducros et al [14], Briand [15]). The present paper is focused on the selective structure
function model originally proposed by David [1] for which we propose an improved version here.

The paper is organized as follows. Section 2 is devoted to the original selective structure
function (SSF) model proposed by David [1]. We first recall the SSF model formalism. The
numerical methods used for the various tests are described and we present LES of decaying
isotropic turbulence at high Reynolds number and compare the predictions of the SSF model
with the classical SF model. An improved version of the SSF model is proposed in section 3:
the modified selective structure function (MSSF) model. It is then applied to decaying isotropic
turbulence at high Reynolds number and compared to various other models: the SF model, the
SSF model and Smagorinsky’s dynamic model (section 4.1). The case of low Reynolds number
turbulence is next considered in section 4.2 by comparing the LES results with the experimental
data of Comte-Bellot and Corrsin [3]. Finally, section 5 is devoted to LES of the turbulent
channel flow.

2. The selective structure function model

2.1. Methodology

We consider here a flow of constant density ρ0. Let Δx be a scale characteristic of the grid mesh.
To eliminate the subgrid scales, we introduce a filter of width Δx such that the convolution of
any quantity f(�x, t) by the filter function GΔx(�x) in the form

f̄(�x, t) =
∫

f(�y, t)GΔx(�x − �y) d�y (1)

corresponds to the supergrid-scale field. The subgrid-scale field is the departure of the actual
flow with respect to the filtered field:

f ′ = f − f̄ . (2)

The application of the filter to the momentum equations yields the classical subgrid-stress tensor,

Tij = ūiūj − uiuj (3)

which has to be modelled. ui stands for the ith component of the velocity field expressed in a
Cartesian frame of reference.

The SF model is the extension to physical space of the spectral subgrid-scale models based
upon a spectral eddy viscosity scaled on

√
E(kC)/kC where E(kC) is the kinetic energy spectrum

at the cut-off wavenumber kC (see Métais and Lesieur [10], Lesieur and Métais [5]). Since it is
an eddy-viscosity model, one can then write:

Tij = 2νSF
t (�x,Δx, t)S̄ij + 1

3Tllδij (4)
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where S̄ij is the supergrid scale deformation tensor:

S̄ij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (5)

To determine the turbulent eddy-viscosity coefficient νSF
t , Métais and Lesieur [10] use the local

structure function constructed with the filtered velocity field �u(�x, t),

F2(�x,Δx, t) = 〈[�u(�x, t) − �u(�x + �r, t)]2〉‖�r‖=Δx (6)

where F2 is calculated with a local statistical average of square (filtered) velocity differences
between �x and the six closest points surrounding �x on the computational grid. Assuming a
k−5/3 spectrum extending from zero to the cut-off wavenumber

kC = π/Δx (7)

one obtains, through energy conservation arguments (see Métais and Lesieur [10] for details),

νSF
t (�x,Δx, t) = 0.105C

−3/2
K Δx[F2(�x,Δx, t)]1/2 (8)

where CK is the Kolmogorov constant.
The idea of the SSF model proposed by David [1] is to switch off the eddy viscosity in the

regions where the flow is not three dimensional enough. The criterion of three-dimensionalization
is defined as follows. First, a mean vorticity vector �ωm is computed at each point M and at each
instant. On a structured three-dimensional mesh, it is calculated by considering the arithmetic
mean weighted by the inverse of the distance d(M, Mi) between the point M and the six closest
points Mi located around M :

�ωm(M, t) =

6∑
i=1

(1/d(M, Mi))�ω(Mi, t)

6∑
i=1

(1/d(M, Mi))

(9)

where �ω(Mi, t) is the instantaneous vorticity vector at point Mi. Second, the angle α between
the instantaneous vorticity vector at point M , �ω(M, t), and �ωm(M, t) is determined:

α(M, t) = arccos
(

�ωm(M, t) · �ω(M, t)
‖�ωm(M, t)‖ ‖�ω(M, t)‖

)
. (10)

David [1] carried out a LES of decaying isotropic turbulence at a resolution of 323 collocation
points with a Kolmogorov k−5/3 spectrum extending from k = 0 to k = kC . It was found
that the probability distribution function (PDF) of α peaks at a value of 20◦, which is thus the
most probable value. Based on this observation, David [1] then proposed to cancel the eddy
viscosity at points where this angle is smaller than 20◦, that is to say in regions where the flow
is locally close to a two-dimensional state. As compared to the original SF model, this subgrid-
scale model dissipates the supergrid scale energy at fewer points of the computational domain
and the model constant of 0.105 (see equation (8)) has then to be increased to satisfy energy
conservation. David [1] chose to impose to have the same spatially-averaged eddy coefficients
for both the SF model and the SSF model, so that

〈νSF
t (�x, t)〉 = 〈νSSF

t (�x, t)〉 (11)

where the brackets stand for a spatial average over the whole computational domain. In the
framework of his decaying isotropic turbulence LES, David [1] finally obtained the following
eddy-viscosity formulation:

νSSF
t (�x,Δx, t) = 0.172Φ20◦(�x, t)C−3/2

K Δx[F2(�x,Δx, t)]1/2 (12)
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where Φ20◦(�x, t) is the indicating function based on the value of α:

