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A proximal iteration for deconvolving Poisson noisy

Images using sparse representations
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Abstract

We propose an image deconvolution algorithm when the datansaminated by Poisson noise. The image to
restore is assumed to be sparsely represented in a digtiohamveforms such as the wavelet or curvelet transforms.
Our key contributions are: First, we handle the Poissonenpisperly by using the Anscombe variance stabilizing
transform leading to aon-linear degradation equation with additive Gaussian noise. Secinreddeconvolution
problem is formulated as the minimization of a convex fumél with a data-fidelity term reflecting the noise
properties, and a non-smooth sparsity-promoting penaley the image representation coefficients (€;gnorm).

An additional term is also included in the functional to emspositivity of the restored image. Third, a fast iterative
forward-backward splitting algorithm is proposed to sothe minimization problem. We derive existence and
uniqueness conditions of the solution, and establish agewee of the iterative algorithm. Finally, a GCV-based
model selection procedure is proposed to objectively sealex regularization parameter. Experimental results are
carried out to show the striking benefits gained from takimg iaccount the Poisson statistics of the noise. These
results also suggest that using sparse-domain regularizatay be tractable in many deconvolution applications

with Poisson noise such as astronomy and microscopy.

Index Terms

Deconvolution, Poisson noise, Proximal iteration, fomvbackward splitting, Iterative thresholding, Sparse

representations.



. INTRODUCTION

Deconvolution is a longstanding problem in many areas afalignd image processing (e.g. biomedical imaging
[1], [2], astronomy [3], remote-sensing, to quote a few): Example, research in astronomical image deconvolution
has recently seen considerable work, partly triggered eéyihbble space telescope (HST) optical aberration problem
at the beginning of its mission. In biomedical imaging, egsbers are also increasingly relying on deconvolution
to improve the quality of images acquired by confocal micapses [2]. Deconvolution may then prove crucial for
exploiting images and extracting scientific content.

There is an extensive literature on deconvolution problgdme might refer to well-known dedicated monographs
on the subject [4]-[6]. In presence of Poisson noise, sédaeonvolution methods have been proposed such as
Tikhonov-Miller inverse filter and Richardson-Lucy (RL)gakithms; see [1], [3] for a comprehensive review. The
RL has been used extensively in many applications becauseailapted to Poisson noise. The RL algorithm,
however, amplifies noise after a few iterations, which canabeided by introducing regularization. In [7], the
authors presented a Total Variation (TV)-regularized Rioathm. In the astronomical imaging literature, several
authors advocated the use of wavelet-regularized RL dlgori8]-[10]. In the context of biological imaging
deconvolution, wavelets have also been used as a regti@nzcheme when deconvolving biomedical images;
[11] presents a version of RL combined with wavelets dengisand [12] uses the thresholded Landweber iteration
introduced in [13]. The latter approach implicitly assuntiest the contaminating noise is Gaussian.

Other recent attempts for solving Poisson linear inversblpms is a Bayesian multi-scale framework proposed
in [14] based on a multi-scale factorization of the Poisske&lihood function associated with a recursive partitiani
of the underlying intensity. Regularization of the solatie accomplished by imposing prior probability distritaurts
in a Bayesian paradigm and the maximum a posteriori solusocomputed using the expectation-maximization
algorithm. However, the multiscale analysis by the abowba@s is only tractable with the Haar wavelet. Similarly,
the work in [15] on hard threshold estimators in the tomofgramata framework has shown that for a particular
operator (the Radon operator) an extension of waveletelaga decomposition (WVD) method [16] for Poisson
data is theoretically feasible. But the authors do not glexsiny computational algorithm for computing the estimate.
Inspired by the WVD method, the authors in [17] explored @erahtive approach via wavelet-based decompositions
combined with thresholding strategies that address adgptssues. Specifically, their framework extends the
wavelet-Galerkin methods of [18] to the Poisson settingortter to ensure the positivity of the estimated intensity,
the log-intensity is expanded in a wavelet basis. This ntetisohowever limited to standard orthogonal wavelet
bases.

In the context of deconvolution with Gaussian white noigggrsity-promoting regularization over orthogonal
wavelet coefficients has been recently proposed [13], [[X]]. Generalization to frames was proposed in [21],
[22]. In [23], the authors presented an image deconvolwigorithm by iterative thresholding in an overcomplete

dictionary of transforms, and [24] designed a deconvolutitethod that combines both the wavelet and curvelet



transforms. However, sparsity-based approaches pulllishdar have mainly focused on Gaussian noise.

In this paper, we propose an image deconvolution algorithndéta blurred and contaminated by Poisson noise.
The Poisson noise is handled properly by using the Anscorabiance stabilizing transform (VST), leading to a
non-lineardegradation equation with additive Gaussian noise, sed@ i) deconvolution problem is then formulated
as the minimization of a convex functional combining a nime#&r data-fidelity term reflecting the noise properties,
and a non-smooth sparsity-promoting penalty over the sgmtation coefficients of the image to restore. Such
representations include not only the orthogonal wavebsisfiorm but also overcomplete representations such as
translation-invariant wavelets, curvelets or wavelet emrvelets. Since Poisson intensity functions are northega
by definition, an additional term is also included in the miided functional to ensure the positivity of the restored
image. Inspired by the work in [20], a fast proximal iteratialgorithm is proposed to solve the minimization
problem. Experimental results are carried out on a set ofllsit®d and real images to compare our approach to
some competitors. We show the striking benefits gained frakimg) into account the Poisson nature of the noise

and the morphological structures involved in the imageugloovercomplete sparse multiscale transforms.

