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COMBINATORIAL REALIZATION OF THE THOM-SMALE

COMPLEX VIA DISCRETE MORSE THEORY

ÉTIENNE GALLAIS

Abstract. In the case of smooth manifolds, we use Forman’s discrete Morse
theory to realize combinatorially any Thom-Smale complex coming from a
smooth Morse function by a couple triangulation-discrete Morse function. As
an application, we prove that any Euler structure on a smooth oriented closed
3-manifold has a particular realization by a complete matching on the Hasse
diagram of a triangulation of the manifold.

1. Introduction

R. Forman defines a combinatorial analog of smooth Morse theory in [4], [5],
[6] for simplicial complexes and more generally for CW-complexes. Discrete Morse
theory has many applications (computer graphics [10], graph theory [3]). An im-
portant problem is the research of optimal discrete Morse functions in the sense
that they have the minimal number of critical cells ([8], [9],[18] for the minimality
of hyperplane arrangements).

Thanks to a combinatorial Morse vector field V , Forman constructs a combina-
torial Thom-Smale complex (CV , ∂V ) whose homology is the simplicial homology
of the simplicial complex. The differential is defined by counting algebraically V -
paths between critical cells. Nevertheless, the proof of ∂V ◦ ∂V = 0 is an indirect
proof (see [5]). We give two proofs of ∂V ◦ ∂V = 0, one which focusses on the
geometry and another one which focusses on the algebraic point of view (compare
with [2] and [19]). In fact, the algebraic proof gives also the property that the
combinatorial Thom-Smale complex is a chain complex homotopy equivalent to the
simplicial chain complex. After that, we investigate one step forward the relation
between the smooth Morse theory and the discrete Morse theory. We prove that
any Thom-Smale complex has a combinatorial realization. We use this to prove that
any Spinc-structures on a closed oriented 3-manifold can be realized by a complete
matching on a triangulation of this manifold.

This article is organised as follows. In section 2, we recall the discrete Morse
theory from the viewpoint of combinatorial Morse vector field. Section 2.2.3 is de-
voted to the proofs of ∂V ◦ ∂V = 0 and that the Thom-Smale complex is a chain
complex homotopy equivalent to the simplicial chain complex. In section 3, we
prove that any combinatorial Thom-Smale complex is realizable as a combinatorial
Thom-Smale complex. In section 4, we obtain as a corollary the existence of tri-
angulations with complete matchings on their Hasse diagram and prove that any
Spinc-structures on a closed oriented 3-manifold can be realized by such complete
matchings.
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2. Discrete Morse theory

2.1. Combinatorial Morse vector field. First of all, instead of considering dis-
crete Morse functions on a simplicial complex, we will only consider combinatorial
Morse vector fields. In fact, working with discrete Morse functions or combinatorial
vector fields is exactly the same [5, Theorem 9.3].

In the following, X is a finite simplicial complex and K is the set of cells of X .
A cell σ ∈ K of dimension k is denoted σ(k). Let < be the partial order on K given
by σ < τ iff σ ⊂ τ . Given a simplicial complex, one associates its Hasse diagram:
the set of vertices is the set of cells K, an edge joins two cells σ and τ if σ < τ and
dim(σ) + 1 = dim(τ).

Definition 2.1. A combinatorial vector field V on X is an oriented matching on
the associated Hasse diagram of X that is a set of edgesM such that

(1) any two distincts edges ofM do not share any common vertex,
(2) every edge belonging toM is oriented toward the top dimensional cell.

A cell which does not belong to any edge of the matching is said to be critical.

Remark. The original definition of a combinatorial vector field is the following one:
given a matching on the Hasse diagram define

V : K → K ∪ {0}

σ 7→ V (σ) =

{
τ iff (σ, τ) is an edge of the matching and σ < τ,

0 otherwise.

We will use both these points of view in the following.

A V -path of dimension k is a sequence of cells γ : σ0, σ1, . . . , σr of dimension k
such that

(1) σi 6= σi+1 for all i ∈ {0, . . . , r − 1},
(2) for every i ∈ {0, . . . , r − 1}, σi+1 < V (σi).

A V -path γ is said to be closed if σ0 = σr, and non-stationary if r > 0.

Definition 2.2. A combinatorial vector field V which has no non-stationary closed
path is called a combinatorial Morse vector. In this case, the corresponding match-
ing is called a Morse matching.

The terminology Morse matching first appeared in [2].