Φ20◦(�x, t) =
{

1 if α ≥ 20◦

0 if α < 20◦.
(13)

Although this model allows one to obtain good results for various incompressible and
compressible turbulent flows (see, e.g., Lesieur and Métais [5], for a review), it presents some
weaknesses which may render difficult its adaptation to very irregular meshes or to unstructured
meshes. First, it seems obvious that the critical angle αc has to depend on the local numerical
resolution. Indeed, for an infinitely refined resolution with a local grid size tending to zero, the
vectors �ωm(�x, t) and �ω(�x, t) are identical and the angle αc tends to zero. Second, it is well known
that the global kinetic energy exchange between the supergrid and the subgrid scales for any
eddy-viscosity model is given by

〈2νtS̄ijS̄ij〉. (14)

If kC is assumed to be located in a Kolmogorov cascade, the loss of energy by the supergrid scales
closely approximates the energy which cascades through the inertial subrange and is subsequently
dissipated by viscosity. From the energetic point of view, a more strongly justified SSF model
therefore requires that the global energy lost by the supergrid scales has to be identical when
using the SF model or the SSF model. This leads to the following relation,

〈2νSF
t S̄ijS̄ij〉 = 〈2νSSF

t S̄ijS̄ij〉 (15)

which has no reason to be fulfilled by the SSF model satisfying equation (11). The modified
SSF model that we propose in the next sections is aimed at correcting these deficiencies of the
original SSF model.

2.2. Numerical algorithm

One of the motivations of the present work consists in testing the performances of our subgrid-
scale models with an industrial code which could also be used for further applications in complex
geometries of industrial interest. The simulations are then performed with the PRICELES code
(Bieder et al [16]). The discretization can be either structured with the finite-difference volume
version of the code or unstructured with the finite-element volume version. We only consider
the structured version here. Pressure and velocity components are defined on different nodes
of a staggered grid. The discrete form of the momentum and continuity equations for the
supergrid scale field leads to a linear algebraic system. To solve this system, we use here a
matrix projection method inspired by the SOLA algorithm originally proposed by Hirt et al
[17]. The reader is referred to Ackermann [18] for further details. The Poisson equation is solved
by a conjugate gradient method with a SSOR preconditioning. It is now well recognized that
LES cannot be properly performed with dissipative discretization schemes: a centred scheme is
therefore used. Since the PRICELES code is designed to deal with very complex geometries at
a computer cost as reduced as possible, the scheme is of second order only. It is well known that
the differencing errors of such a scheme are large in the smallest resolved scales as compared
with compact finite-difference schemes for instance and that its resolving efficiency is not very
good (see, e.g., Lele [19]). Despite this deficiency, it will be shown in the next sections that quite
satisfactory results are obtained concerning the decay of homogeneous isotropic turbulence and
the turbulent channel flow. Note that the Laplacian operator within the Poisson equation for
pressure is computed as the product of the divergence and gradient approximations used in
the basic equations: this is important to ensure the numerical consistency of the operators
(see Ferziger and Perić [20]). To check the conservative properties of the PRICELES code
with such a numerical implementation, we have simulated the time evolution of an isotropic
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turbulent field in the case of zero molecular viscosity and zero turbulent viscosity, that is to say
without any diffusion operator. The code was shown to conserve the total kinetic energy and to
eventually yield a k2 equipartition spectrum for the kinetic energy over almost all the simulated
wavenumbers (see Ackermann [18] for further details). Finally, the temporal discretization
scheme is a Runge–Kutta third-order scheme.

2.3. LES of freely-decaying three-dimensional isotropic turbulence

To get rid of the specific difficulties linked with solid boundaries, LES of decaying three-
dimensional isotropic turbulence constitute a classical test. Also geometrically simple, this flow
configuration represents a quite severe validation for the numerical schemes and the subgrid-scale
models. In the course of this paper, we will perform this classical test at moderate Reynolds
number by comparing the kinetic energy decay law and the time evolution of the kinetic energy
spectra with the laboratory experiment by Comte-Bellot and Corrsin [3] (see section 4.2). We also
consider the large Reynolds number case by performing LES with near-zero molecular viscosity
in which the supergrid scale energy dissipation is mainly attributable to the eddy viscosity.
The flow domain is a periodic cubic box of width Lbox = 2πLunit in each direction. Here, the
molecular viscosity ν verifies ν ≈ 10−21Lunit uunit where uunit = v0/

√
3. The computation is

initially started with a three-dimensional random isotropic velocity field whose kinetic energy is
concentrated around a given wavenumber located at large scale. The random field distribution
corresponds to a Gaussian distribution. The initial kinetic energy spectrum is equal to

E(k, t = 0) = Ak8 exp

[
−4

(
k

ki(0)

)2
]

(16)

and peaks at k = ki(0). Here, A is chosen such that the initial mean kinetic energy verifies

1
2
v2
0 =

∫
E(k, 0) dk = 1.5. (17)

The Eddy-Damped Quasi-Normal Markovian theory (EDQNM, see e.g. Lesieur [21] for details)
predicts that an initial spectrum varying as ks at low wavenumber will immediately pick up a
k4 infrared behaviour when s > 4 (Lesieur and Schertzer [22]): for this reason, we chose s = 8
here. The characteristic time scale corresponds to the large-eddy turnover time defined as

tref =
1

v0ki(0)
=

1√
3ki(0)

