
HAL Id: hal-00264968
https://hal.science/hal-00264968

Submitted on 18 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Free volume model: high temperature deformation of a
Zr based bulk metallic glass

Marc Bletry, Pierre Guyot, Jean-Jacques Blandin, Jean-Louis Soubeyroux

To cite this version:
Marc Bletry, Pierre Guyot, Jean-Jacques Blandin, Jean-Louis Soubeyroux. Free volume model: high
temperature deformation of a Zr based bulk metallic glass. Acta Materialia, 2006, 54, pp.1257-1263.
�10.1016/j.actamat.2005.10.054�. �hal-00264968�

https://hal.science/hal-00264968
https://hal.archives-ouvertes.fr


 1 

 
Free volume model: high temperature deformation of a Zr based bulk 
metallic glass 

 
 
M. Bletry1,2,3, P. Guyot1, J.J. Blandin2, J.L. Soubeyroux3 
 
 

1 Laboratoire Thermodynamique et Physico-Chimie Métallurgique (LTPCM) 
Institut National Polytechnique de Grenoble (INPG) 
ENSEEG, BP 75, 38402 Saint-Martin d’Hères Cedex, France 
 
2 Génie Physique et Mécanique des Matériaux (GPM2) 
Institut National Polytechnique de Grenoble (INPG) 
UMR CNRS 5010, ENSPG, BP46, 38402 Saint-Martin d'Hères, France 
 
3 CRETA – Laboratoire de Cristallographie – CNRS Grenoble 
25 avenue des Martyrs, BP 166, 38402 Grenoble Cedex 9, France 

 
ABSTRACT 
 
Homogeneous deformation of a zirconium based bulk metallic glass is investigated in the 
glass transition range. Compression tests at different temperatures and strain rates have been 
conducted. The mechanical behavior is analyzed in the framework of the free volume model, 
taking into account the dependence of the flow defect concentration with the deformation. 
The activation volume is evaluated and allows the gathering of the viscosity data (for the 
different strain-rates and temperatures) on a unique master curve. It is also shown that, due to 
the relation between flow defect concentration and free volume, it is not possible to deduce 
the equilibrium flow defect concentration directly from mechanical measurements. However, 
if this parameter is arbitrary chosen, mechanical measurements give access to the other 
parameters of the model, these parameters being of the same order of magnitude for the 
studied alloy when compared with other metallic glasses. 
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1. Introduction 
 

Interest in the mechanical behavior of metallic glasses, materials with no long-range order, 
has increased recently due to the development of alloys that can be obtained in amorphous 
state at low critical quenching rates. These new alloys are then able to be prepared as bulk 
specimens with size from mm to cm. The possibility to elaborate bulk specimens of metallic 
glasses (BMG), conversely to ribbons that were studied previously, means that reliable 
mechanical properties can now be investigated. 

 
At high temperatures and/or low strain rates, metallic glasses deform in a homogeneous mode. 
In this mode, their mechanical-behavior has various characteristic features. The first one is the 
transition from a Newtonian flow (i.e. viscosity independent on strain-rate) to a non-
Newtonian (i.e. decreasing viscosity when strain rate increases) behavior [1,2]. The second 
one is the possible existence of stress overshoots during uniaxial tests (compression and 
tension): typically, during a constant strain rate experiment, the measured stress reaches a 
maximum value before decreasing to a plateau value [3,4]. 

 
The question of the physical nature of the deformation mechanisms responsible for such 
behaviour is still a field of research. One of the most studied models is based on the free 
volume concept and on its mobility, as initially proposed for liquids by Cohen and Turnbull 
[5,6]. Free volume is defined as the volume in excess compared to an ideal disordered atomic 
configuration of maximum density. Spaepen extended to glasses the free volume model 
initially developed for liquids [7]. In this approach, the plastic deformation is due to 
uncorrelated atoms jumping in nearby local large enough holes or flow defects, namely with a 
size larger than a critical value. Such so-called flow defects have a concentration cf given, 
according to the free volume theory, by: 
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where γ is a geometric factor that corrects the overlap between holes (0.5 ≤ γ ≤ 1), vf is the 
mean free volume, i.e. the average volume in excess per atom at a given temperature, and v* 
is the critical size for which an atomic jump can occur. One can already note that the defect 
concentration is very sensitive to a slight variation in free volume concentration. Spaepen [7] 
suggested describing the plastic flow of metallic glasses in relation with the diffusion of 
atoms in the glass and the effect of stress on this diffusion. It leads to a relation between the 
flow stress and the plastic strain rate given by:  
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where V is the activation volume for the stress bias. Uniaxial deformation implies the 
introduction of the Von Mises factor 3  in the hyperbolic sinus. In this approach, the plastic 
strain rate results from the product of four terms: the Debye frequency (νD), the concentration 
of defect cf, an Arrhenius equation including an activation free energy of defect migration 
(ΔGm) and an hyperbolic sinus term which takes into account the effect of the applied stress 
on the energy barrier. From the relation between viscosity (η), stress and strain-rate 
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( !"=# &3/ ), the viscosity appears to be inversely proportional to the defect concentration. It 
was found that during an isothermal treatment at a given temperature T < Tg, the viscosity of 
the glass increases with time and finally reaches a plateau [8]. Considering that 1