Remark. Let V be a combinatorial (resp. combinatorial Morse) vector field. It we
remove an edge from the underlying matching, it remains a combinatorial (resp.
combinatorial Morse) vector field (there are two extra critical cells).

2.2. The combinatorial Thom-Smale complex.

2.2.1. Definition of the combinatorial Thom-Smale complex. The following data are
necessary to define the combinatorial Thom-Smale complex (see [5]). First, let X
be a finite simplicial complex, K its set of cells and V a combinatorial Morse vector
field. Suppose that every cell σ ∈ K is oriented.

Let γ : σ0, σ1, . . . , σr be a V -path. Then the multiplicity of γ is given by the
formula

m(γ) =

r−1∏

i=0

− < ∂V (σi), σi >< ∂V (σi), σi+1 > ∈ {±1}
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where for every cell σ, τ , < σ, τ >∈ {−1, 0, 1} is the incidence number between the
cells σ and τ (see [11]) and ∂ is the boundary map when we consider X as a CW-
complex. In fact, one can think of the multiplicity as checking if the orientation of
the first cell σ0 moved along γ coincides or not with the orientation of the last cell
σr.

Let Γ(σ, σ′) be the set of V -paths starting at σ and ending at σ′ and Critk(V )
be the set of critical cells of dimension k.

Definition 2.3. The combinatorial Thom-Smale complex associated with (X, V )
is (CV

∗ , ∂V ) where:

(1) CV
k =

⊕
σ∈Critk(V ) Z.σ,

(2) if τ ∈ Critk+1(V ) then

∂V τ =
∑

σ∈Critk(V )

n(τ, σ).σ

where

n(τ, σ) =
∑

σ̃<τ

< ∂τ, σ̃ >
∑

γ∈Γ(σ̃,σ)

m(γ)

Thus, this complex is exactly in the same spirit as the Thom-Smale complex
for smooth Morse functions (see section 3): it is generated by critical cells and the
differential is given by counting algebraically V -paths.

Theorem 2.4 (Forman [5]). ∂V ◦ ∂V = 0.

Theorem 2.5 (Forman [5]). (CV
∗ , ∂V ) is homotopy equivalent to the simplicial

chain complex. In particular, its homology is equal to the simplicial homology.

We will give a direct proof of both of these theorems. The proof of Theorem 2.4
is done by looking at V -paths and understanding their contribution to ∂V ◦ ∂V .
Then, we prove Theorem 2.5 (which gives another proof of Theorem 2.4) using
Gaussian elimination (this idea first appears in [2], see also [19]).

2.2.2. Proof of Theorem 2.4. Let X be a simplicial complex, K be the set of its cells
and Kn the set of cells of dimension n. The proof is by induction on the number
on edges belonging to the Morse matching.
Initialization: matching with no edge. In this case, every cell is critical and the
combinatorial Thom-Smale complex coincides with the well-known simplicial chain
complex. Therefore, ∂V ◦ ∂V = 0.
Heredity: suppose the property is true for every matching with at most k edges
defining a combinatorial Morse vector field. Let V be a combinatorial Morse vector
field with corresponding matching consisting of k + 1 edges. In particular, there is
no non-stationary closed V -path. Let (σ, τ) be an edge of this matching with σ < τ
and let V be the combinatorial Morse vector field corresponding to the original

matching with the edge (σ, τ) removed. By induction hypothesis ∂V ◦ ∂V = 0. In
particular, for every n ∈ N, every τ ∈ Kn+1 and every ν ∈ Kn−1 when there is a
cell σ1 ∈ Kn such that there is a V -path from an hyperface of τ to σ1 and another
V -path from an hyperface of σ1 to ν there exists another cell σ2 ∈ Kn with the

same property so that their contribution to ∂V ◦ ∂V are opposite.
First, we will prove that ∂V ◦∂V = 0 when the chain complex is with coefficients

in Z/2Z and after we will take care of signs.
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Suppose that the distinguished edge of the matching (σ, τ) is such that dim(σ)+

1 = dim(τ) = n + 1. Therefore, CV
i = CV

i for i 6= n, n + 1 and ∂V
|CV

i

= ∂V
|CV

i

for

i /∈ {n, n+1, n+2}. So we have ∂V ◦∂V (µ) = 0 for all µ ∈ K−(Kn∪Kn+1∪Kn+2).
Remark that it is also true for every σ′ ∈ Critn(V ) that ∂V ◦ ∂V (σ′) = 0 (since

with respect to V it is true and σ′ 6= σ).
There are two cases left.