. (18)

For an initial kinetic energy spectrum E(k, 0) ∝ ks when k → 0 with s ≥ 4, EDQNM predicts a
t−1.38 decay law for the kinetic energy decay (Lesieur and Schertzer [22]). This decay law is only
valid once a well defined Kolmogorov cascade has established. EDQNM-based calculations by
André and Lesieur [23] have also shown that the necessary time t∗ for the cascade establishment
is of the order of 5tref . For t < t∗, the mean kinetic energy

Ec(t) =
∫ ∞

0
E(k, t) dk (19)

is conserved at high-enough Reynolds number, while the mean enstrophy D(t)

D(t) =
∫ ∞

0
k2E(k, t) dk (20)

grows significantly for t < t∗ before decreasing at a later time. Furthermore, the enstrophy
maximum, which is reached at time t slightly larger than t∗, increases with increasing Reynolds
number (see also Lesieur and Ossia [24]).
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Figure 1. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Time evolution of the supergrid kinetic energy
with the SF model and with the SSF model on a log–log plot.

We now compare LES performed with the standard SF model given by equation (8) and
the SSF model given by equation (12). The Kolmogorov constant CK is taken equal to 1.4. We
take ki(0) = 10 and a spatial resolution of 643 cells with a regular mesh. Figure 1 shows the
time evolution of the kinetic energy in the resolved scales defined by

Ec(t) =
∫ kC

0
E(k, t) dk (21)

on a log–log plot. Since no energy is initially present at small scale, the kinetic energy is
expected to remain constant until the energy spectrum starts to build up at small scale where it
is dissipated. The SSF model correctly reproduces this trend with a constant level of supergrid
scale kinetic energy until t∗ ≈ 2tref . During the same time, the supergrid scale enstrophy is seen
to increase with a maximum which is reached at an instant slightly later than to 2tref (figure 2).
Conversely, the SF model induces dissipation as soon as a velocity gradient is present at any
scale: both the kinetic energy and the enstrophy start then to decrease from the beginning of
the computation. As previously pointed out, the ability for the SSF model to dissipate only
when small-scale velocity gradients are present is important in transitional flows to allow for
a proper evolution from a laminar to a turbulent state. Note that the computed t∗ is much
shorter than the value predicted by the EDQNM theory at very large Reynolds number. The
work by Ossia [25] using spectral numerical methods of very high precision clearly demonstrates
that t∗ varies with the numerical resolution and with the ratio ki(0)/kC . Ossia [25] obtained
a value of t∗ very close to the present value in his spectral computations at similar resolution
(643) and with ki(0) = 10. This constitutes a validation of our numerical code. The enstrophy
maximum obtained by Ossia [25] with the spectral dynamic model of Lamballais et al [13] was,
however, significantly larger, showing that the small-scale resolving efficiency of the second-order
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Figure 2. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Time evolution of the supergrid enstrophy with
the SF model and with the SSF model on a linear–linear plot.

finite-difference scheme is much lower than for spectral methods. The long-time decay law of
the kinetic energy is very close to the EDQNM prediction of t−1.38 for both the SF and the SSF
models with a slightly faster decay for the latter. We next consider the supergrid scale enstrophy
given by

D(t) =
∫ kC

0
k2E(k) dk. (22)

The smallest resolved scales are found to be located within a Komogorov cascade (see below)
and, for such a spectrum, the main contribution to D comes from the smallest resolved scales.
D(t) can therefore be roughly estimated by assuming a Kolmogorov spectrum extending from
k = 0 to k = kC . This yields

D(t) ≈
∫ kC

0
k2(CK [ε(t)]2/3k−5/3) dk =

3
4
CK [ε(t)]2/3k

4/3
C . (23)

In the asymptotic decay law regime, D(t) is then expected to decay like ε2/3 where ε is
the dissipation rate of supergrid scale kinetic energy. If the supergrid scale kinetic energy
Ec(t) is varying like t−β , D(t) should therefore decay like t−(2/3)(β+1) (Bertoglio 2000 Private
communication): for β = 1.38, one then gets ≈t−1.6 for the supergrid scale enstrophy decay
law. Figure 3, which shows the time evolution of the supergrid scale enstrophy in a log–log plot,
confirms this estimation.

We next consider, in figure 4, the kinetic energy spectra obtained with both the SF and the
SSF model in the asymptotic decay regime: here t = 34tref . As previously observed with spectral
methods (see Métais and Lesieur [10]), the spectrum given by the SF model exhibits a well defined
spectral slope ≈k−5/3. Conversely, the SSF model yields a spectral slope which is not steep
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Figure 3. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Time evolution of the supergrid enstrophy with
the SF model and with the SSF model on a log–log plot.
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Figure 4. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Kinetic energy spectra at t = 34tref with the SF
model and with the SSF model on a log–log plot.
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enough indicating an insufficient dissipation at small scales. In the most energetic scales around
the spectrum peak, a higher energetic level is obtained with the SF model than with the SSF
model. Comparisons with the laboratory experiments by Comte-Bellot and Corrsin [3] presented
in section 4.2 will indeed confirm that the SSF model tends to lead to an underestimation of the
large-scale energy.