A. Relation to prior work

A naive solution to this deconvolution problem would be tglgparaditional approaches designed for Gaussian
noise. But this would be awkward as (i) the noise tends to &ansnly for large mean intensities (central limit
theorem), and (ii) the noise variance depends on the meawagnyA more adapted way would be to adopt a
bayesian framework with an appropriate anti-log-likebldoscore—the negative of the log-likelihood function—
to obtain a data fidelity term reflecting the Poisson stasistif the noise. The data fidelity term is derived from
the conditional distribution of the observed data given dhiginal image, which is known to be governed by
physical considerations concerned with the data-acdprisdtevice and the noise generating process (e.g. Poisson
here). Unfortunately, doing so, we would end-up with a fioral which does not satisfy a key property: the data
fidelity term does not have a Lipschitz-continuous gradantequired in [20], hence preventing us from using the
forward-backward splitting proximal algorithm to solveetbptimization problem. To circumvent this difficulty, we
propose to handle the noise statistical properties by ugiagAnscombe VST. Some previous authors [25] have
already suggested to use the Anscombe VST, and then dewenwith wavelet-domain regularization as if the
stabilized observation were linearly degraded and comated by additive Gaussian noise. But this is not valid as

standard results of the Anscombe VST lead to a non-linearadatjon equation because of the square-root, see

(1).

B. Organization of this paper

The organization of the paper is as follows: we first formeilatir deconvolution problem under Poisson noise
(Section 1), and then recall some necessary material ataericomplete sparse representations (Section Ill). The

core of the paper lies in Section IV, where we state the demlation optimization problem, characterize it and



solve it using monotone operator splitting iterations. W docus on the choice of the two main parameters of the
algorithm and propose some solutions. In Section V, expntal results are reported and discussed. The proofs

of our main results are deferred to the appendix for the salgesentation.

C. Notation and terminology

Let H a real Hilbert space, here a finite dimensional real vectacspWe denote by.|| the norm associated
with the inner product.,.) in H, andl is the identity operator oft{. x and« are respectively reordered vectors
of image samples and transform coefficients.

A real-valued functionf is coercive, iflim,|_ 4 f (¥) = +oco. The domain off is defined bydom f =
{x € H : f(x) < +oo} and f is proper ifdom f # (. We say that a real-valued functiofis lower semi-
continuous (Isc) ifliminf,_,, f(x) > f(xzo). Lower semi-continuity is weaker than continuity, and lagn
important role for existence of solutions in minimizatioroplems [26, Page 17]'y(H) is the class of all proper
Isc convex functions fronf{ to (—oo,+oc]. The subdifferential of a functiorf € I'o(H) atx € H is the set
Of () ={ue HIVy € H, f(y) > f(z) + (u,y — z)}. An element, of Of is called a subgradient. A comprehensive
account of subdifferentials can be found in [26].

An operatorA acting on’H is k-Lipschitz continuous ifVz,y € H, [[A(x) — A(y)|| < ||z — y|| wherek is the

Lipschitz constant. The spectral operator normAois given by ||A||, = max,o ”@f””.

0, if xeC,
We denote by, the indicator of the convex sét ¢ (z) = . We denote by~ the convergence.

400, otherwise

[I. PROBLEM STATEMENT

Consider the image formation model where an input image pfxels x is blurred by a point spread function
(PSF)h and contaminated by Poisson noise. The observed imageisittiiscrete collection of counys= (y;)1<i<n
which are bounded, i.ey € /,. Each county; is a realization of an independent Poisson random varialile w
a mean(h ® x);, where® is the circular convolution operator. Formally, this wsitg; ~ P ((h® x);). The
deconvolution problem at hand is to restarédrom the observed count image

A natural way to attack this problem would be to adopt a maxmauposteriori (MAP) bayesian framework with
an appropriate likelihood function—the distribution oétbbserved datagiven an originak—reflecting the Poisson
statistics of the noise. But, as stated above, this wouldgotaus from using the forward-backward splitting proximal
algorithm to solve the MAP optimization problem, since thadient of the data fidelity term is not Lipschitz-
continuous. Indeed, forward-backward iteration is esalyta generalization of the classical gradient projettio
method [27] for constrained convex optimization and moneteariational inequalities, and inherit restrictions
similar to those methods. For such methods, Lipschitz naityi of the gradient is classical [27, Theorem 8.6-2].

The latter property is then crucial for the iterates in (I8be determined uniquely, and for the forward-backward



splitting algorithm to converge; see Theorem 1 and also.[#8} this reason, we propose to handle the noise

statistical properties by using the Anscombe VST [29] defias
2 =2 (h@w)i—kg—ka, e ~N(0,1), 1)

wheree is an additive white Gaussian noise of unit variande words,z is non-linearlyrelated tox. In Section IV,

we provide an elegant optimization problem and a fixed pdoréhm taking into account such a non-linearity.

[1l. SPARSE IMAGE REPRESENTATION
Let z € H be any/n x /n image.x can be written as the superposition of elementary atpmparameterized
by v € Z according to the following linear generative model :

x:Za7@7:<Da, Z|=L>n. 2
YEL

We denote by® the dictionary i.e. thex x L matrix whose columns are the generating Wavefo(m,s)vez all
normalized to a units-norm. The forward (analysis) transform is then defined bya-necessarily square matrix
T = &7 ¢ REX™ with L > n. When L > n the dictionary is said to be redundant or overcomplete. éndéwse of
the simple orthogonal basis, the inverse (synthesis) foemsis trivially ® = TT. Whereas assuming thét is a
tight frame implies that the frame operator satisfieB” = cI, wherec > 0 is the tight frame constant. For tight
frames, the pseudo-inverse reconstruction (syntheseptqr reduces te~! ®. In the sequel, the dictionag will
correspond either to an orthobasis or to a tight frame{of

Owing to recent advances in modern harmonic analysis, meshyndant systems, like the undecimated wavelet
transform, curvelet, contourlet etc, were shown to be vdigctve in sparsely representing images. By sparsity,
we mean that we are seeking for a good representatianvaith only few significant coefficients.