Case 1. Let τ ′ ∈ Critn+1(V ). To see that ∂V ◦ ∂V (τ ′) = 0 we must consider
two cases. First case is when the two V -paths which annihilates don’t go
through σ. Then, nothing is changed and contributions to ∂V ◦ ∂V (τ ′)
cancel by pair. The second case is when at least one the V -path which

cancel by pair for ∂V go through σ. The V -paths which go from τ ′ to ν
are of two types: those who go via σ and the others. Let τ ′ → σ2 → ν
be a juxtaposition of two V -paths which cancel with the juxtaposition of

V -path τ ′ → σ → ν. Since ∂V ◦ ∂V (τ) = 0, there must be a critical cell
σ1 such that the juxtaposition of V -paths τ → σ → ν and τ → σ1 → ν
cancels. Therefore, when considering ∂V , three juxtapositions of V -paths
disappear and one is created: τ ′ → (σ → τ) → σ1 → ν. It cancels with
τ ′ → σ2 → ν.

It may happens that two juxtapositions of V -paths go through σ but
this case works exactly in the same way.

Case 2. This case is similar to the previous case. Let ς be a cell in Kn+2. There
are two cases to see that ∂V ◦ ∂V (ς) = 0. The first case is when the two V -
paths whose contributions are opposite don’t go through τ . Then, nothing
is changed and contributions to ∂V ◦ ∂V (τ ′) cancel by pair. The second
case is when the V -path which disappears is replaced by exactly a new one
which goes through the edge (σ, τ). The result follows similarly.

Note that to deal with this two cases we used the fact that there is no non-
stationary closed V -path (and so V -path). Now, let’s deal with the signs. We will
only consider the case 1. above, other cases work similarly. Denote n(α→ β) (resp.

n(α → β)) the sign of the contribution in the differential ∂V (resp. ∂V ) of a path
going from α to β where both cells are critical of consecutive dimension. While
considering V , we have by induction hypothesis

(2.1) n(τ ′ → σ2).n(σ2 → ν) = −n(τ ′ → σ).n(σ → ν)

and

(2.2) n(τ → σ1).n(σ1 → ν) = −n(τ → σ).n(σ → ν)

Since the juxtaposition of the V -paths τ ′ → σ2 → ν don’t go through σ we have
that

(2.3) n(τ ′ → σ2).n(σ2 → ν) = n(τ ′ → σ2).n(σ2 → ν)

By definition of the multiplicity of paths we have

(2.4) n(τ ′ → σ1) = n(τ ′ → σ).(− < ∂τ, σ >).n(τ → σ1)
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Combining equations (2.1)-(2.4) we obtain the following equalities

n(τ ′ → σ1).n(σ1 → ν) = n(τ ′ → σ).(− < ∂τ, σ >).n(τ → σ1).n(σ1 → ν)(2.4)
= n(τ ′ → σ).(− < ∂τ, σ >).n(τ → σ1).n(σ1 → ν)
= n(τ ′ → σ). < ∂τ, σ > .n(τ → σ).n(σ → ν) (2.2)
= (< ∂τ, σ > .n(τ → σ)).n(τ ′ → σ).n(σ → ν)
= n(τ ′ → σ).n(σ → ν) by definition
= −n(τ ′ → σ2).n(σ2 → ν) (2.1)
= −n(τ ′ → σ2).n(σ2 → ν) (2.3)

which concludes the proof of the theorem.

2.2.3. Proof of Theorem 2.5. The main ingredient of the proof is thinking about
combinatorial Morse vector field as an instruction to remove acyclic complexes
from the original simplicial chain complex, as done by Chari [2, Proposition 3.3] or
Sköldberg [19]. Given a matching between two cells σ < τ , we would like to remove
the following short complex (which is acyclic)

0→ Z.τ
<∂τ,σ>
−−−−−→ Z.σ → 0

where ∂ is the boundary operator of the simplicial chain complex. To do this, we
use Gaussian elimination (see e.g. [1]):

Lemma 2.6 (Gaussian elimination). Let C = (C∗, ∂) be a chain complex over Z

freely generated. Let b1 ∈ Ci (resp. b2 ∈ Ci−1) be such that Ci = Z.b1 ⊕D (resp.
Ci−1 = Z.b2 ⊕ E). If φ : Z.b1 → Z.b2 is an isomorphism of Z-modules, then the
four term complex segment of C

(2.5) . . .→
[
Ci+1

]



α
β





−−−−→

[
b1

D

]


φ δ
γ ε





−−−−−−→

[
b2

E

] (
µ ν

)

−−−−−→
[
Ci−2

]
→ . . .

is isomorphic to the following chain complex segment

(2.6) . . .→
[
Ci+1

]



 0
β





−−−→

[
b1

D

]


φ 0
0 ε− γφ−1δ





−−−−−−−−−−−−−→

[
b2

E

] (
0 ν

)

−−−−−→
[
Ci−2

]
→ . . .