3. An improved version of the selective structure function model

As previously pointed out, the SSF model in its original formulation presents two main
deficiencies: the model constant in formula (12) should be determined through energy
conservation arguments given by the relation (15) and the critical angle αc should be resolution
dependent. We use here the results of several LES of decaying isotropic turbulence performed
with the standard SF model to determine the parameters of the MSSF model.

3.1. Critical angle αc

For any LES, one may intuitively apprehend that the critical angle αc will strongly depend
upon the thinness of the numerical discretization of the large turbulent energetic scales. This
resolution thinness is efficiently measured by the ratio

kC

ki
(24)

between the cut-off wavenumber kC (characteristic of the filter width) and the wavenumber ki

at which the spectrum peaks (characteristic of the large energetic scales). To demonstrate the
dependence of αc with respect to the ratio kC/ki, we have performed several computations in
which the resolution and the value of the initial spectrum peak ki(0) are varied. Tests with
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Figure 5. PDF of the angle α defined by equation (10).
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Table 1. Parameters of the various LES.
Resolution ki(0) kC/ki(tfin) Angle αc (◦)

323 10 3.2 14
323 5 6.4 11
643 10 6.4 11
643 8 8 9.5

resolutions ranging from 163 to 643 resolution points are then performed. We chose values of
ki(0) going from 1 to 10. The molecular viscosity is still taken equal to a very small value. Since
the results are obtained from the turbulent field at a given instant tfin during the self-similar
period of decay, the pertinent parameter is then the ratio

kC

ki(tfin)
. (25)

Figure 5 shows the PDF of the angle αc for different grid-point resolutions and different values
of the ratio kC/ki(tfin). It is important to note that αc depends only on the value of kC/ki

and not on the total number of discretization points. Indeed, for a fixed value of kC/ki but for
varying number of points, the various PDF are extremely close. As anticipated, αc decreases
with increasing kC/ki (see figure 5 and table 1). To construct the analytical dependency of
αc with kC/ki, the following observations can be made. First, our computations show that αc

seems to exhibit an asymptotic value of ≈9◦ for the largest values of kC/ki considered here,
that is kC/ki > 10. Second, by assuming a power-law variation of αc as a function kC/ki (for
kC/ki ≤ 10), we use our data for 3.2 ≤ kC/ki ≤ 8 and a least-squares fit to obtain

αc(kC/ki) = 23
(

kC

ki

)−0.4

. (26)

To summarize, we then propose the following analytical variation of αc with kC/ki:

αc

(
kC

ki

)
=

⎧⎪⎨
⎪⎩

23
(

kC

ki

)−0.4

for kC/ki ≤ 10

9 if kC/ki > 10.

(27)

Figure 6 shows the variation of αc with kC/ki and the proposed fit: one can clearly see the
closeness of the numerical data and the analytical approximation.

3.2. Model constant

Knowing the angle αc we may then derive the MSSF model which writes

νMSSF
t (�x,Δx, t) = CMSSF Φαc(�x, t)C−3/2

K Δx[F2(�x,Δx, t)]1/2 (28)

where Φαc(�x, t) is given by

Φαc(�x, t) =
{

1 if α ≥ αc

0 if α < αc
(29)

and αc varies with kC/ki following relation (27). Next, the constant CMSSF has to be determined.
We then perform several LES using the standard SF model at different resolutions and with
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Figure 6. Variation of the critical angle αc as a function of kC/ki. The points are
the values obtained through the various LES and the lines represent the analytical
fit given by equation (27).

different values of ki(0) (see table 1). The computed velocity field is then used to determine
CMSSF by verifying the energy conservation constraint:

〈2νSF
t S̄ijS̄ij〉 = 〈2νMSSF

t S̄ijS̄ij〉. (30)

Note that νMSSF
t in formula (30) is determined with αc derived from kC/ki(tfin) through

relation (27): the values of αc for the different runs are given in table 1. We have checked
(see Ackermann [18] for details) that, whatever the resolution and the value of the ratio kC/ki,
the different runs yield a value of CMSSF very close to 0.142. The MSSF model finally writes:

νMSSF
t (�x,Δx, t) = 0.142Φαc(�x, t)C−3/2

K Δx[F2(�x,Δx, t)]1/2 (31)

with αc given by (27). Note that if αc is taken equal to 20◦, we recover the classical SSF
model but with a reduced constant (0.142 instead of 0.172). This is consistent with the results
of figure 1 showing a slightly too fast decay of the global kinetic energy with the SSF model,
suggesting that the constant of the initial SSF model was indeed too high.

