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Non-linear effects in internal-tide beams, and mixing

Theo Gerkema a,*, Chantal Staquet a, Pascale Bouruet-Aubertot b

a LEGI, Grenoble, France
b LOCEAN/IPSL, Paris, France

A non-linear non-hydrostatic model (MIT-gcm) is used to study the generation and propagation of internal
tides. The model domain covers a continental slope and neighbouring parts of the deep ocean and shelf.
Uniformity in the along-slope direction is assumed. We focus on the non-linear evolution of the internal tide
once generated. In particular, we show that in the main region of generation, over the upper part of the
slope, small-scale features occur, indicative of breaking and mixing. Far from the gener-ation region, non-
linear processes are important in the reflection of the beam at the bottom, where higher harmonics are
generated. This implies an energy transfer toward higher frequencies and the resulting shape of the energy
spectra is consistent with observations. Turbulent and mixing processes are analysed by employing an
adiabatic sorting method; thus, we calculate the development in time of the available poten-tial energy, the
variation in the background potential energy due to irreversible processes, and the distribu-tion of the Cox
number (the local turbulent diffusivity normalized by the background diffusivity) over the slope. With
rotation, the transfer of energy to higher harmonics is reduced.

1. Introduction

In continuously stratified fluids, internal waves emitted from a localized source propagate as
beams (e.g., Mowbray and Rarity, 1967; Turner, 1973). In the ocean, one of the dominant types
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of internal wave is the internal tide, formed by barotropic tidal flow over topography. Internal-
tide beams, emanating from the upper part of the continental slope, have indeed been observed
(Pingree and New, 1991; Jézéquel et al., 2002).

On the theoretical side, it is well-known that in an unbounded constantly stratified fluid, a
monochromatic plane internal wave forms a solution of the non-linear Boussinesq equations
(LeBlond and Mysak, 1978), because the contributions to the advective terms cancel; more gen-
erally, this is true for a monochromatic internal-wave beam (Tabaei and Akylas, 2003). The same
may be supposed to hold in a bounded domain within the fluid interior, away from the bound-
aries; non-linear effects should be noticeable only sufficiently close to boundaries (topography,
surface), or in regions of strongly varying stratification (such as the seasonal thermocline). In this
paper we shall consider the first possibility.

One potential region for strong non-linear effects and mixing is the generation region itself,
which lies at or just above the upper part of the slope. This is confirmed by in situ measurements
made by Lien and Gregg (2001) in the upper part of an internal-tide beam, where an increased
turbulent dissipation rate was found, indicative of non-linear effects and mixing. Of particular
interest is the location where the slope is critical (i.e. the direction of the wave beam is tangent
to the slope) and convex, which is usually the case at some position near the shelf-break. The
barotropic tidal flow (which follows the slope) then has precisely the same direction as that of
the particles in the beam, yielding optimal forcing. Moreover, barotropic currents are relatively
strong near the shelf-break, which enhances the forcing too (this is borne out by the expression
of the forcing term, as given e.g., by Baines (1982), where one finds an inverse proportionality with
the square of local depth). This explains why one finds the main region of generation near the
upper part of the slope.

Other potential regions for non-linear effects to occur are those where the beam
reflects (bottom, surface), since here an in- and outgoing beam interact. Observations on
the (first) bottom reflection of the internal-tide beam were made by Pingree and
New (1991), although no specific analysis was made of the possible occurrence of non-linear
effects.

In this paper we will employ the MIT-gcm (Marshall et al., 1997), a non-linear non-hydro-
static model that can (with a few adaptations) be used to study the generation and propagation
of internal tides (Khatiwala, 2003; Legg, 2004). The usage of the model in its non-hydrostatic
mode poses rather severe restrictions on the resolution, as the model�s CPU rises considerably
by adopting this mode. For this reason, we use the model here in a setting in which uniformity
in the along-slope direction is assumed; notice that a velocity component in this direction can
still be induced, by Coriolis effects. The basic settings and parameter choices are discussed in
Section 2. In Section 3 we show the essential results of the calculations, and consider in detail
the bottom-reflection of the internal-tide beam, and the non-linear effects involved. In Section
4 we turn to the generation region itself, and analyze small-scale features occurring over the
slope. The analyzing method involves adiabatic sorting and allows one to calculate the available
potential energy, and the Cox number (a measure of the local intensity of turbulent mixing). We
show how the former develops in time, and how the latter is distributed over the slope. Results
with and without Coriolis effects are discussed in Sections 3 and 4. Conclusions are presented in
Section 5.
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2. Model description