Both these complexes are homotopy equivalent to the complex segment

(2.7) . . .→
[
Ci+1

]
(
β

)

−−−→
[
D

]
(
ε− γφ−1δ

)

−−−−−−−−−−→
[
E

]
(
ν

)

−−−→
[
Ci−2

]
→ . . .

Here we used matrix notation for the differential ∂.

Proof. Since ∂2 = 0 in C, we obtain φα + δβ = 0 and µφ + νγ = 0. By doing the

following change of basis A =

(
1 φ−1δ
0 1

)
on

[
b1

D

]
and B =

(
1 0

−γφ−1 1

)
on

[
b2

E

]

we see that the complex segments 2.5 and 2.6 are isomorphic. Then, we remove the

short complex 0→
[
b1

] φ
→

[
b2

]
→ 0 which is acyclic. �

Now, we are ready to prove Theorem 2.5.

Proof of Theorem 2.5. Like for the proof of Theorem 2.4, we make an induction on
the number of edges belonging to the matching defining the combinatorial Morse
vector field. Let X be a simplicial complex, K be the set of its cells.
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Initialization: matching with no edge. In this case, there is nothing to prove since
the combinatorial Thom-Smale complex is exactly the simplicial chain complex.
Heredity: suppose the property is true for every matching with at most k edges
defining a combinatorial Morse vector field. Let V be a combinatorial Morse vector
field whose underlying matching consists of k + 1 edges. Let σ(n) < τ (n+1) be an
element of this matching and V be the combinatorial Morse vector field equal to
V with the matching σ < τ removed (it is actually a combinatorial Morse vector

field). So, CV
i = CV

i for all i 6= n, n + 1 and ∂V = ∂V when restricted to CV
i for

all i /∈ {n, n + 1, n + 2}. Moreover, we have the following equalities: (∂V )|C
V
n+1 =

(∂V )|C
V
n+1 and ∂V

|CV
n

= ∂V
|CV

n
. By induction hypothesis, the combinatorial Thom-

Smale complex (CV
∗ , ∂V ) is a chain complex homotopy equivalent to the simplicial

chain complex of X . Thus, the combinatorial Thom-Smale complex associated
with V is equal to the one of V except on the following chain segment (where

ε = (∂V )
|CV

n

|CV
n+1

):

(2.8)

. . .→
[
CV

n+2

]



 α
∂V





−−−−−→

[
τ

CV
n+1

]


< ∂τ, σ > δ
γ ε





−−−−−−−−−−−−−→

[
σ

CV
n

] (
µ ∂V

)

−−−−−−−→
[
CV

n−1

]
→ . . .

Since X is a simplicial complex we have < ∂τ, σ >∈ {±1}. Applying lemma 2.6,
we obtain the following new combinatorial chain complex which is homotopic to
the combinatorial Thom-Smale complex of V

(2.9) . . .→
[
CV

n+2

]
(
∂V

)

−−−−→
[
CV

n+1

]
(
α

)

−−−→
[
CV

n

]
(
∂V

)

−−−−→
[
CV

n−1

]
→ . . .

where α = ε − γ < ∂τ, σ > δ = ∂V . Thus, the only thing to prove is that α = ∂V

over CV
n+1. To do this, we investigate ∂V . There are two types of contributions.

First type correspond to V -paths which do not go through σ, and they are counted
in ε. Second type are V -paths which go through σ. They begin at an hyperface of
a critical cell τ ′ and go through σ: this is the contribution of δ. Then, they jump
to τ : this is the contribution of < ∂τ, σ >. Finally they begin at an hyperface of
τ and go to a critical cell in CV

n : this is the contribution of γ. It remains to check
that the sign is correct, but this is exactly the same as in the first proof of Theorem
2.4. �

Corollary 2.7. Let X be a finite simplicial complex, C = (C∗, ∂) be the corre-
sponding simplicial chain complex andM be a matching (σi < τi)i∈I on its Hasse
diagram defining a combinatorial vector field V . Then the following properties are
equivalent:

(1) M is a Morse matching,
(2) for any sequence (σi1 < τi1 ), (σi2 < τi2 ), . . . , (σi|I| < τi|I|) such that ij 6= ik

if j 6= k, Gaussian eliminations can be performed in this order.

