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Isometric Immersions of Hypersurfaces in

4-dimensional Manifolds via Spinors

Marie-Amélie Lawn and Julien Roth∗

Abstract

We give a spinorial characterization of isometrically immersed hyper-
surfaces into 4-dimensional space forms and product spaces M

3(κ)×R, in
terms of the existence of particular spinor fields, called generalized Killing
spinors or equivalently solutions of a Dirac equation. This generalizes
to higher dimensions several recent results for surfaces by T. Friedrich,
B.Morel and the two authors. The main argument is the interpretation
of the energy-momentum tensor of a generalized Killing spinor as the sec-
ond fundamental form, possibly up to a tensor depending on the ambient
space.

keywords: Dirac Operator, Generalized Killing Spinors, Isometric Immersions,
Gauss and Codazzi-Mainardi Equations.
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1 Introduction

A classical problem in Riemannian geometry is to know when a Riemannian
manifold (Mn, g) can be isometrically immersed into a fixed Riemannian man-
ifold (M̄n+p, ḡ). In this paper, we will focus on the case of hypersurfaces, that
is p = 1.

The case of space forms Rn+1, Sn+1 and Hn+1 is well-known. The Gauss and
Codazzi-Mainardi equations are necessary and sufficient conditions. Recently,
B. Daniel ([3]) gave an analogous characterization of hypersurfaces in product
spaces Sn × R and Hn × R.

In low dimensions, namely for surfaces, an other necessary and sufficient con-
dition is now well-known, namely the existence of a special spinor field called
generalized Killing spinor field (see [4, 13, 14, 8, 10]). Note that this condition is
not restrictive since any oriented surface is also spin. This approach was treated
by T. Friedrich ([4]) for surfaces in R3 and then extended to other 3-dimensional
Riemannian manifolds ([13, 14]).

More generally, the restriction ϕ of a parallel spinor field on R
n+1 to an

oriented Riemannian hypersurface Mn is a solution of a generalized Killing
equation

(1) ∇ΣM
X ϕ = −

1

2
γM (A(X))ϕ,

∗The second author is supported by the CNRS
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where γM , ∇ΣM are respectively the Clifford multiplication and the spin con-
nection on Mn, and A is the Weingarten tensor of the immersion. Conversely,
Friedrich proves in [4] that, in the two dimensional case, if there exists a gener-
alized Killing spinor field satisfying equation (1), where A is an arbitrary field of
symmetric endomorphisms of TM , then A satisfies the Codazzi-Mainardi and
Gauss equations of hypersurface theory and is consequently the Weingarten ten-
sor of a local isometric immersion of M into R3. Moreover, in this case, the
solution ϕ of the generalized Killing equation is equivalently a solution of the
Dirac equation

(2) Dϕ = Hϕ,

where |ϕ| is constant and H is a real-valued function.
One feature of those spinor representations is that fundamental topological

informations can be read off more easily from the spinorial data (see for example
[7])

The question of a spinorial characterization of 3-dimensional manifolds as
hypersurfaces into a given 4-dimensional manifold is also of special interest since,
again, any oriented 3-dimensional manifold is spin. The case of hypersurfaces
of the 4-dimensional Euclidean space has been treated by Morel in [13], when
A is a Codazzi tensor. Here, we extend Morel’s result to other 4-dimensional
space forms and product spaces, that is, S4, H4 (see Theorem 1), S3 × R and
H3 × R (see Theorem 2).

Unlike in the 2-dimensional case, the spinor bundle of a 3-dimensional man-
ifold does not decompose into subbundles of positive and negative half-spinors.
In this case, the condition for an isometric immersion is the existence of two
particular spinor fields on the manifold instead of one in the case of surfaces.
Moreover, we prove the equivalence between the generalized Killing equation
and the Dirac equation for spinor fields of constant norm in the above four
cases.

2 Preliminaries

2.1 Hypersurfaces and induced spin structures

We begin by a section of preliminaries on hypersurfaces and induced spin struc-
tures. The reader can refer to [11, 5, 2] for basic facts about spin geometry and
[1, 12, 6] for the spin geometry of hypersurfaces.

Let (Nn+1, g) be a Riemannian spin manifold and ΣN its spinor bundle.
We denote by ∇ the Levi-Civita connection on TN , and ∇ΣN the spin connec-
tion on ΣN . The Clifford multiplication will be denoted by γ and 〈., .〉 is the
natural Hermitian product on ΣN , compatible with ∇ and γ. Finally, we de-
note by D the Dirac operator on N locally given by D =

∑n
i=1 γ(ei)∇ei

, where
{e1, · · · , en+1} is a orthonormal frame of TN .

Now let M be an orientable hypersurface of N . Since the normal bundle is
trivial, the hypersurface M is also spin. Indeed, the existence of a normal unit
vector field ν globally defined on M induces a spin structure from that on N .

Then we can consider the intrinsic spinor bundle of M denoted by ΣM . We
denote respectively by ∇ΣM , γM and DM , the Levi-Civita connection, the Clif-
ford multiplication and the intrinsic Dirac operator onM . We can also define an
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extrinsic spinor bundle on M by S := ΣN|M . Then we recall the identification
between these two spinor bundles (cf [6], [12] or [1] for instance):

(3) S ≡

{
ΣM if n is even
ΣM ⊕ ΣM if n is odd.

