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ABSTRACT
We propose a deconvolution algorithm for images blurred
and degraded by a Poisson noise. The algorithm uses a fast
proximal backward-forward splitting iteration. This iter-
ation minimizes an energy which combines anon-linear
data fidelity term, adapted to Poisson noise, and a non-
smooth sparsity-promoting regularization (e.gℓ1-norm)
over the image representation coefficients in some dictio-
nary of transforms (e.g. wavelets, curvelets). Our results
on simulated microscopy images of neurons and cells are
confronted to some state-of-the-art algorithms. They show
that our approach is very competitive, and as expected,
the importance of the non-linearity due to Poisson noise
is more salient at low and medium intensities. Finally an
experiment on real fluorescent confocal microscopy data
is reported.

Index Terms— Deconvolution, Poisson noise, Confo-
cal microscopy, Iterative thresholding, Sparse representa-
tions.

1. INTRODUCTION
Fluorescent microscopy suffers from two main sources of
degradation: the optical system and the acquisition noise.
The optical system has a finite resolution introducing a
blur in the observation. This degradation is modeled as
convolution with the point spread function (PSF). The sec-
ond source of image degradation is due to Poisson count
process (shot noise). In presence of Poisson noise, sev-
eral deconvolution algorithms have been proposed such
as the well-known Richardson-Lucy (RL) algorithm or
Tikhonov-Miller inverse filter, to name a few. RL is ex-
tensively used for its good adaptation to Poisson noise,
but it tends to amplify noise after a few iterations. Reg-
ularization can be introduced in order to avoid this issue.
In biological imaging deconvolution, many kinds of reg-
ularization have been suggested: total variation with RL
[1] which gives staircase artifacts, Tikhonov with RL (see
[2] for a review), etc. Wavelets have also been used as a
regularization scheme when deconvolving biomedical im-
ages; [3] presents a version of RL combined with wavelets
denoising, and [4] use the thresholded Landweber itera-
tion of [5]. The latter approach implicitly assumes that the
contaminating noise is Gaussian.

In the context of deconvolution with Gaussian white
noise, sparsity-promoting regularization over orthogonal

wavelet coefficients has been recently proposed [5, 6].
Generalization to frames was proposed in [7, 8]. In [9],
the authors presented an image deconvolution algorithm
by iterative thresholding in an overcomplete dictionary
of transforms. However, all sparsity-based approaches
published so far have mainly focused on Gaussian noise.

In this paper, we propose an image deconvolution al-
gorithm for data blurred and contaminated by Poisson
noise. The Poisson noise is handled properly by using the
Anscombe variance stabilizing transform (VST), leading
to a non-lineardegradation equation with additive Gaus-
sian noise, see (2). The deconvolution problem is then
formulated as the minimization of a convex functional
with a non-linear data-fidelity term reflecting the noise
properties, and a non-smooth sparsity-promoting penalty
over representation coefficients of the image to restore,
e.g. wavelet or curvelet coefficients. Inspired by the work
in [6], a fast proximal iterative algorithm is proposed to
solve the minimization problem. Experimental results are
carried out to compare our approach on a set of simu-
lated and real confocal microscopy images, and show the
striking benefits gained from taking into account the Pois-
son nature of the noise and the morphological structures
involved in the image.

Notation
Let H a real Hilbert space, here a finite dimensional vector subspace of

R
n. We denote by‖.‖

2
the norm associated with the inner product inH,

andI is the identity operator onH. x andα are respectively reordered

vectors of image samples and transform coefficients. A function f is co-

ercive, if lim‖x‖
2
→+∞ f (x) = +∞. Γ0(H) is the class of all proper

lower semi-continuous convex functions fromH to ] −∞,+∞].

2. PROBLEM STATEMENT
Consider the image formation model where an input image
x is blurred by a point spread function (PSF)h and con-
taminated by Poisson noise. The observed image is then a
discrete collection of countsy = (yi)16i6n wheren is the
number of pixels. Each countyi is a realization of an in-
dependent Poisson random variable with a mean(h⊛ x)i,
where⊛ is the circular convolution operator. Formally,
this writesyi ∼ P ((h⊛ x)i).

A naive solution to this deconvolution problem would
be to apply traditional approaches designed for Gaussian
noise. But this would be awkward as (i) the noise tends
to Gaussian only for large mean(h ⊛ x)i (central limit



theorem), and (ii) the noise variance depends on the mean
anyway. A more adapted way would be to adopt a bayesian
framework with an appropriate anti-log-likelihood score
reflecting the Poisson statistics of the noise. Unfortunately,
doing so, we would end-up with a functional which does
not satisfy some key properties (the Lipschitzian prop-
erty stated after (3)), hence preventing us from using the
backward-forward splitting proximal algorithm to solve
the optimization problem. To circumvent this difficulty,
we propose to handle the noise statistical properties by
using the Anscombe VST defined as

zi = 2
√

yi + 3
8 , 1 6 i 6 n. (1)

Some previous authors [10] have already suggested to use
the Anscombe VST, and then deconvolve with wavelet-
domain regularization as if the stabilized observationzi
were linearly degraded byh and contaminated by additive
Gaussian noise. But this is not valid as standard asymp-
totic results of the Anscombe VST state that

zi = 2
√

(h⊛ x)i + 3
8 + ε, ε ∼ N (0, 1) (2)

whereε is an additive white Gaussian noise of unit vari-
ance1. In words,z is non-linearly related tox. In Sec-
tion 4, we provide an elegant optimization problem and
a fixed point algorithm taking into account such a non-
linearity.