f
c
!"# , such a 

behavior implies a decrease of the defect concentration before reaching an equilibrium value 
cf,eq. This corresponds to structural relaxation. The change in defect concentration with respect 
to time is generally well described by a kinetic equation with a quadratic form [9]: 
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where kr is the rate constant of the structural relaxation, which is thermally activated. In a 
small temperature range, the variation of cf,eq with temperature can be described by an 
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0eq,f , where ΔGf can be considered as the formation free 

energy of the flow defects. 
 
In stress-strain curves of various BMG deformed in the homogeneous mode at high strain-rate 
and/or relatively low temperature, a softening behavior can be observed and understood by 
the creation of flow defects by plastic strain [3]. Such a view is also supported by 
experimental density measurements on a relaxed sample of a bulk Pd-based amorphous alloy, 
showing that plastic deformation can induce a significant density decrease of the glass [10].  
 
De Hey et al. [3] have shown that it was possible to assume a linear dependence between the 
increments dcf and !d , leading to a strain induced defect nucleation rate of the form: 
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where ax is a proportionality factor. From equation (3) and (4) the rate of variation of the 
defect concentration can be estimated as a balance between structural relaxation and strain-
induced nucleation. This leads to the equation: 
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In this framework, the steady state flow stress (i.e. stress plateau) corresponds to the 
stationary form of equation (5): 0c

f
=& . The associated defect concentration *

f
c , in such a 

stationary regime, is given by the implicit form: 
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In equation (6), the stationary defect concentration is the sum of two terms. The first one 
(cf,eq) corresponds to the thermal equilibrium concentration of defects which depends only on 
temperature. This term can be qualified as a static component. The second term can be seen as 
a dynamic component since it corresponds to the increase in defect concentration resulting 
from plastic deformation. The link between free volume creation and annihilation, plastic 
deformation and thermodynamical properties of metallic glasses have been studied 
successfully in palladium [3], lanthanum [11] or zirconium [12] based metallic glasses.  
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In a recent study [13] has been introduced the possibility to model entirely compression 
stress-strain curve obtained at high temperature. However, the determination of different 
parameters was not rigorous. The aim of this study is to investigate deformation behavior of a 
ZrCuAlTiNi BMG for temperatures inside and slightly above the glass transition range (in the 
super liquid region), to discuss the effects of temperature and strain-rate on viscosity or flow 
stress in the framework of the free volume model and to propose a method to determine 
different parameters of the free volume model thanks to compression measurements only 
based on a study of the steady-state as described by the free-volume theory. 
 

2. Experimental procedure  
 
A glass of composition Zr52.5Al10Cu22Ti2.5Ni13 was elaborated under the form of 6 mm rods. 
The pure metals were melted in a cold crucible in an argon atmosphere and injected under 
pressure in a water-cooled copper mould. The degree of amorphisation was characterized by 
X-ray diffraction (copper wavelength, using θ-2θ goniometer or four circles apparatus). 
Differential Scanning Calorimetry (DSC) scans with a heating rate of 10 K/min under argon 
atmosphere were performed to study the thermal stability of the glass. Cylindrical samples of 
5 mm diameter and 8 mm height were used for the compression tests. These tests were carried 
out between 683 K and 703 K, with a heating rate of 10 K/min up to the test temperature and 
for strain-rates ranging from 2.5x10-4 s-1 to 5x10-3 s-1. Constant strain-rate (mainly 5×10-4 s-1) 
and strain-rate jumps tests were performed. 
 