4. Decaying isotropic turbulence

4.1. Isotropic turbulence at high Reynolds number

To check the validity of our new model, several LES of decaying isotropic turbulence are
performed (still with CK = 1.4). The parameters for the various runs are gathered in table 1.
Note that ki decreases with time with a rapid decay during the early stage and a much slower
decay during the self-similar stage. αc is then computed from an estimated value of kC/ki in
the late decay stage (and not from kC/ki(0)). Based on the results of section 2.3, here we chose
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Figure 7. LES of decaying isotropic turbulence at high Reynolds number with
kC/ki(tfin) = 3.2 and 323 grid points. Kinetic energy spectra at t = 35tref with
the SF model and with the MSSF model on a log–log plot.
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Figure 8. LES of decaying isotropic turbulence at high Reynolds number with
kC/ki(tfin) = 6.4 and 323 grid points. Kinetic energy spectra at t = 34tref with
the SF model and with the MSSF model on a log–log plot.
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Figure 9. LES of decaying isotropic turbulence at high Reynolds number with
kC/ki(tfin) = 6.4 and 643 grid points. Kinetic energy spectra at t = 34tref with
the SF model and with the MSSF model on a log–log plot.

kC/ki = 2kC/ki(0) as indicated in table 1. We will see how to estimate this ratio in a more
practical application to the turbulent channel flow (see section 5). Figures 7–10 compare the
kinetic energy spectra obtained during the self-similar decaying regime with the classical SF
model and the new MSSF model. The ratio kC/ki ranges from 3.2 to 8 and two resolutions of
323 and 643 resolution points are considered. Whatever the value of kC/ki and the resolution,
the two subgrid-scale models give spectra which are very close at all scales. As compared to
figure 4, the modified model yields a much more accurate behaviour at small scales than the
SSF model. The slope with the MSSF model is indeed very close to the slope obtained with the
standard SF model.

We now present a more detailed comparison between the three models (SF, SSF and MSSF)
by focusing on the LES of decaying turbulence with ki(0) = 10 and 643 resolution points already
described in section 2.3. The initial conditions are absolutely identical for the three computations
with the three different subgrid-scale models. To determine the angle αc of the MSSF model,
we take kC/ki = 2kC/ki(0) = 6.4 which yields αc = 11◦. Note that this corresponds to an angle
almost twice as small as the 20◦ angle of the SSF model. The MSSF model therefore dissipates
the supergrid scale energy at more points of the computational domain than the SSF model
and is then less selective in that respect. Conversely, as pointed out above, the constant of the
MSSF model is lower. Figure 11 shows on a log–log plot the time evolution of the kinetic energy
given by the three LES with the three different subgrid-scale models. As expected, the MSSF
model yields an early conservation of the kinetic energy. However, the latter starts decreasing
sooner than with the SSF model, which is a sign of the less selective character of the MSSF
model. The modified model is also associated with a lower value of the enstrophy peak as shown
in figure 12. During the self-similar period, the slightly too fast decay rate of the SSF model is
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Figure 10. LES of decaying isotropic turbulence at high Reynolds number with
kC/ki(tfin) = 8 and 643 grid points. Kinetic energy spectra at t = 35tref with
the SF model and with the MSSF model on a log–log plot.
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Figure 11. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Time evolution of the supergrid kinetic energy
with the SF model, the SSF model and the MSSF model on a log–log plot.
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Figure 12. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Time evolution of the supergrid enstrophy with
the SF model, the SSF model and the MSSF model on a linear–linear plot.
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Figure 13. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Kinetic energy spectrum at t = 34tref with the
SF model, the SSF model and the MSSF model on a log–log plot.
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corrected by the MSSF model with a decay law closer to the EDQNM prediction. The spectra
given by the three models at t = 34 tref are plotted in figure 13. The SF and MSSF models lead
to a very similar spectral behaviour at all scales. The kinetic energy build-up at small scales
observed with the SSF model is now absent in the MSSF LES with a much better concordance
with a k−5/3 behaviour. Conversely, more energy is present in the most energetic scales with
the modified version of the model.

We finish this section devoted to high Reynolds number homogeneous isotropic turbulence
by comparing the predictions of the MSSF model with those of Smagorinsky’s dynamic model
(Germano [11], Germano et al [2]). As previously stated, the dynamic procedure consists in
determining Smagorinsky’s constant CS at each point and at each instant through a double-
filtering approach. Following Lund’s [26] recommendation, here the width of the second filter is
taken to be equal to

√
6Δx (see Ackermann [18] for details). The allowance of negative values

of CS constitutes a conceptual advantage of the model because these values represent a sort of
backscatter in physical space, that is to say the kinetic energy is able to be locally transferred
from the subgrid towards the supergrid scales. However, very large negative values of the eddy
viscosity is a destabilizing process in a numerical simulation and may lead to a non-physical
growth of the supergrid-scale kinetic energy (Lund et al [27]). Furthermore, the very sharp
fluctuations of the model constant make the model formalism inconsistent. Several more or
less sophisticated techniques have been proposed to overcome these large variations (see, e.g.,
Sarghini et al [28]). For the sake of simplicity, here we simply performed at each point a local
spatial averaging of CS on the six closest points of the computational mesh. We also used
the clipping technique consisting of cancelling the values of CS smaller than zero and larger
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Figure 14. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Time evolution of the supergrid kinetic energy
with the SF model, the MSSF model and Smagorinsky’s dynamic model on a
log–log plot.
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Figure 15. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Time evolution of the supergrid enstrophy with
the SF model, the SSF model, the MSSF model and Smagorinsky’s dynamic
model on a linear–linear plot.
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Figure 16. LES of decaying isotropic turbulence at high Reynolds number with
ki(0) = 10 and 643 grid points. Kinetic energy spectra at t = 34tref with the SF
model, the SSF model and Smagorinsky’s dynamic model on a log–log plot.