We employed the MIT-gcm to calculate the internal-tide fields, shown below. The MIT-gcm is
described in detail in Marshall et al. (1997). The model is non-linear and non-hydrostatic, and the
Boussinesq equations are solved with a finite-volume method in space and a second-order Adams–
Bashforth scheme in time. We use the model here in an essentially 2D setting (i.e. we assume
uniformity in the along-slope direction, while allowing for Coriolis effects).

The forcing, due to the barotropic tide, is added by prescribing the cross-slope barotropic flow
at the boundaries, thus imposing a time-oscillatory but spatially constant barotropic flux.
Furthermore, a sponge-layer is added at the lateral boundary of the deep ocean to absorb the
baroclinic fields. In the model, the barotropic and baroclinic fields are not separated: the selective
working of the sponge on the baroclinic fields is nonetheless attained by prescribing the friction as
�juxju. Due to the presence of the factor juxj, the sponge layer leaves the barotropic flow unaf-
fected, as it is horizontally uniform in the sponge (the bottom being flat there). Finally, a KPP
mixing-scheme (Large et al., 1994) was added to increase the diffusivity in regions where the
Richardson number is small.

In the hydrostatic mode and for weak forcing, the model was tested against the linear hydrostatic
internal-tide generation model developed and used by Gerkema (2002); the results were identical,
except for minor features that are due to technical differences in the numerical schemes and
methods.

In the experiments discussed below, the parameters were chosen as follows. The buoyancy
frequency was taken constant: N = 2 · 10�3 rad/s; the tidal frequency (M2) r = 1.405 ·
10�4 rad/s. The Coriolis parameter was taken either zero (equator) or f = 10�4 rad/s (mid-
latitudes); we will refer to these cases as �without� and �with rotation�, respectively. (In the case with
rotation, we have changed the phase of the forcing to avoid the artificial creation of mean fields, as
explained by Gerkema et al. (2004).) The depth of the deep ocean is 4 km, that of the continental
shelf, 200 m. The length of the continental slope is 50 km; the slope is described by a cubic polyno-
mial. Vertical diffusivity is 10�4 m2/s, horizontal diffusivity 10�2 m2/s; values of vertical and hori-
zontal viscosity are equal to those of diffusivity, i.e. the Prandtl number is set to 1. This vertical
diffusivity will later be referred to as ‘‘background diffusivity’’. In the calculations presented here
diffusivity acts only on the temperature field, because salinity is taken constant throughout. The
sponge-layer has a thickness of 50 km. No sponge was needed on the shelf, because the on-shelf
propagating internal tides were weak, and their propagation slow (because of the shallowness),
so that no significant reflection back into the domain occurred. The amplitude of the cross-slope
barotropic flux is 100 m2 s�1. In the cross-slope direction 700 cells of 500 m are used, and in the
vertical 160 of 25 m (in the deepest part), making the domain 350 · 4 km. The time step is
22.357 s, giving 2000 steps per tidal period (M2). Starting from a state of rest, runs span 15 tidal
periods.

3. Main internal-tide beam and its higher harmonics

In the following figures, we leave out the first 50 km of the abyssal ocean (sponge-layer) as well
as the last 50 km of the shelf (which hardly contains any signal at all). We will analyze the main

3



internal-tide beam (frequency M2) and its harmonics (M4, M6 etc.). According to linear non-
hydrostatic theory, the steepness c of an internal-wave beam of frequency r is given by

c2 ¼
r2 � f 2

N 2 � r2
; ð1Þ

(LeBlond and Mysak, 1978). By definition, the steepness c is equal to tan/, / being the angle
of the beam with the horizontal. Because N > f, c is a monotonically increasing function of r,
implying that higher harmonics will be steeper.