3. Results 

3.1 Studied glass 
 
X-ray spectrum of the as-prepared glass has already been published in [13]. It confirms that 
the alloy is obtained under the amorphous state. The characteristic temperatures (glass 
transition temperature Tg and crystallization temperature Tx) observed during a DSC thermal 
scan are shown in Figure 1: Tg1 = 659 K (Tg1 is the onset of the glass transition) and TX = 761 
K, ΔT = TX-Tg = 102 K. These values (TX, Tg and ΔT) can be compared to those encountered 
in the case of Vitrelloy 4. This glass, known for his excellent aptitude to amorphisation, 
possesses a Tg = 622 K and TX = 727, thus ΔT = 105 K [14]. All these temperatures are of the 
same order of magnitude as the ones measured for the present glass.  
 

3.2 Mechanical tests 
 

Compression tests have been conducted between 683 and 703 K, i.e. in the glass transition 
range, according to DSC results performed with the same heating rate. The strain rates used 
allow, in that temperature range and for this glass, to study the transition from a Newtonian to 
a non-Newtonian deformation mode. 

 
Typical results of compression experiments at a strain rate of 5x10-4 s-1 are presented in 
figure 2 for three different temperatures. The flow stress is strongly thermally activated: it 
decreases from almost 225 MPa to 25 MPa when the temperature increases of 20 K only. 
Large plastic deformation (ε ≈ 1.0) can be reached without extensive hardening (even if a 
slight hardening can be detected), which would result from crystallization. This was 
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confirmed by X-ray measurements and transmission electron microscopy observations 
performed after deformation showing no trace of crystallization.  

 
Figure 3 presents typical results of strain-rate jump tests obtained at 683 K with successively 
increasing and decreasing step. These experiments display several interesting features. Firstly, 
one can note the high strain rate sensitivity of the flow stress. Secondly, the steady state flow 
stress depends only on the applied strain-rate, but not on the past mechanical history of the 
sample. Finally, for the highest strain-rates, stress overshoots or undershoots are detected after 
the strain rate increase or decrease respectively. 

 

4. Modeling and discussion 

4.1 Constant defect concentration at a given temperature: determination of activation volume 
 

In this section are presented the calculation of the activation volume V assuming a low 
variation of the flow defect concentration. Under this assumption – to be validated hereafter, 
defect concentration depends only on temperature. Since experiments were carried out in the 
range of the glass transition, the defect concentration when deformation starts is supposed to 
be equal to its equilibrium value (i.e. eq,f

*
f cc = ). In such a framework, equation (2) can be 

rewritten: 
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volume is the volume of matter involved in each elementary defect jump. The simplest way to 
evaluate V is to fit the sinh law in the purely plastic state. When overshoots are detected, the 
value of the flow stress used is its maximum value preceding the overshoot, which 
corresponds to a stationary plastic strain-rate with the initial flow defect concentration, since 
at this maximum 0E/ =!& , and not the stress plateau level following the overshoot where the 
flow defect concentration has relaxed.  
 
As can be seen in figure 4 (plain curve and circles), good fits of equation (7) with 
experimental results can be obtained with the values of V and 

0
!&  given in table I. Activation 

volumes between 193 and 206 Å3 are measured, depending on the test temperature. Such 
values are in agreement with previously published data dealing with high temperature 
deformation of various metallic glasses [3,15] but are higher than directly expected from the 
free volume model. As a matter of fact, this model postulates that atoms jump from their site 
into a nearby vacancy-like hole, which implies an activation volume of about one atomic 
volume. Using the mean atomic volume of the studied glass ( Ω ≈ 13 Å3), such a measured 
activation volume corresponds instead to the displacement of 10 to 20 atoms. This result 
supports the idea that atoms do not jump without correlated displacements of their neighbors, 
phenomenon also observed in diffusion experiment, see [16] for a review. Then, the measured 
activation volume corresponds to the volume of matter in which atoms are displaced during 
the elementary shear event, multiplied by the corresponding mean atomic strain. If we 
consider the existence of a spherical strain gradient of mean value !  around a jumping atom 
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implying N atoms, the work done by the applied stress is !"#=#= NVW  and the effective 
activation volume is: !"= NV . Taking, for instance, 5.0!"  leads to N ≈ 30 atoms would be 
implied in an elementary plastic event. 
 