In particular, any sequence of Gaussian eliminations corresponding to M lead to
the same chain complex which is the combinatorial Thom-Smale complex of V .

Proof. 1⇒ 2 This is an immediate consequence of the proof of Theorem 2.5 and
the fact that it leads to the Thom-Smale complex associated to (X, V ).
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2⇒ 1 It is enough to show that there is no non-stationary closed path under the
hypothesis. Suppose there is a closed V -path γ : σ1, . . . , σr, σ1 and consider
any sequence of Gaussian elimination which coincides with (σj < V (σj))
until step r. In particular, r ≥ 3 since X is a simplicial complex. Let V
be the corresponding combinatorial vector field. Let γ′ : σ1, . . . , σr be the
V -path with length decrease by one. Then

< ∂r−1V (σr), σr >=< ∂V (σr), σr > +m(γ′)

Since m(γ′) = ±1, < ∂r−1V (σr), σr > is not invertible over Z and the
Gaussian elimination cannot be performed (see lemma 2.6). This is a con-
tradiction.

�

3. Relation between smooth and discrete Morse theories

In this section, we investigate the link between smooth and discrete Morse the-
ories. We first recall briefly the main ingredients of smooth Morse theory. In
particular, we describe the Thom-Smale complex and prove the following:

Theorem 3.1 (Combinatorial realization). Let M be a smooth closed oriented
Riemannian manifold and f : M → R be a generic Morse function. Suppose
that every stable manifold has been given an orientation so that the smooth Thom-
Smale complex is defined. Then, there exists a C1-triangulation T of M and a
combinatorial Morse vector field V on it which realize the smooth Thom-Smale
complex (after a choice of orientation of each cells of T ) in the following sense:

(1) there is a bijection between the set of critical cells and the set of critical
points,

(2) for each pair of critical cells σp and σq such that dim(σp) = dim(σq) + 1,
V -paths from hyperfaces of σp to σq are in bijection with integral curves of
v up to renormalization connecting q to p,

(3) this bijection induce an isomorphism between the smooth and the combina-
torial Thom-Smale complexes.

Throughout this section, we follow conventions of Milnor ([12], [13]).

3.1. Smooth Morse theory. Let M be a smooth closed oriented Riemannian
manifold of dimension n. Given a smooth function f : M → R, a point p ∈ M is
said critical if Df(p) = 0. Let Crit(f) be the set of critical points. At a critical
point p, we consider the bilinear form D2f(p). The number of negative eighenvalues
of D2f(p) is called the index of p (denoted ind(p)). We denote Critk(f) the set of
critical points of index k.

Definition 3.2. A smooth map f : M → R is called a Morse function if at each
critical point p of f , D2f(p) is non-degenerate.

More generally, a Morse function on a (smooth) cobordism (M ; M0, M1) is a
smooth map f : M → [a, b] such that

(1) f−1(a) = M0, f−1(b) = M1,
(2) all critical points of f are interior (lie in M − (M0 ∪M1)) and are non-

degenerate.

For technical reasons, we must consider the following object:
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Definition 3.3. Let f be a Morse function on a cobordism (Mn; M0, M1). A vector
field v on Mn is a gradient-like vector field for f if

(1) v(f) > 0 throughout the complement of the set of critical points of f ,
(2) given any critical point p of f there is a Morse chart in a neighbourhood U

of p so that

f(x) = f(p)−
k∑

i=1

x2
i +

n∑

i=k+1

x2
i

and v has coordinates v(x) = (−x1, . . . ,−xk, xk+1, . . . , xn).

Given any Morse function, there always exists a gradient-like vector field (see
[13]). In the following, we shall abreviate “gradient like vector field” by “gradient”.
Thus, when needed, we will assume that we have chosen one.

Given any x0 ∈M , we consider the following Cauchy problem{
γ′(t) = v(γ(t))
γ(0) = x0

and call integral curve (denoted γx0) the solution of this Cauchy problem. The
stable manifold of a critical point p is by definition the set W s(p, v) := {x ∈
M | lim

t→+∞
γx(t) = p}. The unstable manifold of a critical point p is by definition the

set {x ∈ M | lim
t→−∞

γx(t) = p}. When stable and unstable manifolds are transverse

(this is called Morse-Smale condition), we called v a Morse–Smale gradient: such
gradient always exists in a neighbourhood of a gradient (see e.g. [16]). We shall
call a Morse function f generic if we have chosen for f a Morse–Smale gradient.