The interest of this identification is that we can use restrictions of ambient
spinors to study the intrinsic Dirac operator of M . Indeed, we can define an
extrinsic connection ∇S and a Clifford multiplication γS on S by

(4) ∇S = ∇ +
1

2
γ(ν)γ(A),

(5) γS = γ(ν)γ,

where ν is the exterior normal unit vector field and A the associated Weingarten
operator. By the previous identification given by (3), we can also identify con-
nections and Clifford multiplications.

(6) ∇S ≡

{
∇ΣM if n is even,
∇ΣM ⊕∇ΣN if n is odd,

(7) γS ≡

{
γM if n is even,
γM ⊕−γM if n is odd.

Then, we can consider the following extrinsic Dirac operator on M , acting on
sections of S, denoted by D and given locally by

(8) D =
n∑

i=1

γS(ei)∇
S

ei
,

where {e1, . . . , en} is an orthonormal local frame of TM . Then, by (4), we have

(9) D =
n

2
H − γ(ν)

n∑

i=1

γ(ei)∇ei
,

that is, for any ψ ∈ Γ(S)

(10) Dψ :=
n

2
Hψ − γ(ν)Dψ −∇νψ.

Remark 1. In the sequel, when we are only working on the 3-dimensional
manifold, we will denote for the sake of simplicity the Clifford multiplication by
′′·′′.

We have all the spinorial ingredients, and now, we will give some recalls
about surfaces into product spaces.
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2.2 Basic facts about product spaces

In this section, we recall some basic facts about the product spaces M
n(κ) × R

and their hypersurfaces. More details can be found in [3] for instance. In the
sequel, we will denote by Mn(κ) the n-dimensional simply connected space form
of constant sectional curvature κ. That is,

M
n(κ) =







Sn(κ) if κ > 0
Rn if κ = 0
Hn(κ) if κ < 0.

We denote by ∇ and R the Levi-Civita connection and the curvature tensor of
Mn(κ) × R. Finally, let ∂

∂t
be the unit vector field giving the orientation of R

in the product Mn(κ) × R.
Now, let M be an orientable hypersurface of Mn(κ) × R and ν its unit normal
vector. Let T be the projection of the vector ∂

∂t
on the tangent bundle TM .

Moreover, we consider the function f defined by:

f :=
〈

ν,
∂

∂t

〉

.

It is clear that
∂

∂t
= T + fν.

Since ∂
∂t

is a unit vector field, we have:

||T ||2 + f2 = 1.

Let’s compute the curvature tensor of Mn(κ) × R for tangent vectors to M .

Proposition 2.1. [3, 15] For all X,Y, Z,W ∈ Γ(TM), we have:
〈
R(X,Y )Z,W

〉
= κ

(
〈X,Z〉〈Y,W 〉 − 〈Y, Z〉〈X,W 〉

−〈Y, T 〉〈W,T 〉〈X,Z〉 − 〈X,T 〉〈Z, T 〉〈Y,W 〉

+〈X,T 〉〈W,T 〉〈Y, Z〉+ 〈Y, T 〉〈Z, T 〉〈X,W 〉
)
,

and
〈
R(X,Y )ν, Z

〉
= κf

(
〈X,Z〉〈Y, T 〉 − 〈Y, Z〉〈X,T 〉

)
.

The fact that
∂

∂t
is parallel implies the following two identities

Proposition 2.2. [3, 15] For X ∈ Γ(TM), we have

∇XT = fAX,(11)

and

df(X) = −〈AX, T 〉.(12)

Proof: We know that ∇X
∂
∂t

= 0 and ∂
∂t

= T + fν, so

0 = ∇XT + df(X)ν + f∇Xν

= ∇XT + 〈AX, T 〉ν + df(X)ν − fAX.

Now, it is sufficient to consider the normal and tangential parts to obtain the
above identities. �
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Definition 2.3 (Compatibility Equations). We say that (M, 〈., .〉, A, T, f)
satisfies the compatibility equations for Mn(κ)×R if and only if for any X,Y, Z ∈
Γ(TM) the two equations

R(X,Y )Z =〈AX,Z〉AY − 〈AY,Z〉AX(13)

+ κ
(

〈X,Z〉Y − 〈Y, Z〉X − 〈Y, T 〉〈X,Z〉T

− 〈X,T 〉〈Z, T 〉Y + 〈X,T 〉〈Y, Z〉T + 〈Y, T 〉〈Z, T 〉X
)

,

(14) ∇XAY −∇Y AX −A[X,Y ] = κf(〈Y, T 〉X − 〈X,T 〉Y )

and equations (11) and (12) are satisfied.

Remark 2. The relations (13) and (14) are the Gauss and Codazzi-Mainardi
equations for an isometric immersion into Mn(κ) × R.

Finally, we recall a result of B. Daniel ([3]) which gives a necessary and
sufficient condition for the existence of an isometric immersion of an oriented,
simply connected surface M into Sn(κ) × R or Hn(κ) × R.