In the rest of the paper, the dictionadyis built by taking union of one or several transforms, eaatesponding
to an orthogonal basis or a tight frame. Choosing an ap@tpdictionary is a key step towards a good sparse
representation, hence restoration. A core idea here isaheept of morphological diversity. When the transforms
are amalgamated in the dictionary, they have to be chosdmtsateach leads to sparse representation over the parts
of the image it is serving while being inefficient in repretieg the other image content. As popular examples, one
may think of wavelets for smooth images with isotropic silagities [30, Section 9.3], curvelets for representing
piecewise smoottC? images away fromC? contours [31], [32], wave atoms or local DCT to representliyc
oscillating textures [30], [33].

Rigorously speaking, the equation is to be understood insgmptotic sense.



IV. SPARSEITERATIVE DECONVOLUTION
A. Optimization problem

In this Section, we derive that the class of minimizationlggns we are interested in, see (5), can be stated in

the general form :

min f1(a) + fa(a), 3

a€eRE
where f; € To(RE), fo € T'o(RY) and f; is differentiable with ax-Lipschitz gradient. We denote byt the set of
solutions of (3).

From (1), we immediately deduce the data fidelity term

FoHo® («), with (4)
n . 1 2
FineR" =3 f(m), fni) =5 (Zz'—Q\/UiJF%) ;
=1
where H denotes the (circular) convolution operator. From a gtadik perspective, (4) corresponds to the anti-
log-likelihood score. Note that for bias correction reas{®4], the value 1/8 may be used instead of 3/8 in (4).
However, there are implications of this alternate choicahan Lipschitz constant in (8), and consequently it can
be seen from Theorem 1 that this will have an unfavorable @npa the convergence speed of the deconvolution
algorithm.
Adopting a bayesian framework and using a standard MAP aulegoal is to minimize the following functional

with respect to the representation coefficiemts

(Pay) : min J(a) , (5)
L
J:ar— FoHo® (a)41co® (a)—l—)\zw(a,-),
_ ;
fil) =
f2(e)

where we implicitly assumed thdty;)1<;<;, are independent and identically distributed with a Gibbsi@nsity

x e~ (@) The penalty function is chosen to enforce sparsity,> 0 is a regularization parameter ang is

the indicator function of the convex sét In our case( is the positive orthant. The role of the temgo ® is to
impose the positivity constraint on the restored image bseave are fitting Poisson intensities, which are positive
by nature. We also define the gBt= {a|Pa € C}, that isie: =1 o .

From (5), we have the following,

Proposition 1.

(i) f1is convex function. It is strictly convexdf is an orthobasis andter (H) = () (i.e. the spectrum of the PSF
does not vanish within the Nyquist band).
(i) The gradient off; is
Vfi(a) =T oHT o VFoHo ® (a), (6)



with

—z;

(i) f1 is continuously differentiable with a-Lipschitz gradient where
3/2
r < (3)Y e [HI3 )1zl < +oc. ®)
(iv) (Pxy) is a particular case of problen).

A proof can be found in the appendix.

B. Characterization of the solution

SinceJ is coercive and convex, the following holds :
Proposition 2.

1) Existence(P, ;) has at least one solution, i.e\ # 0.

2) Uniqueness(P, ,) has a unique solution b is an orthobasis ander (H) = (), or if ¢ is strictly convex.

C. Proximal iteration

We first define the notion of a proximity operator, which wasdduced in [35] as a generalization of the notion

of a convex projection operator.

Definition 1 (Moreau [35]). Lety € I'o(H). Then, for every: € H, the functiony — ¢ (y)+ ||z — y||* /2 achieves
its infimum at a unique point denoted pyox, z. The operatorprox,, : H — H thus defined is the proximity

operator ofp. MoreoverVzx,p € ‘H
p=Dprox,z < x—p€ dp(p) < (y—p,z—p)+ o) <ey) Yy eH. 9)

(9) means thaprox,, is the resolvent of the subdifferential pf{36]. Recall that the resolvent of the subdifferential

dy is the single-valued operatoky, : H — H such thatvz € H,z — Jo,(z) € dp(Ja,) < Jo, = (I1— )7L

It will also be convenient to introduce the reflection operaprox, = 2 prox,, —1.

For notational simplicity, we denote by the functiona — >, ¢(c;). Our goal now is to express the proximity
operator associated tf», which will be needed in the iterative deconvolution algfon. The difficulty stems from
the definition of fo which combines both the ’positivity’ constraint and the ulegization. Unfortunately, we can
show that even with a separable penaltit), the operatoprox;, = prox, .¢, g has no explicit form in general,
except the case whefle = 1. We then propose to replace explicit evaluatiopofx ;, by a sequence of calculations
that activate separatefyrox, .. andprox,y. We will show that the last two proximity operators have elbgorm

expressions. Such a strategy is known as a splitting methadagimal monotone operators [36], [37]. As both



1o and ¥ belong toT'y (H) and are non-differentiable, our splitting method is basedtie Douglas-Rachford

algorithm [28], [36], [37]. The following lemma summarizesir scheme.