3. SPARSE IMAGE REPRESENTATION

Let x ∈ H be an
√
n × √

n image. x can be written as
the superposition of elementary atomsϕγ parametrized
by γ ∈ I such thatx =

∑

γ∈I αγϕγ = Φα, |I| =
L, L > n. We denote byΦ the dictionary i.e. then ×
L matrix whose columns are the generating waveforms
(ϕγ)γ∈I all normalized to a unitℓ2-norm. The forward
transform is then defined by a non-necessarily square ma-
trix T = ΦT ∈ R

L×n. In the rest of the paper,Φ will be
an orthobasis or a tight frame with constantA.

4. SPARSE ITERATIVE DECONVOLUTION

4.1. Optimization problem
The class of minimization problems we are interested in
can be stated in the general form [6]:

arg min
x∈H

f1(x) + f2(x). (3)

wheref1 ∈ Γ0(H), f2 ∈ Γ0(H) andf1 is differentiable
with κ-Lipschitz gradient. We denote byM the set of
solutions.
From (2), we immediately deduce the data fidelity term

F ◦H ◦ Φ (α), with (4)

F : η 7→
n∑

i=1

f(ηi), f(ηi) =
1

2

(

zi − 2
√

ηi + 3
8

)2

,

1Rigorously speaking, the equation is to be understood in an asymp-
totic sense.

whereH denotes the convolution operator. From a statisti-
cal perspective, (4) corresponds to the anti-log-likelihood
score.

Adopting a bayesian framework and using a standard
maximum a posteriori (MAP) rule, our goal is to minimize
the following functional with respect to the representation
coefficientsα:

(Pλ,ψ) : arg min
α

J(α) (5)

J : α 7→ F ◦H ◦ Φ (α)
︸ ︷︷ ︸

f1(α)

+ ıC ◦ Φ (α) + λ

L∑

i=1

ψ(αi)

︸ ︷︷ ︸

f2(α)

,

where we implicitly assumed that(αi)16i6L are indepen-
dent and identically distributed. The penalty functionψ
is chosen to enforce sparsity,λ > 0 is a regularization
parameter andıC is the indicator function of a convex set
C. In our case,C is the positive orthant. We remind that
the positivity constraint is because we are fitting Poisson
intensities, which are positive by nature.

4.2. Proximal iteration
We now present our main proximal iterative algorithm to
solve the minimization problem(Pλ,ψ):

Theorem 1. (Pλ,ψ) has at least one solution (M 6= ∅).
The solution is unique ifψ is strictly convex or ifΦ is a
orthobasis andKer(H) = ∅. For t > 0, let (µt)t be such

that0 < inft µt 6 supt µt <
(

3
2

)3/2
/

(

2A ‖H‖2
2 ‖z‖∞

)

.

Fix α0 ∈ C ◦ Φ, for everyt > 0, set

αt+1 = proxµtf2 (αt − µt∇f1(αt)) , (6)

where∇f1 is the gradient off1 andproxµtf2 is computed
using the following iteration: let

∑

t νt(1 − νt) = +∞,
takeγ0 ∈ H, and define the sequence of iterates:

γt+1 = γt + νt

(

rprox
µtλΨ+

1
2‖.−α‖2

◦ rproxı
C′
−I

)

(γt), (7)

whereprox
µtλΨ+

1
2‖.−α‖2

(γt) =

(

prox
µt

λ
2ψ

((αi + γti )/2)

)

16i6L

,

PC′ = proxıC′
= A−1ΦT ◦ PC ◦ Φ +

(
I −A−1ΦT ◦ Φ

)
,

rproxϕ = 2 proxϕ−I and PC is the projector onto the
positive orthant(PCη)i = max(ηi, 0). Then,

γt ⇀ γ and proxµtf2(α) = PC′(γ). (8)

Then(αt)t>0 converges (weakly) to a solution of(Pλ,ψ).

A proof can be found in [11].proxδψ is given by,

Theorem 2. Suppose that (i)ψ is convex even-symmetric ,
non-negative and non-decreasing on[0,+∞), andψ(0) =
0. (ii) ψ is twice differentiable onR \ {0}. (iii) ψ is con-
tinuous onR, it is not necessarily smooth at zero and ad-
mits a positive right derivative at zeroψ

′

+(0) > 0. Then,



the proximity operatorproxδψ(β) = α̂(β) has exactly one
continuous solution decoupled in each coordinateβi :

α̂i(βi) =

{

0 if |βi| ≤ δψ
′

+(0)

βi − δψ
′

(α̂i) if |βi| > δψ
′

+(0)
(9)

See [9]. Among the most popular penalty functions
ψ satisfying the above requirements, we haveψ(αi) =
|αi|, in which case the associated proximity operator is
soft-thresholding. Therefore, (6) is essentially an iterative
thresholding algorithm with a positivity constraint.