Theorem (Daniel [3]). Let (M, 〈., .〉) be an oriented, simply connected Rie-
mannian manifold and ∇ its Riemannian connection. Let A be a field of sym-
metric endomorphisms Ay : TyM −→ TyM , T a vector field on M and f a
smooth function on M , such that ||T ||2 + f2 = 1. If (M, 〈., .〉, A, T, f) satis-
fies the compatibility equations for Mn(κ) × R, then, there exists an isometric
immersion

F : M −→ M
n(κ) × R

so that the Weingarten operator of the immersion related to the normal ν is

dF ◦A ◦ dF−1

and such that
∂

∂t
= dF (T ) + fν.

Moreover, this immersion is unique up to a global isometry of Mn(κ)×R which
preserves the orientation of R.

3 Isometric immersions via spinors

3.1 Generalized Killing spinors

The case of space forms We introduce the notion of generalized Killing
spinors corresponding to hypersurfaces of the space forms Mn(κ). These spinors
are obtained by restriction (using (4)) of a parallel (resp. real Killing or imagi-
nary Killing) spinor field of the ambient space Rn (resp. Sn(κ) or Hn(κ)). If n
is odd, they are the restriction of the positive part of the ambient spinor fields.
We set η ∈ C such that κ = 4η2.
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Definition 3.1. A generalized Killing spinor on a Riemannian spin manifold
M with spin connection ∇ΣM is a solution ϕ of the generalized Killing equation

∇ΣM
X ϕ =

1

2
A(X) · ϕ+ ηX · ωC

n · ϕ,(15)

for all X ∈ Γ(TM), where A is a field of g-symmetric endomorphisms and
η ∈ C. Here, ωC

n stands for the complex volume element and ”·” is the Clifford
multiplication on M .

Remark 3. Note that the complex number η must be either real or purely imag-
inary because of the following well-known property of Killing spinors. If ϕ sat-
isfies

∇ΣM
X ϕ = ηX · ϕ,

for all X ∈ Γ(TM) then η is either real or purely imaginary.

The norm of a generalized Killing spinor field satisfies the following

Lemma 3.2. Let ϕ be a generalized Killing spinor. Then

1. If η ∈ R, we have |ϕ| = Const.

2. If η ∈ iR, we have X |ϕ|2 = −2iη〈iX · ωC
n · ϕ,ϕ〉, for all X ∈ Γ(TM)

Proof : First, we recall the well-known following lemma.

Lemma 3.3. Let ψ be a spinor field and β a real 1-form or 2-form. Then

ℜe 〈β · ψ, ψ〉 = 0.

Now, from this lemma, we deduce easily the proof of Lemma 3.2

1. If η ∈ R, we have,

X |ϕ|2 = 2〈∇ΣN
X ϕ,ϕ〉 = 2〈ηX ·N ϕ,ϕ〉 = −2η〈ϕ,X ·N ϕ〉 = 0

and consequently |ϕ| = Const.

2. If η ∈ iR, we have

X |ϕ|2 = 2〈ηX · ωC

nϕ,ϕ〉 + 〈A(X) · ϕ,ϕ〉 = −i2η〈iX · ωC

nϕ,ϕ〉.

The case of product spaces We give the following definition of the gener-
alized Killing spinor fields corresponding to hypersurfaces of Mn(κ)×R. These
spinors are obtained by restriction of particular spinor fields on Mn(κ)×R play-
ing the role of Killing spinors on space forms (see [14] for details). We set η ∈ C

such that κ = 4η2.

Definition 3.4. A spinor field which satisfies the equation

∇ΣM
X ϕ = −

1

2
AX · ϕ+ ηX · T · ϕ+ ηfX · ϕ+ η 〈X,T 〉ϕ,(16)

for all X ∈ Γ(TM) where ”·” stands for the Clifford multiplication on M , T
is a vector field over M and f a smooth function on M . Such a spinor field is
called a generalized Killing spinor on Mn(κ) × R.
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These spinor fields satisfy the following properties

Proposition 3.5. 1. If η ∈ R, then the norm of a generalized Killing spinor is
constant.

2. If η ∈ iR, then the norm of a generalized Killing spinor satisfies for any
X ∈ Γ(TM):

X |ϕ|2 = ℜe 〈iX · T · ϕ+ ifX · ϕ,ϕ〉 .

Proof: We need to compute X |ϕ|2 for X ∈ Γ(TM). We have

X |ϕ|2 = 2ℜe
〈
∇ΣM

X ϕ,ϕ
〉
.

We replace ∇ΣM
X ϕ by the expression given by (16), and we use Lemma 3.3 to

conclude that
ℜe 〈A(X) · ϕ,ϕ〉 = 0,

and
ℜe 〈fX · ϕ,ϕ〉 = 0.

By this lemma again, we see that

ℜe 〈X · T · ϕ,ϕ〉 + ℜe 〈〈X,T 〉ϕ,ϕ〉 = 0.

So X |ϕ|2 = 0 and then ϕ has constant norm.
If η ∈ iR, an analogous computation yields the result. �

Remark 4. In the case η ∈ iR, the norm of ϕ is not constant. Nevertheless,
we can show that ϕ never vanishes.