Lemma 1. Let ® an orthobasis or a tight frame with constantRecall thatC’ = {a|®«a € C}.
1) If a € C’ thenproxy, (a) = proxg ().
2) Otherwise, let(;); be a sequence iif0, 1) such thatd>", 14(1 — ;) = +oo. Take® € H, and define the

sequence of iterates :
t+1 t t
A=Ay <rprox/\‘lj+%|__oé”2 OTPTOX, , I) (), (10)

whereprox 1 (7)) = [ proxy  ((a; +1%)/2) , Per = prox, , = ¢ 1®ToPeod+(I— 10T 0 @)
)\\Il+§||.—a|\ 59 <<l c
and P is the projector onto the positive ortha(Pcn); = max(n;,0). Then,

7" =~ and prox;, () = Pe: (7). (11)

The proof is detailed in the appendix. Note that whieiis an orthobasisP,: = ®T o Pp o ®.
To implement the above iteration, we need to exprass,,,, which is given by the following result for a wide

class of penaltieg :

Lemma 2. Suppose that satisfies, (i) is convex even-symmetric , non-negative and non-decigasif, +o0),
and ¢ (0) = 0. (i) ¢ is twice differentiable orR \ {0}. (iii) ¢ is continuous orR, it is not necessarily smooth

at zero and admits a positive right derivative at z@@(o) = limy_, o+ w%h) > 0. Then, the proximity operator of

U (), proxsy () has exactly one continuous solution decoupled in each aoate-y; :

0 if || < 0 (0)
proxsy (Vi) = ! (12)

vi = 0 (a;) if || > 6, (0)
A proof of this lemma can be found in [38]. A similar result@lsas recently appeared in [39]. Among the most
popular penalty functiong satisfying the above requirements, we havey;) = |«;|, in which case the associated
proximity operator is the popular soft-thresholding.

We are now ready to state our main proximal iterative alparito solve the minimization problerP, . ):

Theorem 1. For ¢t > 0, let (i) be a sequence ift), +o0) such thal) < infy pu; < sup; pe < (%)3/2 / <2c\|H||§ ||z||oo>,
let (3;): be a sequence iif0, 1] such thatinf; 5, > 0, and let (a;); and (b;); be sequences ift{ such that
S llacl] < +oo and 3, ||be]| < +oc. Fix o® € RE, for everyt > 0, set

ot =al + By(prox,, s, (of — pe (Vf1(ef) +br)) + ar — o) (13)
whereV f; and prox,, ;, are given by Proposition 1(ii) and Lemma 1. Thé®):>o converges to a solution of

(Pxy)-

This is the most general convergence result known on theai@lackward iteration. The name of the iteration

is inspired by well-established techniques from numericedar algebra. The words "forward” and "backward”



refer respectively to the standard notions of a forwardedéfce (here explicit gradient descent) step and of a
backward difference (here implicit proximity) step in numgal analysis. The sequencgsandb; play a prominent
role as they formally establish the robustness of the dlyorito numerical errors when computing the gradient
V f1 and the proximity operatasrox,. The latter remark will allow us to accelerate the algorithynrunning the
sub-iteration (10) only a few iterations (see implementailetails in IV-F).

For illustration, let's takel as the/; norm, in which caserox,y is the component-wise soft-thresholding with
threshold\, a; = b, =0, 8, = 1 andu, = p in (13), andv, = 1/2 in (10). Thus, bringing all the pieces together,

the deconvolution algorithm dictated by iterations (13} ¢h0) is summarized in Algorithm 1.

Algorithm 1
Task: Image deconvolution with Poisson noise, solve (5).

Parameters: The observed image coungs the dictionary®, number of iterationsVyg in (13) andNpg in sub-
iteration (10), relaxation parametgr regularization parametex.

Initialization:
o Apply VST 2z =2,/y + 3/8.
« Initial solution a® = 0.

Main iteration:
For t =0 to Ngg — 1,

« Compute blurred estimat¢ = Hda!.

Compute 'residualsit = (L + 2> .
ni+3/8 1<i<n

« Move along the descent directigh = of + p®THT ¢t

Initialize v° = ¢¢, and start sub-iteration.

For m = 0 to Npgr-1,

— Projecty™ orthogonally toC’: ("™ = ¢~ '®" (min(®y™, 0)).
— Updatey™"! by soft-thresholdingy™ ™ = ST j, (&' +~™)/2 — (™) + (™.
« Updatea/™! = yMor — c=10T (min(@yor, 0)).
End main iteration

Output: Deconvolved image:* = ®&a’Vrs,

D. Choice ofu

The relaxation (or descent) parametehas an important impact on the convergence speed of thethlgomhe
upper-bound provided by Theorem 1, derived from the Lipzatdnstant (8) is only a sufficient condition for (13)
to converge, and may be pessimistic in some applicationgirtomvent this drawback, Tseng proposed in [40]

an extension of the forward-backward algorithm with anaiten to adaptively estimate a "good” value of The
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main result provided hereafter is an adaptation to our etbritethe one of Tseng [40]. We state it in full for the

sake of completeness and the reader convenience.

Theorem 2. LetC’ as defined above (IV-A). Choose amye C'. Let (u:):en be a sequence such thaét > 0, u; €

(0,00). Let f1 as defined in(5). Then the sequendey);cy Of iterates
a, 1= proxyg (ar — mVfi(ar))
2

a1 = Por ( 1 — [t <Vf1(04t+1) - Vfl@ét)))
+3 3

converges to a minimum of.

(14)

As V fi is Lipschitz-continuous, the update of the relaxation segey:, is rather easy. Indeed, using an Armijo-
Goldstein-type stepsize approach, we can compute and aipgdat each iteration by taking; to be the largest

w € {o,70,7%0,...} satisfying

n|[Vhite, )~ Then] <oo

1 — O ) (15)

t+§
wherer € (0,1), 6 € (0,1) ando > 0 are constantsr = 1/2 is a typical choice.

It is worth noting that for tight frames, this algorithm widbmewhat simplify the computation pfox,,, removing
the need of the Douglas-Rachford sub-iteration (10). Butatever the transform, this will come at the price of

keeping track of the gradient of; at the pointSaHl and oy, and the need to check (15) several times.
2

E. Choice of\

As usual in regularized inverse problems, the choice & crucial as it represents the desired balance between
sparsity (regularization) and deconvolution (data figgliEor a given application and corpus of images (e.g. caifoc
microscopy), a naive brute-force approach would consisesting several values of and taking the best one by
visual assessment of the deconvolution quality. HoweWgs, is cumbersome in the general case.