The measured values of 

0
!&  vary from 2.6x10-4 s-1 to 3.4x10-3 s-1. This parameter includes 

several contributions: the equilibrium defect concentration cf,eq, the free energy of atomic 
migration and the Debye frequency. It can be rewritten extracting explicitly enthalpy and 
entropic terms, according to: 
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where ΔSf and ΔSm  are respectively the formation and migration entropies of the free volume 
defects, and ΔHf and ΔHm their formation and migration enthalpies. With this formalism, it is 

found ΔH ≈ 5.4 eV and !
"

#
$
%

&
'
(

)
*
+

, -
.

k

S
expc2 0D ≈ 4 x 1036 s-1. In the case of a Zr55Cu30Al10Ni5 glass, 

a value ΔH ≈ 4.2 eV was obtained [12]. Concerning the frequency factor, such high values 
have been already reported for BMG. In the case of a Pd-Ni-P glass, values between 1034 and 
1042 s-1 were reported [17]. Such high values can be interpreted as the signature of a 
cooperative phenomenon, through a high value of the entropic parameter [16,17]. This short 
analysis supports the assumption that flow defects in metallic glasses imply ten or more 
moving atoms. 

 
From equation (7), the viscosity can be written as: 
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At low stress, equation (9) leads to the Newtonian viscosity ηN: 
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From a combination of equations (9) and (10), a master curve can be derived to gather the 
variations with strain rate of the viscosity at different temperatures. Indeed, if 

0
!&  depends only 

on temperature (implying that cf does not vary with strain and strain-rate, as assumed in this 
paragraph), η/ηN is given by: 
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with kT32/Vx != . Figure 5 (already published in [13]) displays the variation of η/ηN with 
x. All experimental data performed at different temperatures and strain-rates superimpose 
with a good precision on a unique master curve. This agreement confirms the assumption 
made previously of a constant defect concentration for the activation volume measurements. 
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4.2 Defect concentration as a function of strain-rate: determination of kinetic parameters 
 

As previously mentioned, in steady state conditions, the flow defect concentration is expected 
to vary with strain-rate. If a dynamical equilibrium defect concentration is established, a 
constant steady state flow stress is obtained. These steady state conditions are associated to 

0c
f
=& . Then the stress strain-rate relation is described by the set of equations: 
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One can note from equations (12) and (13) that the non-Newtonian behavior of metallic 
glasses, which is promoted by a decrease of temperature or an increase of strain-rate, can have 
two origins. A first deviation from a Newtonian flow results from the direct effect of the stress 
on the atomic energy landscape, and a second deviation may be due to the free volume 
increase by plastic deformation. 
 
Thanks to equations (12) and (13) and to the experimental stress/strain-rate plateau, it is 
possible to estimate the parameters ax/kr and c,0!&  if cf,eq is known: 
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By evaluating these parameters and including the steady state flow defect concentration, it 
becomes possible to fit the plateau values (strain-rate vs. stress) of the compression 
experiment, as illustrated by figure 4 (dotted curve and squares) with a good agreement. The 
difference in stress on figure 4, between plain and doted curve, illustrates the effect of the 
taking into account of flow defect concentration variation as an increase of non-Newtonian 
nature of the glass rheology. In practice, one can also note that the determination of the 
parameters ax/kr and c,0!&  necessitates that experimental stress-strain curve present at least one 
important overshoot (i.e. a decrease of the stress of approximately 20 to 30 % at least) in order 
to obtain physically coherent values. In the high temperature case where there was no trace of 
overshoot, it was impossible to determine a stable value of these parameters, which could 
even take non-physical negative values. 
However, due to the non-linearity of equation (14), various (ax/kr, cf,eq, c,0!& ) triplets allow a 
good fit of the experimental data. For the sake of illustration, typical results at 683 K are 
given in table (3) with values of cf,eq differing from more than five range orders (between 
9.1x10-16 and 6.2x10-10). This means that it is practically difficult to identify the parameters 
(ax/kr, cf,eq, c,0!& ) directly from mechanical testing. Nevertheless, all the predicted triplets lead 
almost exactly to the same relative variation of the defect concentration for a given change in 
strain-rate at a given temperature, as illustrated by figure 6. This means that the ratio of the 
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static over the dynamic contributions in equation (6) remains also constant, whatever the 
triplet. In other words, the choice of cf,eq determines directly and without ambiguity the values 
of the parameters ax/kr and c,0!& . Figure 7 presents the dependency of these two parameters 
with cf,eq deduced from experimental results at 693 K. As one can see in figure 7, the ratio 
ax/kr is roughly proportional to cf,eq whereas c,0!&  is inversely proportional to cf,eq. This 
indicates that mechanical testing cannot lead to a direct measure of the defect concentration, 
but rather to the determination of its relative variations.  
 