3.2 The main results

Here, we state the main results of this paper. The first result gives a charac-
terization of hypersurfaces in 4-dimensional space forms assuming the existence
of two generalized Killing spinor fields which are equivalently solutions of two
Dirac equations. Part of this result can be found in the thesis of the first author
[9].

Theorem 1. Let (M3, g) be a 3-dimensional simply connected spin manifold,
H : M −→ R a real valued function and A a field of symmetric endomorphisms
on TM . The following statements are equivalent:

1. The spinor fields ϕj, j = 1, 2, are non-vanishing solutions of the Dirac
equations: 





Dϕ1 = (3
2H + 3η)ϕ1,

Dϕ2 = −(3
2H + 3η)ϕ2,

with

{

|ϕj | = Const if η ∈ R,

X |ϕj|
2 = 2ℜe 〈ηX · ϕj , ϕj〉 if η ∈ iR.
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2. The spinor fields ϕj, j = 1, 2, are non-trivial solutions of the generalized
Killing equations







∇ΣM
X ϕ1 = 1

2A(X) · ϕ1 − ηX · ϕ1

∇ΣM
X ϕ2 = − 1

2A(X) · ϕ2 + ηX · ϕ2,

with 1
2 tr (A) = H.

Moreover both statements imply that

3. there exists an isometric immersion F : M →֒ M4(κ) into the 4-dimensional
space form of curvature κ = 4η2 with mean curvature H and Weingarten
tensor dF ◦A ◦ dF−1.

Remark 5. Note that in the case of R
4, assertion 3. is equivalent to assertions

1. and 2. (see [13])

Now, we state the second result which gives a characterization of hypersur-
faces into the 4-dimensional product spaces M3(κ) × R.

Theorem 2. Let (M3, g) be a 3-dimensional simply connected spin manifold,
f, H : M −→ R two real valued functions, T a vector field and A a field of
symmetric endomorphisms on TM , such that







||T ||2 + f2 = 1,
∇XT = fAX,

df(X) = −〈AX, T 〉.

The following statements are equivalent:

1. The spinor fields ϕj, j = 1, 2, are non-vanishing solutions of the general-
ized Dirac equations







Dϕ1 = 3
2Hϕ1 − 2ηT · ϕ1 − 3ηfϕ1,

Dϕ2 = − 3
2Hϕ2 − 2ηT · ϕ2 + 3ηfϕ2,

with constant norm if η ∈ R or satisfying X |ϕ|2 = ℜe
(
iX ·T ·ϕ+ifX ·ϕ,ϕ

)

if η ∈ iR.

2. The spinor fields ϕj, j = 1, 2, are non-trivial solutions of the generalized
Killing equations







∇ΣM
X ϕ1 = − 1

2AX · ϕ1 + ηX · T · ϕ1 + ηfX · ϕ1 + η 〈X,T 〉ϕ1,

∇ΣM
X ϕ2 = 1

2AX · ϕ2 + ηX · T · ϕ2 − ηfX · ϕ2 + η 〈X,T 〉ϕ2.

Moreover, both statements imply

3. There exists an isometric immersion F from M into S3(κ) × R (resp.
H3(κ) ×R, with κ = 4η2) of mean curvature H such that the Weingarten
tensor related to the normal ν is given by

dF ◦A ◦ dF−1

and such that
∂

∂t
= dF (T ) + fν.
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Remark 6. As we will see in the proof (Lemma 4.3), the condition of the
existence of the two spinor fields ϕ1 and ϕ2 is equivalent to the existence of only
one generalized Killing spinor field with A a Codazzi tensor field.

4 Proof of the theorems

We will prove Theorems 1 and 2 jointly. For this, we need three general lemmas.

4.1 Three fundamental lemmas

First, we establish the following lemma which gives the Gauss equation from a
generalized Killing spinor.

Lemma 4.1. Let (M3, g) be a 3-dimensional spin manifold. Assume that there
exists a non-trivial spinor field ϕ solution of the following equation

(17) ∇ΣM
X ϕ =

1

2
A(X) · ϕ+ ηX · T · ϕ+ ηfX · ϕ+ η 〈X,T 〉ϕ,

where A, T and f satisfy

∇XT = fAX, df(X) = −〈AX, T 〉 and

d∇A(X,Y ) = 4η2f
(
〈Y, T 〉X − 〈X,T 〉Y

)
,

then the curvature tensor R of (M, g) is given by

R(X,Y )Z =〈AX,Z〉AY − 〈AY,Z〉AX(18)

+ κ
(

〈X,Z〉Y − 〈Y, Z〉X − 〈Y, T 〉〈X,Z〉T

− 〈X,T 〉〈Z, T 〉Y + 〈X,T 〉〈Y, Z〉T + 〈Y, T 〉〈Z, T 〉X
)

.