18



than 0.5. Figure 14 is the equivalent of figure 11, but now compares the temporal evolution of
the kinetic energy as given by the SF, MSSF and Smagorinsky’s dynamic models. The MSSF
model performs slightly better than the dynamic model in the early stage since the energy is
conserved during a slightly longer time with the MSSF model. This too dissipative nature of the
dynamic model is confirmed by figure 15: the enstrophy peak obtained with the dynamic model
indeed has a lower amplitude. In the self-similar decay period, the three models yield very close
decay laws. This is confirmed by figure 16 showing the kinetic energy spectra obtained with the
three models at t = 34tref . The three spectra are very close, with a well defined k−5/3 range.
The energy in the most energetic scales is slightly larger in the case of the dynamic model. It
is important to note that the MSSF model yields, at least for decaying isotropic turbulence,
slightly better results than the dynamic model at early times and very close results at later
times. Smagorinsky’s dynamic model requires more operations and memory than the MSSF
model and it is encouraging to see that a conceptually simpler model yields very close results.

4.2. Comparison with grid-turbulence experiments

We next consider low Reynolds number decaying isotropic turbulence by comparing our LES
results with the classical experiment on decaying turbulence behind a grid by Comte-Bellot and
Corrsin [3]. It consists in measurements in the turbulent flow downstream of a grid of spacing
M = 5.08 cm oriented normal to a uniform steady flow of velocity U0 = 103 cm s−1. In a
reference frame moving with the average flow velocity the flow can be considered as decaying
isotropic turbulence. In the experiment, statistical data were collected at three downstream
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Figure 17. LES of decaying isotropic turbulence at low Reynolds number,
comparison with the experiment by Comte-Bellot and Corrsin [3]. Time evolution
of the supergrid kinetic energy with the SSF model and the MSSF model
compared with the experimental data on a linear–linear plot.
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Figure 18. LES of decaying isotropic turbulence at low Reynolds number,
comparison with the experiment by Comte-Bellot and Corrsin [3]. Kinetic energy
spectra at the three experimental locations: ∗, x/M = 42; ◦, x/M = 98;
×, x/M = 171. The results of the SSF model (dashed curve) and of the MSSF
model (full curve) are compared with the experimental data on a linear–linear
plot.

locations x/M = 42, 98 and 171. Here quantities are non-dimensionalized by the turbulent
kinetic energy at the first station x/M = 42 and by the reference time tref (defined by
equation (18)) that we have estimated to be tref = 10.4M/U0. The origin of x and of the
corresponding time t is taken at the first experimental station (location x1 and time t1), so that
the correspondence between (x−x1)/M and (t−t1)/tref is given by (x−x1)/M = 10.4(t−t1)/tref .
The initial field is obtained by running the computation long enough to allow for the skewness
factor S to build up to values typical of laboratory experiments S ≈ −0.5 and for the kinetic
energy decay law to be close to the experimental law t−1.25. The velocity field so obtained is then
normalized in such a way that its kinetic energy spectrum matches the experimental spectrum
at x/M = 42. Note that a more sophisticated initialization technique has been proposed by
de Bruyn Kops and Riley [29] that we have not deemed necessary to test owing to the low order
of our numerical techniques. We compare here the standard SSF model and the MSSF model.
Since the peak wavenumber ki(0) of the experimental spectrum is ≈2, the critical angle αc of the
MSSF model is taken equal to 9◦. Here we use 643 discretization points. Figure 17 shows the
decay of the energy in the resolved scales as a function of time. The two models give consistent
results which agree well with the experiment. As previously noticed in the high Reynolds number
case, the SSF model induces a too rapid decay between x/M = 98 and x/M = 171 as compared
with the experimental points. This trend is corrected by the MSSF model. We next compare
the experimental spectra and the LES spectra at the three experimental locations corresponding
respectively to t−t1 = 0, t−t1 = 5.38tref and t−t1 = 12.4tref . As pointed out by de Bruyn Kops
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and Riley [29], a quite stringent large-scale resolution requirement has to be met to avoid the
energy to be removed too rapidly from the large scales. This constraint is not fulfilled by the
present LES and one observes that the peak of the spectrum moves to the left more slowly
than that of the laboratory flow (see figure 18). This is particularly noticeable at the third
experimental station. However, at the second station, the MSSF model agrees quite satisfactorily
with the experimental data and yields better results than the SSF model. Similarly to the high
Reynolds number case, the SSF model induces too much energy removal from the most energetic
scales.