5. RESULTS
The performance of our approach has been assessed on
several datasets of biological images: a neuron phantom
and a cell. Our algorithm was compared to RL with
total variation regularization (RL-TV [1]), RL with multi-
resolution support wavelet regularization (RL-MRS [12]),
the naive proximal method that would assume the noise
to be Gaussian (NaiveGauss [4]), and the approach of
[10] (AnsGauss). For all results presented, each algorithm
was run with 200 iterations, enough to reach convergence.
Simulations were carried out with an approximated but re-
alistic PSF [13] whose parameters are obtained from a real
confocal microscope. As usual, the choice ofλ is crucial
to balance between regularization and deconvolution. For
all the situations below,λ was adjusted in order to reach
the best compromise.

In Fig.1(a), a phantom of a neuron with a mushroom-
shaped spine is depicted. The maximum intensity is 30. Its
blurred and blurred+noisy versions are in (b) and (c). With
this neuron, and for NaiveGauss, AnsGauss and our ap-
proach, the dictionaryΦ contained the wavelet orthogonal
basis. The deconvolution results are shown in Fig.1(d)-
(h). As expected the worst results are for the AnsGauss
version, as it does not take care of the non-linearity of the
Anscombe VST. RL-TV shows rather good results but the
background is full of artifacts. Our approach provides a vi-
sually pleasant deconvolution result on this example. It ef-
ficiently restores the spine, although the background is not
fully cleaned. RL-MRS also exhibits good deconvolution
results. Qualitative visual results are confirmed by quan-
titative measures of the quality of deconvolution, where
we used both theℓ1-error (adapted to Poisson noise), and
the traditional MSE criteria. Theℓ1-errors for this image
are shown by Tab. 1 (similar results were obtained for the
MSE). In general, our approach performs well. It is com-
petitive compared to RL-MRS which is designed to di-
rectly handle Poisson noise. At low intensity regimes, our
approach and RL-MRS are the two algorithms that give the
best results. At high intensity, RL-TV performs very well,
although RL-MRS, NaiveGauss and our approach are very
close to it. NaiveGauss performs poorly at low intensity as
it does not correspond to a degradation model with Pois-
son noise. AnsGauss gives the worst results probably be-
cause it does not handle the non-linearity of the degrada-
tion model (2) after the VST. To assess the computational
burden of the compared algorithms, Tab. 2 summarizes the

execution times with an Intel PC Core 2 Duo 2GHz, 2Gb
RAM. Except RL-MRS which is written in C++, all other
algorithms were implemented in MATLAB.

The same experiment as above was carried out with a
microscopy image of the endothelial cell of the blood mi-
crovessel walls; see Fig. 2. For the NaiveGauss, AnsGauss
and our approach, the dictionaryΦ contained the wavelet
orthogonal basis and the curvelet tight frame. The Ans-
Gauss and the NaiveGauss results are spoiled by artifacts
and suffer from a loss of photometry. RL-TV result shows
a good restoration of small isolated details but with a dom-
inating staircase-like artifacts. RL-MRS and our approach
give very similar results although an extra-effort could be
made to better restore tiny details. The quantitative mea-
sures depicted in Fig. 3 confirm this qualitative discussion.

Finally, we applied our algorithm on a real confocal
microscopy image of neurons. Fig. 4(a) depicts the ob-
served image2 using the GFP fluorescent protein. Fig. 4(b)
shows the restored image using our algorithm with the or-
thogonal wavelets. The images are shown in log-scale for
visual purposes. We can notice that the background has
been cleaned and some structures have reappeared. The
spines are well restored and part of the dendritic tree is re-
constructed, however some information can be lost (see
tiny holes). This can be improved using more relevant
transforms.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. Deconvolution of a simulated neuron (Intensity6 30). (a)
Original, (b) Blurred, (c) Blurred&noisy, (d) RL-TV, (e) NaiveGauss, (f)
AnsGauss, (g) RL-MRS, (h) Our Algorithm.

6. CONCLUSION
In this paper, we presented a sparsity-based fast iterative
thresholding deconvolution algorithm that take accounts of
the presence of Poisson noise. Competitive results on con-
focal microscopy images with state-of-the-art algorithms

2Courtesy of the GIP Cycéron, Caen France.



(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 2. Deconvolution of the cell image (Intensity6 30). (a) Origi-
nal, (b) Blurred, (c) Blurred&noisy, (d) RL-TV, (e) NaiveGauss, (f) Ans-
Gauss, (g) RL-MRS, (h) Our Algorithm.
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Fig. 3. Meanℓ1-error of all algorithms as a function of the intensity
level for the deconvolution of the cell

are shown. The combination of several transforms leads to
some advantages, as we can easily adapt the dictionary to
the kind of image to restore. The parameterλ can be tricky
to find, and we are developing a method helping to solve
this issue.
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