Proof: We compute the spinorial curvature R(X,Y )ϕ = ∇ΣM
X ∇ΣM

Y ϕ−∇ΣM
Y ∇ΣM

X ϕ−
∇ΣM

[X,Y ]ϕ. From [15, 14], we now that

∇ΣM
X ∇ΣM

Y ϕ = ηfY ·AX · ϕ
︸ ︷︷ ︸

α1(X,Y )

+ η2Y · T ·X · T · ϕ
︸ ︷︷ ︸

α2(X,Y )

+ η2fY · T ·X · ϕ
︸ ︷︷ ︸

α3(X,Y )

−
η

2
Y · T ·AX · ϕ

︸ ︷︷ ︸

−α4(X,Y )

− η 〈AX, T 〉Y · ϕ
︸ ︷︷ ︸

−α5(X,Y )

+ η2fY ·X · T · ϕ
︸ ︷︷ ︸

α6(X,Y )

+ η2 〈X,T 〉Y · T · ϕ
︸ ︷︷ ︸

α7(X,Y )

+ η2f2Y ·X · ϕ
︸ ︷︷ ︸

α8(X,Y )

+ η2f 〈X,T 〉Y · ϕ
︸ ︷︷ ︸

α9(X,Y )

−
η

2
fY ·AX · ϕ

︸ ︷︷ ︸

−α10(X,Y )

+ ηf 〈Y,AX〉ϕ
︸ ︷︷ ︸

α11(X,Y )

+ η2 〈Y, T 〉X · T · ϕ
︸ ︷︷ ︸

α12(X,Y )

+ η2f 〈Y, T 〉X · ϕ
︸ ︷︷ ︸

α13(X,Y )

+ η2 〈X,T 〉 〈Y, T 〉ϕ
︸ ︷︷ ︸

α14(X,Y )

−
η

2
〈Y, T 〉AX · ϕ

︸ ︷︷ ︸

−α15(X,Y )

−
1

2
∇ΣM

X (AY ) · ϕ
︸ ︷︷ ︸

−α16(X,Y )

−
η

2
AY ·X · T · ϕ

︸ ︷︷ ︸

−α17(X,Y )

−
η

2
fAY ·X · ϕ

︸ ︷︷ ︸

−α18(X,Y )

9



−
η

2
〈X,T 〉AY · ϕ

︸ ︷︷ ︸

−α19(X,Y )

+
1

4
AY · AX · ϕ

︸ ︷︷ ︸

α20(X,Y )

+ η∇ΣM
X Y · T · ϕ

︸ ︷︷ ︸

α21(X,Y )

+ ηf∇ΣM
X Y · ϕ

︸ ︷︷ ︸

α22(X,Y )

+ η
〈
∇ΣM

X Y, T
〉
ϕ

︸ ︷︷ ︸

α23(X,Y )

.

That is,

∇ΣM
X ∇ΣM

Y ϕ =

23∑

i=1

αi(X,Y ).

By symmetry, it is obvious that

∇ΣM
Y ∇ΣM

X ϕ =

23∑

i=1

αi(Y,X).

On the other hand, we have

∇ΣM
[X,Y ]ϕ = η[X,Y ] · T · ϕ

︸ ︷︷ ︸

β1([X,Y ])

+ ηf [X,Y ] · ϕ
︸ ︷︷ ︸

β2([X,Y ])

+ η 〈[X,Y ], T 〉ϕ
︸ ︷︷ ︸

β3([X,Y ])

−
1

2
A[X,Y ] · ϕ

︸ ︷︷ ︸

−β4([X,Y ])

.

Since the connection ∇ is torsion-free, we have

α21(X,Y ) − α21(Y,X) − β1([X,Y ]) = 0,

α22(X,Y ) − α22(Y,X) − β2([X,Y ]) = 0,

α23(X,Y ) − α23(Y,X) − β3([X,Y ]) = 0.

Moreover, lots of terms vanish by symmetry, namely α1, α4, α5, α10, α11, α14,
α15, α17, α18 and α19.
On the other hand, the terms α2, α7, α8 and α12 can be combined. Indeed, if
we set

α = α2 + α7 + α8 + α12,

then

α(X,Y ) − α(Y,X) = η2
[

f2 (Y ·X −X · Y ) + Y · T ·X · T −X · T · Y · T
]

· ϕ

= η2
[

f2 (Y ·X −X · Y ) + ||T ||2 (Y ·X −X · Y )
]

· ϕ

−2η2 (〈X,T 〉Y · T − 〈Y, T 〉X · T ) · ϕ.

If we set
β = α3 + α6 + α9 + α13,

we obtain

β(X,Y ) − β(Y,X) = η2f
(

〈Y, T 〉X −
〈

X,T
〉

Y
)

· ϕ.
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Finally, we get

R(X,Y )ϕ =
1

4
(AY ·AX −AX · AY ) · ϕ−

1

2
d∇A(X,Y ) · ϕ

+η2f (〈Y, T 〉X − 〈X,T 〉Y ) · ϕ+ η2 (Y ·X −X · Y ) · ϕ

−2η2 (〈X,T 〉Y · T − 〈Y, T 〉X · T ) · ϕ.