We propose to objectively select the regularizing param&tbased on an adaptive model selection criterion
such as the generalized cross validation (GCV) [41]. Othierea are possible as well including the AIC [42] or
the BIC [43]. GCV attempts to provide a data-driven estinafte. by minimizing :

2 21?? +3 H .

wherea*(z) denotes the solution arrived at by iteration (13) (or (14))d df is the effective number of degrees

GCV(A

of freedom.

Deriving the closed-form expression df is very challenging in our case as it faces two main diffiesiti(i)
the observation model (1) is non-linear, and (ii) the solut*(z) is not known in closed form but given by the
iterative forward-backward algorithm.

Degrees of freedom is a familiar phrase in statistics. Inefdetermined) linear regressialfi is the number

of estimated predictors. More generally, degrees of freeifooften used to quantify the model complexity of a
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statistical modeling procedure. However, generally spgpkhere is no exact correspondence between the degrees
of freedomdf and the number of parameters in the model. In penalizedispotubf inverse problems where the
estimator is linear in the observation, e.g. Tikhonov ragahtion or ridge regression in statisties,is simply the
trace of the so-called influence or the hat matrix. But in gelhd is difficult to derive the analytical expression of
df for general nonlinear modeling procedures such as ours. fEmains a challenging and active area of research.
Stein’s unbiased risk estimation (SURE) theory [44] givesgarous definition of the degrees of freedom for
any fitting procedure. Following our notation, given theutioin o* provided by our deconvolution algorithm, let
2*(2) = 24/H®a*(z) + 3/8 represent the model fit from the observatianAs Z|a ~ N (2\/m, 1), it

follows from [45] that the degrees of freedom of our procedisr

df(A) = Cov(z}(2),2) ,
=1

a quantity also called the optimism of the estimatdfz). If the estimation algorithm is such that(z) is almost-
differentiable [44] with respect to, so that its divergence is well-defined in the weak senses(H#icase it*(z)

were uniformly Lipschitz-continuous), Stein's Lemma yielthe so-called divergence formula

=~ 02(2)
; 5 ] . (17)

where the expectatioR, is taken under the distribution df. The df is then the sum of the sensitivity of each

df(\) = Cov(2(2), ) = Ez [div (2*(2))] = Ez
=1

fitted value with respect to the corresponding observedevdtor example, the last expression of this formula has
been used in [46] for orthogonal wavelet denoising. Howeids notoriously difficult to derive the closed-form
analytical expression off from the above formula for general nonlinear modeling pdores. To overcome the
analytical difficulty, the bootstrap [47] can be used to abtn (asymptotically) unbiased estimatordst Ye [48]

and Shen and Ye [49] proposed using a data perturbation itpehmo numerically compute an (approximately)
unbiased estimate faif when the analytical form of*(z) is unavailable. From (17), the estimator djf takes the

form

FJ0 = Ey Kvo, Z*(”T”O)‘Z*(Z)H, Vo ~ N(O,1) |

-
1

= (v, 2*(z +v)) ¢(v; T2 T)dv, V ~ N(0,7%1) , (18)
where ¢(v; 721) is the n-dimensional density of\’(0,72I). It can be shown that this formula is valid ¥ is
replaced by any vector of random of variables with finite leigbrder moments. The author in [48] proved that this
is an unbiased estimate df asT — 0, that islim,_oE, [cff()\)} = df (\). It can be computed by Monte-Carlo
integration withT near 0.6 as devised in [48]. However, both bootstrap and rviethod, although general and can
be used for any € I'y(R”), are computationally prohibitive. This is the main reasaawill not use them here.
Zou et al. [50] recently studied the degrees of freedom ofLthgséd in the framework of SURE. They showed
that for any given\ the number of nonzero coefficients in the model is an unbiasedconsistent estimate df.

2The Lasso model correspond to the case of (5) where the detgmadnodel in (1) is linear and is the ¢;-norm.
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However, for their results to hold rigorously, the mattix= H® in the Lasso must be over-determinkd< n with
Rank(A) = L. Nonetheless, one can show that their intuitive estimator loe extended to the under-determined
case (i.e.L > n) under the so-called (UC) condition of [51]; see Theorem 2hat reference. This will yield
an unbiased estimator aif, but consistency would be much harder to prove since it requihat the Gram
matrix AT A is positive-definitevhich only happens in the special casedofin orthogonal basis arigr (H) = ().
Furthermore, even with thg norm, extending this simple estimator rigorously to outisgtfaces two additional
serious difficulties beside underdeterminacydofnamely the non-linearity of the degradation equation (i the
positivity constraint in (5).

Following this discussion, it appears clearly that estintatlf is either computationally intensive (bootstrap or
perturbation techniques), or analytically difficult to nker In this paper, in the same vein as [50], we conjecture

that a simple estimator aff, is given by the cardinal of the support af. That is, from (12)-(13)
df(\) = Card {i=1,...,L | |af| >} . (19)

With such simple formula on hand, expression of the modelctiein criteria GCV in (16) is readily available.

4

10

10°F

10™

10° 10?2 10" 107° 107 10 10
A A
(a) (b)
Figure 1. GCV for the Cameraman (a) and the Neuron phantomT{® translation-invariant discrete wavelet transforns waed with

the Cameraman image, and the curvelet transform with theddephantom. The solid line represents the GCV, the dasinedtiie MSE
and the dashed-dotted line the MAE.