5. The turbulent channel flow

Since engineering flows often occur in the presence of solid boundaries, we now test the behaviour
of the MSSF model in a turbulent boundary layer. We simulate the classical turbulent channel
flow, that is to say the turbulent flow between two infinite parallel plates. x, y and z are
respectively the streamwise direction, the direction normal to the channel walls and the spanwise
direction. �u(�x, t) = (u, v, w) designates the velocity vector and its components along x, y and
z. In the present LES, we impose the mass flux to be constant so that the instantaneous bulk
velocity Um is identical in the various runs. We then define the macroscopic Reynolds number
Re = Um2h/ν based upon the bulk velocity, the width of the channel 2h and the kinematic
viscosity ν. As far as statistics are concerned, the brackets 〈·〉 indicate an average over planes
parallel to the walls (homogeneous directions) and time. The rms values are determined from
the fluctuating quantities about this average. In the following, most quantities are expressed
in wall units and the superscript + indicates the conventional boundary-layer scaling by the
friction velocity uτ and the viscous thickness δv:

uτ =

√
ν

(
d〈u〉
dy

) ∣∣∣∣
wall

δv =
ν

uτ
(32)

with h+ = uτh/ν.

5.1. Determination of the critical angle αc of the MSSF model

As previously shown for the isotropic turbulence case, the value of the critical angle αc strongly
depends on the resolution thinness of the most energetic scales. In spectral space and for
homogeneous turbulence, it can be characterized through the ratio kC/ki. For computations
carried out in physical space, kC/ki has to be related to quantities which can be easily derived
in this space. The integral scale L of the turbulence can be approximated as

L ∼ 2π

ki
. (33)

Since kC = π/Δx, one then obtains
kC

ki
∼ L

2Δx
. (34)

For the channel flow, the mixing length lm provides a good estimation of the large energetic
scales. It is well known that, close to the wall, the large turbulent eddies are limited by the
distance y to the wall. Following Prandtl’s linear-variation assumption, we then have lm ≈ κy
where κ = 0.41 is the Von Karman constant. The channel flow laboratory experiments and
numerical simulations (see Kravchenko et al [30]) show that lm stops being limited by the wall
for y � 0.2h. We then chose the following final expression for lm(y):

lm(y) =
{

κy if y < 0.2h

0.2κh if y ≥ 0.2h.
(35)
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It is important to note that the critical angle αc is no longer identical for all the points of
the computational domain, as in the case of isotropic homogeneous turbulence, but it is now a
function of the distance y from the wall.

5.2. Numerical parameters

We present LES results of the turbulent channel flow at Re = 6666. The size of the computational
domain, in the streamwise, wall-normal and spanwise directions, is 2πh×2h×πh and a moderate
resolution is used with 64 × 65 × 32 grid points. Two distinct LES are performed: the first with
the original SSF model and the second with the MSSF model. The two simulations respectively
correspond to h+ = 204 and to h+ = 209. We impose the physical no-slip conditions at the
wall and the flow in the near-wall region is explicitly computed. To reach a better description
of this region, the physical space (x, y, z) is transformed into the computational space (x, ξ, z)
by a hyperbolic tangent transformation:

y = h

(
1 +

1
a

tanh(ξ tanh−1 a)
)

with − 1 < ξ < 1. (36)

In the transformed coordinate system, the grid points are uniformly spaced:

ξj = −1 +
2(j − 1)
Ny − 1

j = 1, . . . , Ny (37)

Ny being the number of discretization points in the direction normal to the wall. a is an
adjustable parameter (0 < a < 1) which determines the points concentration: here a is taken to
equal 0.9018. The first computational point away from the wall is located at y+ ∼ 1.

For Re = 6666 (based on the bulk velocity), the regime is subcritical from the point of view
of linear-stability theory. In this case, it would require a very long time integration to reach a
realistic turbulent state if one starts from an initial random noise. The critical Reynolds number
for a rotating channel flow with the rotation vector orientated along the spanwise direction is
much lower with Re ≈ 100. To economically obtain fully developed turbulent initial conditions,
we then initially impose a moderate Coriolis force. The turbulent state so-obtained is not fully
symmetric with respect to the channel middle plane (see Lamballais et al [13]): the Coriolis
force is then removed and a totally symmetric state is reached after some more integration in
time.

5.3. Results

In figure 19, the mean longitudinal velocity profiles for the two cases (SSF and MSSF models)
are compared with the LES of Piomelli [31] using Smagorinsky’s dynamic model (Re = 6500,
h+ = 203). Note that, although a rather coarse resolution was used by Piomelli (48×65×64 grid
points), precise Fourier–Chebychev pseudo-spectral collocation methods were employed and a
very good agreement with experimental data was obtained. Our results are also compared with
the standard theoretical wall laws: the linear law U+ = y+ of the viscous sublayer and the
logarithmic law

U+ =
ln y+

κ
+ 5.5 (38)

where κ = 0.41 is the Von Karman constant. By comparison with the LES carried out with
the SSF model, the LES with the MSSF model compares better with Piomelli’s data at least
in the logarithmic layer. This indicates that the modified model yields a better prediction of
the friction velocity at the wall. A possible explanation for this better behaviour of the MSSF
model as compared to the SSF model may be the less dissipative nature of the former in the
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Figure 19. Turbulent channel flow. Mean velocity profile in wall units:
comparison of the SSF and MSSF model predictions with Piomelli’s [31] results.
The theoretical linear and logarithmic laws are also plotted on a linear–log plot.
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equation (39)).
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Figure 21. Turbulent channel flow. Rms of the three velocity components in wall
units: comparison of the SSF and MSSF model predictions with Piomelli’s [31]
results on a linear–linear plot.