3.1. Case without rotation

Fig. 1 shows the horizontal cross-slope current field at the end of the calculation. This is after
exactly 15 tidal periods, a moment at which the barotropic currents are zero (to the extent that the
barotropic signal behaves in a linear way, which we assume to be the case), so that the shown field
represents solely the baroclinic signal. The most conspicuous feature in Fig. 1 is the (dark) inter-
nal-tide beam that originates from the upper part of the slope and travels diagonally into the deep
ocean, where it reflects at the bottom (x � 192 km), then at the surface (x � 137 km), and later
again at the bottom. From (1) we find for the angle of propagation: c = 0.070 (recall that here
f = 0). The numerical calculation gives 4/(192 � 137) = 0.073, which deviates by less than 5%
from the theoretical value of (1), derived from linear theory. As noticed above, linear theory
can indeed be expected to work well in the interior of the domain (i.e. sufficiently far from the
boundaries), for in an unbounded domain contributions to the jacobians cancel exactly for a
monochromatic internal-wave beam.

We now consider the temperature field; Fig. 2a shows a snapshot, also after 15 tidal periods.
Here too the main beam is visible, now in the vertical displacement of the isotherms. This is even
more clearly seen in Fig. 2b, in which the initial temperature field (with horizontal isotherms) has
been subtracted. Peak-to-trough amplitudes become as large as 250 m, which is in agreement with

Fig. 1. The horizontal cross-slope baroclinic velocity component (in m/s), after 15 tidal periods.
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the typical observed values for a similar strength in forcing (Pingree and New, 1991). One discerns
also small-scale features near the upper part of the slope, which we shall consider in more detail in
Section 4.

In both Figs. 1 and 2b one observes a clear weakening of the beam when one compares its
intensity before and after the reflection at the bottom (x = 192 km). Concurrently, one sees thin-
ner and steeper beams emanating from the region where the beam reflects. Using (1), one can
easily check that these steeper beams are indeed higher harmonics. According to (1), the steepness
of the first three higher harmonics (M4, M6 and M8) should be: c = 0.14, 0.22, 0.29. From the
data shown in Fig. 1 one finds: 0.14, 0.24, 0.33, which lie within 10% of the theoretical values.
These two phenomena together show that the main beam loses energy by creating higher harmo-
nics, a non-linear effect due to the interaction between the incoming and outcoming M2-beams. A
similar result on the generation of higher harmonics has recently been found in numerical
experiments on internal tides generated over a seamount in a deep ocean (Lamb, 2004), with a
later theoretical analysis by Tabaei et al. (2005).

To get further insight into the generation of higher harmonics, we filtered the baroclinic current
aroundM2, and its first harmonicM4, respectively. These signals are displayed at two ‘‘moorings’’,
before and after reflection of the tidal beam (Fig. 3). Before reflection, the M4 component is very
weak, less than 1% of the M2 component (compare frames a and b). By contrast, after reflection its
amplitude is of the same order as that of theM2 component, being three times lower only (compare
frames c and d). Its spatial structure is organized as a beam at depths between 1.5 and 3 km. Con-
sistent with this, the amplitude of theM2 component is seen to be reduced after reflection (frame c).

Frequency spectra of the kinetic and available potential energy computed at the same two
‘‘moorings’’ are displayed in Fig. 4. These spectra are computed over the whole duration of the
computation, namely 15 tidal periods, with a temporal sampling equal to 0.05 tidal periods.
The kinetic and available potential energy levels coincide, as is confirmed in frames b and c, where
the ratio between total kinetic energy and available potential energy is plotted versus frequency:
this ratio is very close to 1 at all frequencies, in accordance with linear theory with f = 0. (We note

Fig. 2. (a) The temperature field (in �C), after 15 tidal periods. (b) The same, but now the initial (static) temperature
field is subtracted (a temperature difference of 0.1 �C corresponds to a vertical displacement of 50 m). In (b) the
theoretical steepness is indicated in dashed lines for M2, M4, M6 and M8 (from left to right).
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that for non-linear waves the ratio can in principle be larger, because transfer of kinetic energy
toward higher frequencies is restrained in two dimensions, see Bouruet-Aubertot et al., 1996.)