Although this formula is only an approximation, in all ourpeximents, it performed reasonably well. This is
testified by Fig. 1(a) and (b) which respectively show theavair of the GCV as a function of for two images:
the Cameraman portrayed in Fig. 4(a) and the Neuron phantomrsin Fig. 2(a). As the ground-truth is known

in the simulation, we computed for eachthe mean absolute-error (MAE)—well adapted to Poissonenass it
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is closely related to the squared Hellinger distance [52]s-well as the mean square-error (MSE) between the
deconvolved and true image. We can clearly see that the G@vhes its minimum close to those of the MAE
and the MSE. Even though the regularization parametertdittay the GCV criterion is slightly higher than that

of the MSE, which may lead to a somewhat over-smooth estimate

F. Computational complexity and implementation details

The bulk of computation of our deconvolution algorithm isested in applyingd (resp.H) and its adjointd™
(resp.HT). These operators are never constructed explicitly, ratrey are implemented as fast implicit operators
taking a vectorr, and returningbz (resp.®’z) andHz (resp.H™z). Multiplication by H or HT costs two FFTs,
that is2n log n operations¢ denotes the number of pixels). The complexityfoand®™ depends on the transforms
in the dictionary: for example, the orthogonal wavelet sfanm costsO(n) operations, the translation-invariant
discrete wavelet transform (TI-DWT) cost¥n log n), the curvelet transform costd(nlogn), etc. LetVy denote
the complexity of applying the analysis or synthesis omerddefine Nyg and Npr as the number of iterations
in the forward-backward algorithm and the Douglas-Raahfeub-iteration, and recall thdt is the number of

coefficients. The computational complexities of our itienag (13) and (14) are summarized below:

Algorithm Computational complexity bounds
® orthobasis ® tight frame
(13) | Npp (4nlogn + Npgr (2Va + O(n))) | Nep (4nlogn + 2V + Npr(2Vs + O(L)))
(14) Nrg (8nlogn + 2V + O(n)) Nrg (8nlogn + 6Ve + O(L))

The orthobasis case requires less multiplication®and® ™ because in that cas®,is a bijective linear operator.
Thus, the optimization problem (5) can be equivalently teritin terms of image samples instead of coefficients,
hence reducing computations in the corresponding iterat{@3) and (14).

For our implementation, as in Algorithm 1, we have takenr= b; = 0 andg; = 1 in (13), andy; = 1/2 in (10).

As the PSFh in our experiments is low-pass normalized to a unit sumug = 1. ¥ was the/;-norm, leading
to soft-thresholding. Furthermore, in order to acceletaéecomputation oprox, in (13), the Douglas-Rachford
sub-iteration (10) was only run once (i.8pg = 1) starting withA® = «. In this case, one can check that if

+% € ', then this leads to the "natural” formula :

proxy, (a) = Per o proxA\P(a).
2

In our experimental studies, the GCV-based selection wfas run using the forward-backward algorithm (13)
which has a lower computational burden than (14) (see alable for computational complexities). Ongewas
objectively chosen by the GCV procedure, the deconvoludiigorithm was applied using (14) to exempt the user

from the choice of the relaxation parameter
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V. RESULTS
A. Simulated data

The performance of our approach has been assessed on deseialages: 428 x 128 neuron phantom [53],

a 370 x 370 confocal microscopy image of micro-vessel cells [54], th@m@raman 256 x 256), a 512 x 512
simulated astronomical image of the Hubble Space Teles@dgde Field Camera of a distant cluster of galaxies
[3]. Our algorithm was compared to RL with total variatiorguéarization (RL-TV [7]), RL with multi-resolution
support wavelet regularization (RL-MRS [9]), fast tratigla invariant tree-pruning reconstruction combined with
an EM algorithm (FTITPR [55]) and the naive proximal methbdttwould treat the noise as if it were Gaussian
(NaiveGauss [12]). For all results presented, each algarivas run withNgg = 200 iterations, enough to reach
convergence. For all results belowwas selected using the GCV criterion for our algorithm. For €omparison

to [12], A was also chosen by adapting our GCV formula to the Gaussiee.no

Fig.2(a), depicts a phantom of a neuron with a mushroomeshapine. The maximum intensity is 30. Its blurred
(using a7 x 7 moving average) and blurred+noisy versions are in (b) apdAf@h this neuron, and for NaiveGauss
and our approach, the dictionady contained the curvelet tight frame [32]. The deconvolutiesults are shown
in Fig.2(d)-(h). As expected at this intensity level, theil&auss algorithm performs quite badly, as it does not
fit the noise model at this intensity regime. It turns out thativeGauss under-regularizes the estimate and the
Poisson signal-dependent noise is not always under coittnig behavior of NaiveGauss, which was predictable at
this intensity level, will be observed on almost all testethgjes. RL-TV does a good job at deconvolution but the
background is dominated by artifacts, and the restorecomehais staircase-like artifacts typical of TV regulariaati
Our approach provides a visually pleasant deconvolutisalteon this example. It efficiently restores the spine,
although the background is not fully cleaned. RL-MRS alshilgits good deconvolution results. On this image,
FTITPR provides a well smoothed estimate but with almost ecodvolution.

These qualitative visual results are confirmed by quaiv@aneasures of the quality of deconvolution, where
we used both the MAE and the traditional MSE criteria. At eatbnsity value, 10 noisy and blurred replications
were generated and and the MAE was computed for each dectiovohlgorithm. The average MAE over the
10 replications are given in Fig. 6 (similar results wereaifed for the MSE, not shown here). In general, our
algorithm performs very well at all intensity regimes (esipHly at medium to low). The NaiveGauss is among
the worst algorithms at low intensity levels. Its perforrnarbecomes better as the intensity increases which was
expected. RL-MRS is effective at low and medium intensityele and is even better than our algorithm on the
Cell image. RL-TV underperforms all algorithms at low irnség. We suspect the staircase-like artifacts of TV-
regularization to be responsible for this behavior. At higtensity, RL-TV becomes competitive and its MAE
comparable to ours.