Since we assume that A satisfies the following Codazzi equation

d∇A(X,Y ) = 4η2f
(
〈Y, T 〉X − 〈X,T 〉Y

)
,

we have

R(X,Y )ϕ =
1

4
(AY ·AX −AX · AY ) · ϕ(19)

+η2f (〈Y, T 〉X − 〈X,T 〉Y ) · ϕ+ η2 (Y ·X −X · Y ) · ϕ

Now, let X = ei and Y = ej with i 6= j. The Ricci identity says that:

R(ei, ej) · ϕ =
1

2
[Rijikej −Rijijek −Rijjkei] · ϕ,(20)

where (i, j, k) is any cyclic permutation of (1, 2, 3).

Further with a simple computation we find

A(ej) ·A(ei) −A(ei) ·A(ej) = 2(AikAjj −AijAjk)ei

−2(AikAji −AiiAjk)ej + 2(AijAji −AiiAjk)ek.

With the integrability condition (19) this yields

(∇ej
A)(ei) − (∇ei

A)(ej) = (Rijjk − (AikAjj −AijAjk) + κf2)ei

−(Rijik − (AikAji −AiiAjk) + κf2)ej

+(Rijij − (AijAji −AiiAjk) + κf2)ek

+κf (〈ei, T 〉 ej − 〈ei, T 〉 ei) ,

which proves that, if A is a Codazzi tensor, it satisfies the Gauss equation too.
This observation was shown by Morel ([13]) in the Riemannian case for a par-
allel tensor A. We point out that the converse is also true. �

Now, we state a second lemma which will give the equivalence between the
Dirac equation and the Killing equation (up to a condition on the norm of the
spinor field).

Lemma 4.2. Let (M3, g) be a 3-dimensional spin manifold. Assume that there
exists a non-trivial spinor field ϕ, solution of the following equation

(21) Dϕ =
3

2
Hϕ− 2ηT · ϕ− 3ηfϕ,

where the norm of ϕ satisfies for all X ∈ Γ(TM)

X |ϕ|2 = 2ℜe 〈ηX · T · ϕ+ ηfX · ϕ,ϕ〉 .

11



Then ϕ is a solution of the following generalized Killing spinors equation

(22) ∇ΣM
X ϕ =

1

2
A(X) · ϕ+ ηX · T · ϕ+ ηfX · ϕ+ η 〈X,T 〉ϕ.

Proof: The 3-dimensional complex spinor space is Σ3
∼= C2. The complex spin

representation is then real 4-dimensional. We now define the map

f : R3 ⊕ R −→ Σ3

(v, r) 7−→ v · ϕ+ rϕ,

where ϕ is a given non-vanishing spinor.
Obviously f is an isomorphism. Then for all ψ ∈ Σ3 there is a unique pair
(v, r) ∈ (R3 ⊕ R) ∼= TpM

3 ⊕ R, such that ψ = v · ϕ+ rϕ.
Consequently

(
∇ΣM

X ϕ
)

p
∈ Γ(T ∗

pM ⊗ Σ3) can be expressed as follows:

∇ΣM
X ϕ = B(X) · ϕ+ ω(X)ϕ,

for all p ∈M and for all vector fields X , with ω a 1-form and B a (1,1)-tensor
field.
Moreover we have

X |ϕ|2 = 2ℜe〈∇ΣM
X ϕ, ϕ〉 = 2〈ω(X)ϕ, ϕ〉 ⇒ ω(X) =

d(|ϕ|2)

2|ϕ|2
(X).

which yields ω(X) = ℜe

〈

ηX · T · ϕ+ ηfX · ϕ,
ϕ

|ϕ|2

〉

.

Now, let B = S+U with S the symmetric and U the skew-symmetric part of B.
Let {ei} be an orthonormal basis of TM and ϕ a solution of the Dirac equation
(21). We have

Dϕ =

3∑

i=1

ei · ∇
ΣM
ei

ϕ =

3∑

i,j=1

ei ·Bijej · ϕ+

3∑

j=1

ω(ej)ej · ϕ

=

3∑

i=1

Uijei · ej · ϕ+

3∑

i=1

Siiei · ei · ϕ+

3∑

i6=j

Sij
︸︷︷︸

sym.

ei · ej
︸ ︷︷ ︸

skew−sym.

·ϕ+W · ϕ,

where W is the vector field defined by W :=
∑3

j=1 ω(ej)ej . Then,

Dϕ = −2

3∑

i<j

Uijei · ej · ϕ+

3∑

i=1

Siiei · ei · ϕ+W · ϕ

= −2(U12e1 · e2 + U13e1 · e3 + U23e2 · e3) · ϕ− tr (B)ϕ +W · ϕ

We recall that the complex volume element ωC
3 = −e1 · e2 · e3 acts as the

identity on ΣM , where {e1, e2, e3} is a local orthonormal frame of TM . So we
deduce that for any spinor field on M , ei ·ej ·ϕ = ek ·ϕ, where (i, j, k) is a cyclic
permutation of (1, 2, 3). From this fact, we get

Dϕ = −2(U12e3 − U13e2 + U23e1) · ϕ− tr (B)ϕ +W · ϕ.