Comparison between the two moorings provides evidence of the reduced energy content of the
M2 component after reflection and of the development of harmonics: M4, M6 and M8 are clearly
visible. We estimated the energy transfer from the M2 internal tide to higher frequencies: about
5% is transferred to the first harmonic M4; this value is to be compared with a net energy decrease

Fig. 3. Time-depth evolution (in tidal periods) of the filtered components of the baroclinic horizontal velocity
(computed as the total field minus the depth average); panels a and b before reflection, c and d after, (a) M2 at
x = 205 km; (b) M4 at x = 205 km; (c) M2 at x = 180 km; (d) M4 at x = 180 km.
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of the M2 component before and after reflection of about 16%. Transfers toward higher harmo-
nics (M6, etc.) is less than 1%. We also find an increase in the energy content at other high fre-
quencies (i.e. non-harmonics): from about 1% of the M2-energy before reflection to 4% after
reflection. All in all, this means the M2 tide loses 7% (=16 � 5 � 1 � 3) of its energy to dissipation
during reflection. We may thus say that, roughly, half of the loss of energy of the M2 beam can be
ascribed to dissipation, and the other half to the transfer to higher frequencies.

3.2. Case with rotation

The inclusion of Coriolis effects gives a number of changes to the results shown above, and
nearly all of them can be traced back to the dispersion relation (1). According to this expression,
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beams become less steep by including f, and this is indeed what we observe in Fig. 5. Higher
harmonics are still visible, although less distinctly than in Fig. 1. From Fig. 5 we obtain the
following estimates of the steepness of the M2, M4 and M6 beams: c = 0.052, 0.14, 0.20, which
are in satisfactory agreement with the theoretical values from (1): c = 0.050, 0.13, 0.21. The M8
beam in this case is too weak to extract a sensible estimate from Fig. 5. The dispersion relation
(1) also implies that the (horizontal) group velocity decreases with increasing f. As a consequence,
it will take more time for the transients to leave the domain of interest (this will be confirmed
below when we consider the development in time of available potential energy).

Frequency spectra of the total energy computed at two moorings, before and after reflection of
the M2 beam, are displayed in Fig. 6. The M4 component is still excited, but with an energy level
four times lower than in the non-rotating case, while the other harmonics do not emerge clearly
from the spectra. This implies that energy transfer toward high frequencies is impeded by Coriolis
effects. The slope of the spectra after reflection is close to �2, suggesting a superposition of
randomly phased quasi-linear waves. As in the non-rotating case, we computed the ratio between
total kinetic and available potential energy (Fig. 6). The numerical results are in fairly close agree-
ment with the theoretical curve for linear waves. This suggests that the slope of the frequency
spectra after reflection is consistent with the Garrett–Munk model (Munk, 1981), and also with
in situ measurements near a continental slope (see, e.g., van Haren et al., 2002).

4. Analysis of mixing

4.1. Background

In what follows we will analyse the intensity of mixing in a quantitative way by employing the
classical concept of available potential energy, introduced by Lorenz (1955). The key idea is to
distinguish two fundamentally different ways in which the potential energy of a system can

Fig. 5. Case with rotation. The horizontal cross-slope baroclinic velocity component (in m/s), after 15 tidal periods.
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change: on the one hand by reversible processes (like the oscillatory motion in internal waves) and
on the other hand by irreversible processes (like mixing). In considering a system at a certain
moment, we can calculate the instantaneous potential energy Ei. One can �undo� any past working
of reversible processes by adiabatically re-stabilizing the vertical column. This procedure is par-
ticularly simple in a Boussinesq system, for such a system conserves volume-elements (rather than
mass). Interchanging �adiabatically� two elements of equal volume then means: interchanging
them while conserving the mass of each individual element. (In a Boussinesq system, an exchange
of heat is mimicked by an exchange of mass: �supplying heat� translates to �extracting mass�, and
vice versa.) By interchanging elements this way, one obtains a sorted stable column, which has a
monotonic vertical temperature (and density) distribution. This sorted column then has the
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minimal potential energy possible under adiabatic changes: Es. The available potential energy Ea

is then given by Ea = Ei � Es. Bouruet-Aubertot et al. (2001) used this method in numerical
calculations on internal waves. In the present analysis, we take it one step further, into the
oceanographic context.