near-wall region. This is illustrated by the ratio rtv(y) of the two averaged turbulent eddy
viscosity coefficients obtained in the two LES,

rtv(y) =
〈νSSF

t 〉(y)
〈νMSSF

t 〉(y)
(39)

shown in figure 20. Close to the wall the SSF model is much more dissipative with a value of rtv

close to 4. In the fully developed turbulent core of the channel, the ratio is slightly larger than
unity, indicating a comparable dissipation induced by the two models. It is a well known that
the discretization errors associated with low-resolution computations based upon second-order
finite-difference schemes can be large. In channel flow LES, a symptomatic effect of these errors
is an overprediction of the amplitude of the urms peak and an underprediction of both the vrms

and wrms peaks. Figure 21 shows the profiles of urms, vrms and wrms compared with Piomelli’s
data. Considering the low resolution used, the overprediction of the urms peak is not large with
umax

rms ≈ 2.99 (in wall units) for the SSF model and umax
rms ≈ 2.9 for the MSSF model. As compared

with the classical value umax
rms ≈ 2.7, the MSSF model yields a 7.4% overprediction against 10.8%

for the SSF model which indicates a slight improvement in the fluctuations statistics by the
former model. Note that the pseudo-spectral LES computations carried out by Lamballais et al
[13] on the basis of the spectral-dynamic model led to a value of the urms peak very close to the
current value with umax

rms ≈ 2.8. Better results would be obtained by increasing the resolution of
the present LES. However, second-order methods are obviously associated with a slow decrease
of the discretization error with decreasing Δx. A more rapid decrease could be reached with
the use of a fourth-order method as confirmed by the recent LES by Méri and Wengle [32]. It is
well recognized that the position of the urms peak is very sensitive to the subgrid-scale model.
Both the SSF and MSSF models predict a value very close to the expected value y+

max ≈ 12:
here y+

max ≈ 13.5 corresponding to an overprediction of only 12.5%.
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6. Conclusion

In recent years, the effort in LES has been largely devoted to the development of subgrid-scale
models clever enough to automatically adapt themselves to the local flow characteristics and
to remove (or add) energy from (to) the supergrid scales at the proper locations. This is of
particular importance for transitional flows for which the transition process may be inhibited by
the action of the subgrid-scale model. Starting from the SF model originally proposed by Métais
and Lesieur [10], David [1] proposed the SSF model which acts selectively in the regions of high-
enough three-dimensional turbulent activity. The three-dimensionalization criterion consists in
measuring the angle of the vorticity at a given grid point and the average vorticity on the closest
neighbouring points. If this angle exceeds a critical value αc, the eddy viscosity is locally turned
on. We have constructed an improved version of the SSF model (the MSSF model) which better
respects the energetic exchanges between the supergrid and the subgrid scales. Furthermore,
the angle αc was shown to be a function of the discretization thinness of the most energetic
scales measured by the ratio kC/ki. We have then proposed an analytical variation allowing
this dependency to be taken into account. Although the use of second-order schemes for LES is
still controversial, successful second-order accurate LES have been performed for a wide variety
of flow configurations (see, e.g., Akselvoll and Moin [33]). Here, we have deliberately chosen to
test this model in the PRICELES code which is an industrial software designed to deal with
complex flow geometries: only second-order finite-difference schemes have then been considered.
Decaying homogeneous isotropic turbulence at high Reynolds number with very small molecular
viscosity was first simulated. When the kinetic energy is present at large scale only, the MSSF
model was shown not to induce any energy dissipation until the energy cascades to scales of
the order of the mesh size. This property may be important for transitional flows for which
the energy must not be dissipated by the subgrid-scale model before some turbulent energy is
present at small scale. In the self-similar decay regime, the time decay law was found to be
in good agreement with the EDQNM predictions. In this regime, the kinetic energy spectrum
given by the MSSF model exhibits a well defined k−5/3 behaviour extending until the cut-off
wavenumber: this represents an improvement as compared with the SSF model which leads to
an energy accumulation in the smallest scales. We have checked that the results of the MSSF
model are very close to those obtained with Smagorinsky’s dynamic model proposed by Germano
et al [2] with a slightly better behaviour of the MSSF model in the early non-dissipative stage
of the evolution. We have then tested the performance of the MSSF model by comparison with
the low Reynolds number decaying turbulence experiments by Comte-Bellot and Corrsin [3].
The simulated decay law was found to be in good agreement with the experimental data and
the MSSF model proved to lead to a better spectral representation of the large energetic scales
than the SSF model. The final test concerned the turbulent channel flow; the modification of
the SSF model was shown to allow for a much better prediction of the friction velocity and,
consequently, for a much better reproduction of the mean longitudinal velocity profile in the
logarithmic region. This is attributable to the less dissipative character of the MSSF model
in the near-wall region. Despite the low resolution of the channel flow computations and the
low order of the numerical scheme, the prediction of both the amplitude and the location of
the maximum of longitudinal velocity fluctuations was quite satisfactory. These results are very
encouraging concerning the LES of flows in complex geometries using industrial codes. Only
simple geometries have been considered here. However, the implementation of the MSSF model
to more complex geometries only requires a rough estimate of the variation in size of the integral
scale with the distance from the obstacle to improve the results with respect to the SSF model.
This will be the topic of further studies.
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