12



On the other hand, we have

Dϕ =
3

2
Hϕ− 2ηT · ϕ− 3ηfϕ.

Note that ℜe〈(U12e3−U13e2 +U23e1)ϕ,ϕ〉 = 0 and ℜe 〈W · ϕ,ϕ〉 = 0. It follows
that

3

2
H |ϕ|2 − 2ℜe 〈ηT · ϕ,ϕ〉 − 3ℜe 〈ηfϕ, ϕ〉 = −tr (B)|ϕ|2.

Moreover, since
{

ϕ
|ϕ| ,

e1·ϕ
|ϕ| ,

e2·ϕ
|ϕ| ,

e3·ϕ
|ϕ|

}

is an orthonormal frame of ΣpM for the

real scalar product 〈., .〉, we deduce that

−2
(
U12e3 − U13e2 + U23e1

)
· ϕ = −3ηfϕ−W · ϕ− 2ηT · ϕ+ 2ℜe 〈ηT · ϕ,ϕ〉ϕ

+3ℜe 〈ηfϕ, ϕ〉ϕ.

Further we compute

〈U(ej) · ϕ, ei · ϕ〉 =

3∑

k

Ukj 〈ek · ϕ, ei · ϕ〉
︸ ︷︷ ︸

=−〈ei·ek·ϕ, ϕ〉=0, i6=k

= Uij |ϕ|
2.

Consequently, for i, j ∈ {1, 2, 3}, we have

−2

3∑

k<l

Ulk 〈ek · el · ϕ, ei · ej · ϕ〉 = −3 〈ηfϕ, ei · ej · ϕ〉 − 〈W · ϕ, ei · ej · ϕ〉

−2 〈ηT · ϕ, ei · ej · ϕ〉 + 2 〈ηT · ϕ,ϕ〉 〈ϕ, ei · ej · ϕ〉

+3 〈ηfϕ, ϕ〉 〈ϕ, ei · ej · ϕ〉 .

Moreover, in the 3-dimensional case at most three of the four indices could be
distinct. Then, for m 6= n, 〈em · en ·ϕ, ϕ〉 = 0 holds and as the trace of a skew-
symmetric tensor vanishes, we have: 〈ek · el ·ϕ, ej · ei ·ϕ〉 6= 0 ⇔ k = i, l = j or
k = j, l = i, i 6= j, which yields

−2Uij |ϕ|
2 = −2〈U(ej) · ϕ, ei · ϕ〉

= −3 〈ηfϕ, ei · ej · ϕ〉 − 〈W · ϕ, ei · ej · ϕ〉 − 2 〈ηT · ϕ, ei · ej · ϕ〉

+3 〈ηfϕ, ϕ〉 〈ej · ϕ, ei · ϕ〉 + 2 〈ηT · ϕ,ϕ〉 〈ej · ϕ, ei · ϕ〉 .

Then, we deduce that

− 2U(X) = X ·W · ϕ− 〈X ·W · ϕ,ϕ〉
ϕ

|ϕ|2
− 2ηX · T · ϕ

+2 〈ηX · T · ϕ,ϕ〉
ϕ

|ϕ|2
+ 3

〈

ηfϕ,
ϕ

|ϕ|2

〉

X · ϕ

+2

〈

ηT · ϕ,
ϕ

|ϕ|2

〉

X · ϕ− 3ηfX · ϕ+ 3 〈ηfX · ϕ,ϕ〉
ϕ

|ϕ|2
.(23)

From now on, we will consider separately the cases η ∈ R and η ∈ iR.

13



The case η ∈ R

Since η is real, the norm of ϕ is constant and so ω(X) = 0 for any vector field
X . Consequently, using Lemma 3.3, we get

U(X) · ϕ = ηX · T · ϕ− η 〈X · T · ϕ,ϕ〉
ϕ

|ϕ|2

= ηX · T · ϕ+ η 〈X,T 〉ϕ.

Moreover,

Qϕ(ei, ej) =
1

2

〈

ei · ∇
ΣM
ej

ϕ+ ej · ∇
ΣM
ei

ϕ,
ϕ

|ϕ|2

〉

=
1

2

〈
3∑

k

Sjkei · ek · ϕ+

3∑

k

Sikej · ek · ϕ,
ϕ

|ϕ|2

〉

= −Sij |ϕ|
2 ⇒ S(X) = −Qϕ(X).

Now, we set
A(X) := 2Qϕ(X) + 2ηfX.

Finally, we obtain

(24) ∇ΣM
X ϕ =

1

2
A(X) · ϕ+ ηX · T · ϕ+ ηfX · ϕ+ 〈X,T 〉ϕ,

which achieves the proof in the case η ∈ R.

The case η ∈ iR

Here, η is not real and so the norm of ϕ is not constant but satisfies

X |ϕ|2 = 2ℜe 〈ηX · T · ϕ+ ηfX · ϕ,ϕ〉 .

Then

(25) ω(X) =
X |ϕ|2

2|ϕ|2
=

1

2|ϕ|2
ℜe 〈ηX · T · ϕ+ ηfX · ϕ,ϕ〉 .