A similar conclusion about the uncertainty on the measurement of cf,eq was also drawn from a 
study of the thermal relaxation behavior of a Zr55Cu30Al10Ni5 BMG [12]. In this work, Daniel 
et al. performed two series of DSC experiments on samples pre-annealed for various times 
and temperatures. On the basis of these experiments, an optimization procedure was carried 
out to identify a set of parameters allowing the simulation of the experimental variations with 
temperature of the apparent specific heat. Several sets of parameters for the variation with 
temperature of the defect concentration equally fitted the DSC measurements. It was 
concluded that the free volume model was able to successfully describe the thermal relaxation 
behavior of the glass but with a possibility of variation of at least five range orders for cf,eq at 
a given temperature. In other words, the uncertainty concerning cf,eq could not be overcome by 
DSC measurements. This practical difficulty is directly related to the exponential law linking 
the free volume and the defect concentration (equation (1)). For instance, the values of cf,eq 
used in table II (about six range of orders between the minimum and maximum values) 
corresponds only to a variation of about 50 % on the value of the free volume concentration 
(from about 0.029 to 0.047).  
 
Finally, if one takes into account published values of kr for a ZrCuAlNi BMG heated at 
similar T/Tg ratio [12] as in the present study, the values of ax/kr and 

c,0
!&  lead to values of ax 

between 10-3 and few 10-2. Such values are in relative agreement with previously reported 
ones [11,18]. Moreover, in this study, the predicted variation of the flow defect concentration 
(cf

*/cf,eq) is approximately 2.6 at =!& 10-2 .s-1, which is also consistent with published results 
[3,11]. 
 

5. Conclusions 
 
The homogeneous deformation in the supercooled domain of a ZrCuAlNiTi BMG has been 
studied in the framework of the free volume model. High values of the activation volume of 
the plastic deformation indicate a cooperative motion of a group of a few tens of atoms per 
elementary plastic event. The validity of the activation volume analysis and measurement 
ensures the validity of a scaling law of the glass viscosity versus strain-rate and temperature. 
 
From the mechanical tests, it is possible to estimate the relative variation of the steady state 
defect concentration with strain-rate and, knowing the equilibrium defect concentration and 
the activation volume, a method was proposed to determine ax/kr (the ratio of the strain 
induced defect creation rate over the recovery constant) and c,0!&  (migration rate). Because of 
the exponential law which links free volume and flow defect concentration, it is impossible to 
determine the absolute value of the thermal equilibrium defect concentration cf,eq itself. The 
great number of solutions of the mechanical constitutive equations of the glass leads however 
to the same ratio of the static (thermal) part over the dynamic (strain and recovery affected) 
part of this defect concentration, in agreement with other BMG data. 
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Figures captions 
 
Figure 1 

 
Typical DSC curve for D’ glass, with T& =10 K/s. 

Figure 2 True stress vs. true strain curves for three different temperatures (683, 693 
and 703 K) at constant strain-rate (5×10-4 s-1). 

Figure 3 True stress vs. true strain curve at 683 K. The strain-rate jump measurement 
are: 2.5×10-4, 5×10-4, 10-3 and 2.5×10-3 s-1, and then goes back to 5×10-4 s-1. 

Figure 4 Strain-rate vs. stress at 683 K. Circles: experimental values of the maximum 
stresses, plain line: fit of equation (8). Squares: experimental values of the 
steady state, dotted line: fit obtained with set of equations (12) and (13).  

Figure 5 (a) Viscosity vs. !&  for three temperatures.  
(b) Deduced master curve for the normalized viscosity, according to equation 
(12) (already published in [13]). 

Figure 6  Relative variation of the defect concentration for the three set of parameters 
presented in table 2 as a function of strain rate according to equation (6). 

Figure 7 Variation of the ratio ax/kr and c,0!&  with cf,eq. 
 



 11 

Tables 
 
T (K) V (Å3) 

0
!&  (s-1) 

683 201 2.6x10-4 
693 206 9.2x10-4 
703 193 3.4x10-3 
 
Table I. 
Activation volume and frequency factor’s values deduced from experimental results. 
 
xeq cf,eq ax/kr c,0!&  
0.0289 9.07x10-16 1.29x10-16 2.7x1011 
0.0328 5.55x10-14 1.02x10-14 4.4x109 
0.0472 6.20x10-10 2.39x10-10 3.4x105 
 
Table II. 
Example of three sets of parameters fitting well the experimental data at 683 K, xeq and cf,eq 
have been inserted for the sake of comparison of their relative variation. 
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Figure 5 a and b 
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