The same experiment as above was carried out with the cdnfoiceoscopy cell image; see Fig. 3. In this

experiment, the PSF was7a< 7 moving average. For the NaiveGauss and our approach, therdicy & contained
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(9) (h)

Figure 2. Deconvolution of a simulated neuron (Intensitg0). (a) Original, (b) Blurred, (c) Blurred&noisy, (d) RLVIT7], (e) NaiveGauss
[12], (f) RL-MRS [3], (g) FTITPR [55], (h) Our Algorithm.

the TI-DWT. NaiveGauss deconvolution result is spoiled kyfacts. RL-TV produces a good restoration of small
isolated details but with a dominating staircase-likefacts. FTITPR yields a somewhat oversmooth estimate,
whereas our approach provides a sharper deconvolutiort.réis visual inspection is in agreement with the
MAE measures of Fig. 6. In particular, one can notice thatNRRS shows the best behavior, and the performance

of our approach compared to the other methods on this cetjénimroughly the same as on the previous neuron
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image.

(d) (e)

Figure 3. Deconvolution of a microscopy cell image (Intgnsi 30). (a) Original, (b) Blurred, (c) Blurred&noisy, (d) RLVI[7], (e)
NaiveGauss [12], (f) RL-MRS [3], (g) FTITPR [55] (h) Our Algthm.

(f)

Fig.4(a) depicts the result of the experiment on the Camanawith maximum intensity of 30. The PSF was the
same as above. Again, the dictionary contained the TI-DVein&. One may notice that the degradation in Fig.4(c)
is quite severe. Our algorithm provides the most visualgaping result with a good balance between regularization

and deconvolution, although some artifacts are persisRigMRS manages to deconvolve the image with more
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artifacts than our approach, and suffers from a loss of phetry. Again, FTITPR gives an oversmooth estimate
with many missing details. Both RL-TV and NaiveGauss yiaddults with many artifacts. This visual impression

is in agreement with the MAE values in Fig. 6.

(b)
L?';p_n;r 3

Ay

(9) (h)

Figure 4. Deconvolution of the cameraman (Intensity80). (a) Original, (b) Blurred, (c) Blurred&noisy, (d) RLVI[7], (e) NaiveGauss
[12], (f) RL-MRS [3], (g) FTITPR [55], (h) Our Algorithm.

To assess the computational cost of the compared algoritiiads | summarizes the execution times on the
Cameraman image with an Intel PC Core 2 Duo 2GHz, 2Gb RAM. pxB&-MRS which is written in C++, all
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other algorithms were implemented in Matlab.

Method Time (in s)
Our method 88

NaiveGauss 71
RL-MRS 99.5
RL-TV 15.5

Table |

EXECUTION TIMES FOR THE SIMULATED256 X 256 CAMERAMAN IMAGE USING THE TI-DWT (Ngg = 200).

The same experimental protocol was applied to a simulatdablduSpace Telescope wide field camera image
of a distant cluster of galaxies portrayed in Fig.5(a). Wedushe Hubble Space Telescope PSF as given in
[3]. The maximum intensity on the blurred image was 5000. RaiveGauss and our approach, the dictionary
contained the TI-DWT frame. For this image, the RL-MRS isadig the best as it was exactly designed to handle
Poisson noise for such images. Most faint structures amvesed by RL-MRS and large bright objects are well
deconvolved. Our approach also yields a good deconvoluéisalt and preserves most faint objects that are hardly
visible on the degraded image. But the background is lesdlean the one of RL-MRS. A this high intensity
regime, NaiveGauss provides satisfactory results corbfgta ours on the galaxies. FTITPR manages to properly
recover most significant structures with a very clean bamlgd, but many faint objects are lost. RL-TV gives a
deconvolution result comparable to ours on the brightefatd, but the background is dominated by spurious faint
structures.

We also quantified the influence of the dictionary on the declotion performance on three test images. We
first show in Fig. 7 the results of an experiment on a simuldte®ix 128 image, containing point-like sources
(upper left), gaussians and lines. In this experiment, tlaimum intensity of the original image is 30 and we
used the7 x 7 moving-average PSF. The TI-DWT depicted in Fig. 7(d) doeadgob at recovering isotropic
structures (point-like and gaussians), but the lines atewadl restored. This drawback is overcome when using
the curvelet transform as seen from Fig. 7(e), but as exgettie faint point-like source in the upper-left part is
sacrificed. Visually, using a dictionary with both transfer seems to take the best of both worlds, see Fig. 7(g).

Fig. 8 shows the MAE—here normalized to the maximum intgnaitthe original image for the sake of legibil-
ity—as a function of the maximal intensity level for thresttenages: Neuron phantom, Cell and LinesGaussians. As
above, three dictionaries were used: TI-DWT (solid linejvelets (dashed line) and a dictionary built by merging
both transforms (dashed-dotted line). For the Neuron mmantvhich is piecewise-smooth, the best performance
is given by the TI-DWT+curvelets dictionary at medium angdhintensities. Even though the differences between
dictionaries are less salient at low intensity levels. frer €ell image, which contains many localized structures, th
TI-DWT seems to provide the best behavior, especially asntiemsity increases. Finally, the behavior observed for

the LinesGaussians image is just the opposite to that of étlel@ore precisely, the curvelets and TI-DWT+curvelets
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(9) (h)

Figure 5. Deconvolution of the simulated sky. (a) Origir{a), Blurred, (c) Blurred&noisy, (d) RL-TV [7], (e) NaiveGaa [12], (f) RL-MRS
[3], (9) FTITPR [55], (h) Our Algorithm.

dictionaries show the best performance with an advantadbetdatter. However, this limited set of experiments
does not allow to conclude that a dictionary built by amalgang several transforms is the best strategy in general.

Such a choice strongly depends on the image morphologicdénb
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—— NaiveGauss
—6—RL-MRS
——RL-TV
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Figure 6. Average MAE of all algorithms as a function of théeimsity level. (a) Cameraman, (b) Neuron phantom, (c) Cell.

(d) (e) (f)

Figure 7. Impact of the dictionary on deconvolution of thengiated LinesGaussians image with maximum intensity 30Ofaginal, (b)

Blurred, (c) Blurred&noisy, (d) restored with TI-DWT, (egstored with curvelets, (f) restored with a dictionary edming both transforms.