Like in the case η ∈ R, we have S(X) = −Qϕ(X) and we set

A(X) := 2Qϕ(X) + V (X),

where V (X) is the symmetric endomorphism field defined by

V (X,Y ) = 2ℜe 〈η 〈X,Y 〉T · ϕ,ϕ〉 + 2ℜe 〈ηf 〈X,Y 〉ϕ,ϕ〉

+ℜe 〈η (〈X,T 〉Y + 〈Y, T 〉X) · ϕ,ϕ〉 .(26)

Since
∇ΣM

X ϕ = S(X) · ϕ+ U(X) · ϕ+ ω(X)ϕ,

we deduce from (25), (23) and (26) that

(27) ∇ΣM
X ϕ =

1

2
A(X) · ϕ+ ηX · T · ϕ+ ηfX · ϕ+ η 〈X,T 〉ϕ.
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Now, we give a final lemma which will allow us to use Lemma 4.1 for the
proof of Theorems 1 and 2. Indeed, in Theorems 1 and 2, we do not suppose
anything about the symmetric tensor A. Nevertheless, the existence of two
generalized Killing spinor fields implies that A is Codazzi.

Lemma 4.3. Let (M3, g) a 3-dimensional spin manifold. Assume that there
exist two non-trivial spinor fields ϕ1 and ϕ2 such that

(28) ∇Σ
Xϕ1 =

1

2
A(X) · ϕ1 + ηX · T · ϕ1 + ηfX · ϕ1 + 〈X,T 〉ϕ1,

and

(29) ∇ΣM
X ϕ2 = −

1

2
A(X) · ϕ2 + ηX · T · ϕ2 − ηfX · ϕ2 + 〈X,T 〉ϕ2,

where A, T and f satisfy

∇ΣM
X T = fAX, df(X) = −〈AX, T 〉,

then the tensor A satisfies the Codazzi-Mainardi equations, that is

d∇A(X,Y ) = 4η2f
(
〈Y, T 〉X − 〈X,T 〉Y

)
.

Proof : From the proof of Lemma 4.1, we know that the equation satisfied by
ϕ1 implies

(∇ej
A)(ei) − (∇ei

A)(ej) = (Rijjk − (AikAjj −AijAjk) + κf2)ei

−(Rijik − (AikAji −AiiAjk) + κf2)ej

+(Rijij − (AijAji −AiiAjk) + κf2)ek(30)

+κf (〈ei, T 〉 ej − 〈ei, T 〉 ei) .

On the other hand, by an analogous computation for the spinor field ϕ2, we get

−(∇ej
A)(ei) + (∇ei

A)(ej) = (Rijjk − (AikAjj −AijAjk) + κf2)ei

−(Rijik − (AikAji −AiiAjk) + κf2)ej

+(Rijij − (AijAji −AiiAjk) + κf2)ek

−κf (〈ei, T 〉 ej − 〈ei, T 〉 ei) .

If we combine the last two equalities, we get






Rijjk − (AikAjj −AijAjk) + κf2 = 0,
Rijik − (AikAji −AiiAjk) + κf2 = 0,
Rijij − (AijAji −AiiAjk) + κf2 = 0,

that is exactly the Gauss equation. Then, we get immediately from equation
(30) that A also satisfies the Codazzi equation

d∇A(X,Y ) = 4η2f
(
〈Y, T 〉X − 〈X,T 〉Y

)
,

for all vector fields X and Y . �
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4.2 Proof of the Theorems

The proof of the theorems follows easily from Lemmas 4.1, 4.2 and 4.3 with







η = 0 for R4,

η =
1

2
, T = 0, f = 1 for S4,

η =
i

2
, T = 0, f = 1 for H4,

η =
1

2
for S3 × R,

η =
i

2
for H3 × R.

Indeed, Lemma 4.2 gives the equivalence between the assertions 1. and 2. of
the theorems, that is, between the existence of a generalized Killing spinor and
a Dirac spinor satisfying an additional norm condition.

The proof of 2. =⇒ 3. is an immediate consequence of Lemmas 4.1 and 4.3.
From Lemma 4.3, the problem is reduced to the case of only one generalized
Killing spinor field, but with A a Codazzi tensor. Now, if the tensor A satisfies
the Codazzi-Mainardi equation, then by Lemma 4.1, it satisfies also the Gauss
equation. It is well-known that if the Gauss and Codazzi-Mainardi equations are
satisfied for a simply connected manifold, then it can be immersed isometrically
in the corresponding space form. For the case of product spaces, by the result of
Daniel ([3]), to get an isometric immersion, the two additional conditions (??)
and (??) are needed. �

Remark 7. Conversely, the existence of one generalized Killing spinor field ϕ1

with Codazzi tensor field A implies the existence of a second spinor field ϕ2.
Indeed, as we just saw, M is isometrically immersed into M4(κ) or M3(κ)×R.
Then, one just defines ϕ2 as ν · ϕ1, where ν is the normal unit vector field.
Thus, if ϕ1 satisfies

∇ΣM
X ϕ1 = −

1

2
AX · ϕ1 + ηX · T · ϕ1 + ηfX · ϕ1 + η 〈X,T 〉ϕ1,

then, by a straightforward computation, ϕ2 satisfies

∇ΣM
X ϕ2 =

1

2
AX · ϕ2 + ηX · T · ϕ2 − ηfX · ϕ2 + η 〈X,T 〉ϕ2.
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