To define the smooth Thom-Smale complex we need the following data:

• a generic Morse function f ,
• an orientation of each stable manifold.

Under these conditions, the number of integral curves of v up to renormalization
(that is γx ∼ γy iff there exists t ∈ R such that γx(t) = y) connecting two critical
points of consecutive index is finite. Moreover, when we consider an integral curve
from q to p where ind(p) = ind(q) + 1, it carries a coorientation induced by the
orientation of the stable manifold and the orientation of the integral curve. One
can move this coorientation from p to q along the integral curve and compare it
with the orientation of the stable manifold of q. This gives the sign which is carried
by the integral curve connecting q to p.

The Thom-Smale complex (Cf
∗ , ∂f) is defined as:

(1) Cf
k =

⊕
p∈Critk(f) Z.p,

(2) if p ∈ Critk(f) then ∂p =
∑

q∈Critk−1(f) n(p, q).q where n(p, q) is the al-

gebraic number of integral curves up to renormalization connecting q to
p.

Theorem 3.4. The homology of the Thom-Smale complex is equal to the singular
homology of M .

The proof of this theorem can be extracted from [13].

3.2. Elementary cobordisms. In this subsection, we will prove that we can real-
ize combinatorially the smooth Thom-Smale complex of any elementary cobordisms.
Thus, by cutting the manifold M into elementary cobordism we will obtain the first
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part of Theorem 3.1: there exists a bijection between the set of critical cells and
the set of critical points.

We will only consider C1-triangulation of manifolds for technical reasons (see
[21]). So, whenever we use the word triangulation it means C1-triangulation. A
triangulation of a n + 1-cobordism (Mn+1; M0, M1) is a triplet (T ; T0, T1) such
that T is a C1-triangulation of M , T0 (resp. T1) is a subcomplex of T which is a
C1-triangulation of M0 (resp. M1).

A combinatorial Morse vector field V on a triangulated n+1-cobordism (T ; T0, T1)
is a combinatorial Morse vector field on T such that no cells of T1 is critical and
every cell of T0 is critical.

Definition 3.5. Let V be a combinatorial Morse vector field on a triangulated
n + 1-cobordism (T ; T0, T1). V satisfies the ancestor’s property if given any n-cell
σ0 ∈ T0, there exists an n-cell σ1 ∈ T1 and a V -path starting at σ1 and ending at
σ0.

Remark. There is a key difference between integral curves up to renormalization
of a gradient v and V -paths. Given a point x ∈ M , there is only one solution
to the Cauchy problem. Moreover, the past and the future of a point pushed
along the flow is uniquely determined. A contrario given a cell σ, there are (in
general) many V -paths starting at σ. The ancestor’s property caracterises n + 1-
cobordism equipped with a combinatorial Morse vector field which knows its history
in maximal dimension (n, n + 1).

To prove that elementary cobordism can be realized , we need a combinatorial
description of being a deformation retract. Let X be a simplicial complex and σ
be an hyperface of τ which is free (that is σ is a face of no other cell). In this
case, we say that X collapses to X − (σ ∪ τ) by an elementary collapsing and write
X ց X − (σ ∪ τ). A collapsing is a finite sequence of such elementary collapsings.
In particular, a collapsing defines a matching on the Hasse diagram of the simplicial
complex. Moreover, one can prove that X − (σ ∪ τ) is a deformation retract of X .

Proposition 3.6. Let X be a simplicial complex and X0 be a subcomplex. Suppose
X ց X0. Then the matching given by this collapsing defines a combinatorial Morse
vector field whose set of critical cells is the set of cells of X0.

Proof. The only thing to check is that there is no non-stationary closed path. Since
elementary collapsings are performed by choosing a free hyperface of a cell, there
is no non-stationary closed path. �

Let ∆m = (a0, . . . , am) be the standard simplex of dimension m. The cartesian
product X = ∆m ×∆n is the cellular complex whose set of cells is {µ× ν} where
µ (resp. ν) is a cell of ∆m (resp. ∆n) (see [22]).

Proposition 3.7 ([17, Prop. 2.9]). The cartesian product ∆m×∆n has a simplicial
subdivision without any new vertex. More generally, the cartesian product of two
simplicial complexes has a simplicial subdivision without any new vertex.