B. Real data

Finally, we applied our algorithm on a re@l2 x 512 confocal microscopy image of neurons. Fig. 9(a) depicts the
observed imageusing the GFP fluorescent protein. The optical PSF of the dem@nce microscope was modeled

3Courtesy of the GIP Cycéron, Caen France.
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Figure 8. Impact of the dictionary on deconvolution perfance as a function of the maximal intensity level for sevégat images: (a)

Neuron phantom, (b) Cell and (c) LinesGaussians imagefd B indicates the TI-DWT, dashed line corresponds tociimvelet transform,

and dashed-dotted line to the dictionary built by merginthhwavelets and curvelets.

using the gaussian approximation described in [56]. Fily) Sliows the restored image using our algorithm with the

wavelet transform. The images are shown in log-scale faebetsual rendering. We can notice that the background

has been cleaned and some structures have reappearedifideap well restored and part of the dendritic tree is

reconstructed. However, some information can be lost {agenbles). We suspect that this result may be improved

using a more accurate PSF model.
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(@) (b)

Figure 9. Deconvolution of a real neuron. (a) Original npi®) Restored with our algorithm

C. Reproducible research

Following the philosophy of reproducible research [57]pallbox is made available freely for download at the
first author's webpaget t p: / / ww. gr eyc. ensi caen. f r/ ~f dupe. This toolbox is a collection of Matlab
functions, scripts and datasets for image deconvoluti@euRoisson noise. It requires at least WavelLab 8.02 [57].
The toolbox implements the proposed algorithms and costalinscripts to reproduce most of the figures included

in this paper.

VI. CONCLUSION

In this paper, a novel sparsity-based fast iterative tholelilig deconvolution algorithm that takes account of the
presence of Poisson noise was presented. The Poisson rasdeawdled properly. A careful theoretical study of the
optimization problem and characterization of the itemggorithm were provided. The choice of the regularization
parameter was also attacked using a GCV-based procedweraSexperimental tests have shown the capabilities
of our approach, which compares favorably with some stitbevart algorithms. Encouraging preliminary results
were also obtained on real confocal microscopy images.

The present work may be extended along several lines. Fan@ea it is worth noting that our approach
generalizes straightforwardly to any non-linearity in ¢ther than the square-root, provided that the correspgndin
data fidelity term as in (4) is convex and has a Lipschitzioommus gradient. This is for instance the case if a
generalization of the Anscombe VST [58] is applied to a Rwisglus Gaussian noise, which is a realistic noise
model for data obtained from a CCD detector. For such a noisecan easily show similar results to those proved

in our work. In this paper, the simple expression of the degef freedomif was conjectured without a rigorous
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proof. Deriving the exact analytical expressiondjf if possible, needs further investigation and a very cdrefu
analysis that we leave for a future work. On the applicatide,ghe extension to 3D to handle confocal microscopy
volumes is under investigation. Extension to multi-valimdges is also an important aspect that will be the focus

of future research.
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APPENDIX
A. Proof of Proposition 1
Proof:

(i) f1 is obviously convex, a® andH are bounded linear operators afids convex.
(i) The computation of the gradient gf is straightforward.

(i) For any o, o’ € H, we have,
[V fi(e) = VA < 1] [[H]l, [[VE o Ho &(a) = VF o Ho ®() . (20)

The function ey + 2 is one-to-one increasing df, +occ) with derivative uniformly bounded above
by Z (8/3)%/2. Thus,

3
|[VFoHo®(a) - VFoHo®(d)|| < <§>2%HH0{>(@)—HO®(@’)H

N9V

8 z ,
< (5)" B o, gty o - o) 1)

Using the fact thaf|®|3 = |@®T]|, = ¢ for a tight frame, and: is bounded sincg € ¢, by assumption,

we conclude thaV¥V f; is Lipschitz-continuous with the constant given in (8).

B. Proof of Proposition 2

Proof: The existence is obvious becaugés coercive. If® is an orthobasis anker (H) = () then f; is strictly

convex and so i¢/ leading to a strict minimum. Similarly, i) is strictly convex, so isf,, henceJ. |
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C. Proof of Lemma 1

1)

2)

Proof:

Letg : v — 3| —~||% + A¥(y). From Definition 1,prox,q(c) is the unique minimizer of;, whereas
prox, () is the unique minimizer o + 1. If o € C’, thenprox,, () is also the unique minimizer of as
obviouslyic () = 0 in this case. That isprox, (a) = prox,y ().
Let's now turn to the general case. We have to find the ursgligtion to the following minimization problem:
proxy, (a) = arg min g(vy) +1c o ®(vy) = arg min g(v).
Y yel!
As bothic andg € T’ (}RL) but non-differentiable, we use the Douglas-Rachford tapditmethod [28], [36].

This iteration is given by:

1 _ At — t
YT =+ <1rp1fox)\\p+%”._al2 OTPIOX,,, I> (v"). (22)

where the sequenag satisfies the condition of the lemma. From [28, Corollary],562d by strict convexity,
we deduce that the sequence of iterafesonverges to a unique point andPc: () is the unique proximity

point prox , ().
It remains now to explicitly expresgsrox

A\If+%||.—a|\2 andprox, , . prox)\\p+%”._a”2 is the proximity operator
of a quadratic perturbation of¥, which is related torox,y by:
a+.
)= — . 23
prox)\‘lf+%|‘.—()é|l2( ) pI"OX%\II < 2 > ( )
See [20, Lemma 2.6].
Using [59, Proposition 11], we have
prox, .o = I+ ol o (Pe—1)0d®
= 0T oPeod + (I—c'0Td). (24)
This completes the proof. |

D. Proof of Theorem 1

3.4].

Proof: The most general result on the convergence of the forwaclviard algorithm is is due to [20, Theorem

Hence, combining this theorem with Lemma 1, Lemma 2 Rraposition 1, the result follows. [ |