An alternative way to obtain Ea was presented by Holliday and McIntyre (1981), in terms of an
expansion that holds for general N(z). For constant N only the first term of this expansion re-
mains, giving (in terms of temperature, a being the thermal expansion coefficient):

Ea;loc ¼
g2q�a

2

2N 2

Z

dxdzðT 0Þ2; ð2Þ

where T 0 denotes the local deviation of temperature with respect to the ‘‘undisturbed’’ field T0(z);
q* is a constant reference value of density. As we will demonstrate below, in a system in which
mixing takes place, one cannot simply take the initial temperature field for T0(z).

One can apply the procedure of sorting at any given moment; one thus obtains Es(t). In a closed
system where no irreversible processes take place, this quantity will be constant in time; irrever-
sible processes can make it only larger, never smaller (an implication of the second law of ther-
modynamics). The system under consideration here is not closed, since it has open boundaries
on the shelf and in the deep ocean. One may expect, however, that the role of these open bound-
aries becomes less noticeable once the transients have left the system, and if one then considers
only consecutive instants having the same phase of the tide (i.e. Es(t0 + nT), where t0 is arbitrary,
n an integer, and T the tidal period). The latter restriction means that one considers moments at
which the influx is the same.

We denote the rate of increase of Es due to irreversible mixing processes by Ud. Mixing locally
results from a flux across iso-temperature surfaces, /d, whose volume averaged amounts to Ud, up
to a scaling factor. We shall derive those quantities via sorting, and follow for this purpose the
methods developed by Thorpe (1977), Winters et al. (1995) and Winters and D�Asaro (1996).

4.2. Case without rotation

4.2.1. Computation of the background and available potential energy

As noticed above, near the upper part of the slope, in the vicinity of the generation region, one
finds small scale features; they are more clearly visible in Fig. 8a, an unsmoothed enlargement of
Fig. 2b. These small-scale processes suggest that mixing takes place. In reality, mixing occurs at
scales not resolved by the model; however, the relatively large values of diffusivity as well as the
working of the KPP-scheme enable us to mimick the process of mixing at a larger scale.

This idea is confirmed in Fig. 7, where we have chosen t0 = 0. In these figures we show the total
potential energy of the entire xz-domain (i.e. the energy density is integrated over the xz-region,
hence the resulting unit J m�1); we present it in normalized form by setting the initial value Ei(0)
equal to zero. Fig. 7a shows the instantaneous potential energy Ei and the sorted Es; Fig. 7b shows
their difference: the available potential energy Ea. One observes a steady increase in both Ei and Es

(Fig. 7a); the steady increase in the sorted potential energy Es is due to the ongoing irreversible
processes (mixing). The available potential energy, on the other hand, becomes nearly constant
during the last four tidal periods (Fig. 7b) implying that most of the transients have left the
domain by that time. The local expression (2) yields values that are too large; here we used the
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initial temperature field as the ‘‘undisturbed’’ field. The difference between the two arises in the
first few periods and remains nearly constant afterwards, which suggests that the difference is
due to adjustment of the system to the forcing, which involves net changes in mass.

4.2.2. Computation of the Cox number

Mixing may be quantified by a turbulent diffusivity. Consistently with the concepts introduced
above, the turbulent diffusivity should be defined as (Winters and D�Asaro, 1996):

js ¼ �
/d

dT s=dz
; ð3Þ

where Ts is the sorted temperature profile (and /d is the thermal flux). When the flow is homoge-
neous along the horizontal direction, the fluid system to which the sorting method is applied may
consist of the whole fluid volume. If, moreover, N is constant, a volume averaged value can be
defined for the turbulent diffusivity, which is proportional to Ud (the production of background
potential energy through mixing) divided by the vertical gradient of the sorted temperature
profile. In the present case, N is constant but the flow is not homogeneous along the horizontal
direction so that we apply the sorting method to fluid columns, following Thorpe (1977). A
method to conveniently obtain the diapycnal flux, and hence the turbulent diffusivity, was
proposed by Winters and D�Asaro (1996). The first step in this method is to sort the temperature
profile, along with its gradient (i.e. the gradient is not sorted itself but is simply re-arranged
following the sorting of the profile). The sorted profile is denoted by Ts, and the correspondingly
re-arranged gradient by [$T]s. The ratio between ½rT �

2
s and (dTs/dz)

2 directly provides the
normalized turbulent diffusivity:
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½rT �s
dT s=dz

� �2

¼
js

j
� Cox; ð4Þ

where ‘‘Cox’’ refers to the Cox number (note that [$T]s may often be computed as [dT/dz]s, to a
good approximation, as we did). We note that ‘‘j’’, in the denominator of the second ratio is the
background diffusivity. The spatial distribution of the Cox number over the slope is shown in
Fig. 8b; for comparison, the temperature perturbations are shown in Fig. 8a. Both are taken after
15 tidal periods. Because the Cox number varies significantly on the grid scale, we took horizontal
averages over every 10 points, thus creating segments of 5 km length. This length was chosen be-
cause it is of the order of the width of the beam. In general, the large values of the (horizontally
averaged) Cox number are located over the upper part of the slope, and locally in the beam
(clearly visible in the deeper parts of the basin, between x = 200–250 km). Examples of three
vertical distributions are shown in Fig. 9; over the upper part of the slope, values as high as 20
are reached, implying that the effective diffusivity is 20j. Note that similar values of the Cox
number were obtained by Bouruet-Aubertot et al. (2001) for breaking internal gravity waves in
a two-dimensional vertical plane.

4.2.3. Dependence on background diffusivity

We now consider whether the Cox number depends significantly on the value of the back-
ground diffusivity (i.e. the constant vertical diffusivity). For this purpose, we did two additional
calculations, in all respects equal to the previous one except that we took vertical diffusivity equal
to 10�3 m2/s (and vertical viscosity, too) in one case, an increase with respect to the previous run,
and equal to 10�5 m2/s in another. The results are shown in Fig. 10. Overall, the magnitude of the
values does not change strongly, but the region of higher Cox number becomes larger as the
background diffusivity becomes smaller.

Fig. 8. (a) The temperature field (in �C) over the slope, after 15 tidal periods, with the initial (static) temperature field
subtracted. (b) The distribution of the Cox number over the slope, where averages were taken over every 10 points, in
the horizontal. Note that the logarithm (base 10) of the Cox number is plotted.
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4.3. Case with rotation

As noted above, the group velocity decreases due to Coriolis effects; hence it takes longer for the
transients to leave the domain. This is confirmed in Fig. 11b where we see that the available
potential energy still increases markedly even after 12 tidal periods, near the end of the calculation
(cf. Fig. 7b). Typically, one finds that some 40 or 50 tidal periods would be needed for the
internal-tide signal to become fully ‘‘stationary’’ in the presence of Coriolis effects (Gerkema
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et al., 2004); this depends of course also on the vertical resolution, i.e. on how many vertical
modes are resolved.

The potential energy, in all its forms, is lower than in the case without rotation. This is partly
because the equipartition between kinetic and potential energy no longer holds in the presence of
rotation.

The Cox numbers (not shown) are generally smaller than in the case without rotation, by about
a factor 2. This confirms the idea noticed above (with regard to the weaker higher harmonics) that
in the presence of rotation non-linear effects are less manifest.

5. Discussion

The results presented in this paper show that there are essentially two regions where non-linear
effects manifest themselves: over the upper part of the slope (the generation region), and at the
position where the beam first reflects (bottom).

In the former region, small-scale features are found, suggestive of breaking and mixing.
We have analysed this quantitatively by calculating the development of changes in the
potential energy due to irreversible processes, and the values of the Cox number over the
slope.