Lemma 3.8. Let X1 = ∆k be the standard simplicial complex of dimension k and
X0 be a simplicial subdivision of X1. Consider the CW-complex which is equal to
the cartesian product ∆k ×∆1 and where we subdivide ∆k × {0} so that it is equal
to X0. Then, there exists a simplicial subdivision X of this CW-complex such that
X|∆×{i} = Xi for i ∈ {0, 1}.



10 ÉTIENNE GALLAIS

Moreover for i ∈ {0, 1} there exists a collapsing X ց Xi and the combinatorial
Morse vector field associated Vi satifies the ancestor’s property on (X ; Xi, Xi+1) (j
is the class in Z/2Z).

Proof. The simplicial subdivision and the collapsing is constructed by induction on
k. If k = 0, choose a new vertex in the interior of the simplex ∆0 × ∆1 and the
elementary collapsing ∆1 ց {i} gives the two collapsing ∆0 ×∆1 ց ∆0 × {i} for
i ∈ {0, 1}. In particular, the corresponding combinatorial Morse vector field satifies
the ancestor’s property.

Suppose the lemma is true until rank k − 1. At rank k, let Y be the corre-
sponding CW-complex and x be a point in the interior of the cell of dimension
k + 1. By induction hypothesis Y|∂∆k×∆1 admits a simplicial subdivision. There-
fore, Y|∂(∆k×∆1) admits a simplicial subdivision denoted Z (just add the simplexes

∆k × {i} which are equal to Xi for i ∈ {0, 1}). The simplicial subdivision X is
given by making the join of the simplicial subdivision of the boundary over {x}:
X = Z ∗ {x}.

Now, the collapsing X ց X0 is performed in three steps.

Step 1. The cell σ ∈ X1 of dimension k is the free hyperface of the cell σ ∗ {x}. We
do the following elementary collapsing:

(3.1) X ց X − (σ ∪ σ ∗ {x})

Step 2. By induction hypothesis, X|∂∆k×∆1 ց X|∂∆k×{0}. Performing the join over
x induces the following collapsing:

(3.2) X|∂∆k×∆1 ∗ {x} ց X|∂∆k×{0} ∗ {x}

Step 3. It remains to collapse X0 ∗ {x} on X0. Let y be a vertex in X0 which is a
vertex of the original simplex X1. Since X0 is a simplicial subdivision of
∆k, there exists a collapsing X0 ց {y}. This collapsing gives the following
collapsing:

(3.3) X0 ∗ {x} ց X0 ∪ ({y} × {0}) ∗ {x} ց X0

Combining collapsings (3.1), (3.2) and (3.3) gives X ց X0. The corresponding
combinatorial Morse vector field satisfies the ancestor’s property by construction.

The collapsing X ց X1 is constructed in the same way and conclusions of lemma
follows. �

Remark. The proof of lemma 3.8 is by induction. Let δ(j) be the j-th skeleton of ∆k.

Denote by X(j) (resp. X
(j)
i ) the simplicial complex X|δ(j)×∆1 (resp. (Xi)|δ(j)×∆1).

For i ∈ {0, 1}, the collapsing X ց Xi can be restricted to X(j) ց X
(j)
i for any

0 ≤ j ≤ k and the induced combinatorial Morse vector field satisfies the ancestor’s
property.

The next two lemmas are technical lemmas. The first one is the basic tool to
glue together triangulated cobordisms. The second one will be useful to construct
a combinatorial realization of a cobordism with exactly one critical point and is a
generalization of lemma 3.8.

Lemma 3.9. Let (T M
i , T N

i ) be two C1-triangulations of the pair (M, N) where Nk

is a submanifold (possibly with boundary) of Mn (k ≤ n). Then, there exists a
C1-triangulation T of (M × [0, 1], N × [0, 1]) such that

(T|M×{i}, T|N×{i}) = (T M
i , T N

i )
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for i ∈ {0, 1} and 2 collapsings

(3.4) T ց T M
0 ∪ T|N×[0,1]

(3.5) T|N×[0,1] ց T N
0

Moreover, the induced combinatorial Morse vector fields V satifies the ancestor’s
property on the cobordisms (T|N×[0,1]; T

N
0 , T N

1 ) and (T ; T M
0 , T M

1 ).