In the latter region, higher harmonics are created. Our analysis indicates that about half of the
loss of energy of the M2 beam, during its reflection, is due to dissipation, while the other half goes
into the transfer to higher frequencies. The presence of higher harmonics seems to be confirmed by
observations. For example, year-long observations in the Central Bay of Biscay reveal distinct
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peaks of the higher harmonics in internal-wave spectra (van Haren, 2003). Detailed observations
on internal-tide beams are scarce, but the results obtained by Pingree and New (1991) provide
some insight into the structure of the beam over the vertical. Just beyond the position of bottom
reflection, they find a nearly sinusoidal M2 signal in the lowest part of the watercolumn, while
higher up in the column the signal becomes increasingly non-sinusoidal (their Fig. 5). This would
be consistent with the passage of higher harmonics (and hence steeper) internal-tide beams at
higher positions, since the superposition of M2 and its higher harmonics would produce a
non-sinusoidal signal.

The generation of higher harmonics upon bottom reflection of internal-tide beams seems to be a
fairly generic phenomenon; for example, it was also observed in a different type of configuration,
namely over a deep seamount (Lamb, 2004), instead of a continental slope. The intensity of the
beam has of course to be sufficient for several harmonics to be created. In the non-rotating
laboratory experiments by Peacock and Tabaei (2005) of a wave beam reflecting on a sloping
boundary, a single harmonic is generated.

We found that Coriolis effects partly suppress the transfer of energy to higher harmonics. The
theoretical framework required to explain the suppression is still lacking. Thorpe (1987) consid-
ered reflecting internal waves with Coriolis effects, but he found that no higher harmonics are
generated upon reflection at a flat bottom. This does not contradict our findings, because he
considered incoming waves of the form expikn (with n the characteristic coordinate), a wave of
infinite transverse extension, whereas we consider an internal-wave beam. The case of a reflecting
beam was recently studied by Tabaei et al. (2005), but without Coriolis effects. An extension of
this work should shed light on the latitudinal dependence.

We note that suppression, due to Coriolis effects, of a transfer to higher frequencies is found in
other contexts, too. For example, it was found by Gerkema and Zimmerman (1995) that the
transfer from internal tides to interfacial solitary waves was impeded by Coriolis dispersion. In
yet another context, inhibition of energy transfer by Coriolis effects has been studied in a theoret-
ical and numerical analysis by Cambon et al. (1997) for a rotating turbulent flow, without
stratification.

Notice that by varying the Coriolis parameter (f) one changes a number of things at once, such
as the conversion rate (not discussed in this paper) and thereby the energetics of the beam, the
direction of the beam, as well as its width. There are, therefore, various ways in which one can
make a comparison, and it is not clear which is the most meaningful one. We kept all other
parameters the same, but one may also consider varying, for instance, the barotropic flux along
with the Coriolis parameter in order to keep the conversion rate fixed. Similar ambiguities arise if
one changes N or the topographic slope.

In the numerical calculations, the available potential energy gradually grows with time until it
reaches a nearly steady value; this takes between 12 and 15 tidal periods for the domain we
considered here. The reason is that it takes a relatively long time for the higher modes to reach
the boundaries of the domain, because of their lower group speeds. This is seen in very short runs,
which produce only a first mode at some distance from the generation region (see, e.g., Legg,
2004). The above results show that one does find a well-defined beam (as well as narrow beams
of higher harmonics after reflection) if the run is sufficiently long; the beam, of course, results from
a superposition of a number of modes. This highlights the necessity of taking a long time span;
otherwise one basically looks only at the transient response.
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The results presented here can be regarded as a reasonable idealization of the state during win-
ter, when the stratification varies only weakly. The presence of the seasonal thermocline (summer)
would give rise to a more complicated picture, because it would create an additional region of
strong forcing (in the thermocline), and moreover would give rise to scattering of internal tide
beams (Gerkema et al., 2004).

It should be noticed that the horizontal resolution was still fairly coarse in the present calcula-
tions. This implies, among other things, that non-hydrostatic effects are diminished; they would be
more pronounced with a finer resolution. Specifically, the inclusion of a seasonal thermocline, as a
next step, would require a finer resolution to resolve the formation of solitary waves, which
depend crucially on non-hydrostatic effects.
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