Proof. First, suppose N = ∅. Both triangulations T0 and T1 are C1-triangulation
of the same manifold therefore they have a common simplicial subdivision T 1/2 [21]
(this is where we use the fact that triangulations are C1-triangulations). Subdivide
∆1 = [0, 1] in two standard simplexes [0, 1/2] and [1/2, 1]. Lemma 3.8 gives a C1-
triangulation of M × [0, 1/2] (resp. M × [1/2, 1]) denoted T [0,1/2] (resp. T [1/2,1]).
The union T [0,1/2]∪T [1/2,1] is a triangulation of M × [0, 1] denoted T . By construc-
tion, T|M×{i} = T M

i for i ∈ {0, 1} and we have the two following collapsings:

T [1/2,1] ց T 1/2

T [0,1/2] ց T 0

Composing these two collapsings give the desired collapsing and lemma 3.8 give the
ancestor’s property.

In the case where the submanifold N is non-empty, the construction above gives
a triangulation T of the pair (M×[0, 1], N×[0, 1]) and we have (T|M×{i}, T|N×{i}) =

(T M
i , T N

i ) for i ∈ {0, 1}. The collapsing T ց T0 can be restricted to T|N×[0,1]. We
remove from the matching edges corresponding to TN×[0,1] ց TN×{0} to obtain the
desired collapsing. Again lemma 3.8 give the ancestor’s property. �

Lemma 3.10. Let (m, n) be a pair of positive integers. Let ∆n = (a0, . . . , an) be
the standard simplex of dimension n and δn−1 = (â0, . . . , an) be the hyperface which
does not contain a0. In particular ∆n = {a0} ∗ δn−1. Then there exists a simplicial
subdivision X of the cartesian product ∆m ×∆n such that

• X|∆m×δn−1 is a simplicial subdivision without any new vertex given by
lemma 3.7,
• X|∆m×{a0} = ∆m,
• X ց X|(∂∆m×∆n)∪(∆m×{a0}).

Moreover, for each simplex ∆1
i = (a0, ai) (i 6= 0),

• X|∆m×∆1
i

coincides with the simplicial complex given by lemma 3.8,
• the collapsing X ց X|(∂∆m×∆n)∪(∆m×{a0}) restricted to X|∆m×∆1

i
coincides

with the collapsing of lemma 3.8,
• the induced combinatorial Morse vector field satisfies the ancestor’s property

on (X|∆m×∆1
i
; X|∆m×{a0}, X|∆m×{ai}).

Proof. The proof is by induction on k = m + n > 0. At rank k = 1 there are two
cases. The case m = 0 and n = 1 is trivial: there is nothing to prove. The case
m = 1 and n = 0 is given by lemma 3.8.

Suppose the lemma is true until rank k − 1. Let (m, n) ∈ N
2 be such that

m + n = k. We will first subdivide the boundary of ∆m ×∆n. Since

∂(∆m ×∆n) = (∂∆m ×∆n) ∪ (∆m × ∂∆n)
= (∂∆m ×∆n) ∪ (∆m × ({a0} ∗ ∂δn−1)) ∪ (∆m × δn−1)
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we define for each cellular complex above a simplicial subdivision.

• The simplicial subdivision of ∆m × δn−1 is given by Proposition 3.7: in
particular, we do not create any new vertex.
• The induction hypothesis gives a simplicial subdivision of

(∂∆m × ({a0} ∗ δn−1)) ∪ (∆m × ({a0} ∗ ∂δn−1)).

Let x be a point which is in the interior of the (m + n)-cell of ∆m ×∆n. The
simplicial subdivision X of ∆m ×∆n is given by making the cone over {x} of the
simplicial subdivision of the boundary of ∆m ×∆n.

By construction we have the following collapsing

(3.6) X|{x}∗(∆m×δn−1) ց X|{x}∗∂(∆m×δn−1)

which is realized by a downward induction on the dimension of cells of ∆m×(δn−1−
∂δn−1): every cell σ ∈ ∆m × (δn−1 − ∂δn−1) is a free hyperface of {x} ∗ σ.

The induction hypothesis says that there exits a simplicial subdivision Y of
∆u ×∆v such that Y ց Y|(∂∆u×∆v)∪(∆u×{a0}) whenever u + v < k (a0 is the first
vertex of ∆v). In fact, we have also the following collapsing since the construction
is made by induction:

Y ց Y|∆u×{a0}

Therefore, we have the following collapsings

(3.7) X|∂∆m×({a0}∗δn−1) ց X|∂∆m×{a0}

(3.8) X|∆m×{a0}∗∂δn−1 ց X|∆m×{a0}

Collapsing (3.6) followed by the cone over x of the collapsing (3.7) and the cone
over x of the collapsing (3.8) give the following collapsing:

X ց X|(∂∆m×∆n)∪({x}∗(∆m×{a0}))

Finally there exists a collapsing {x} ∗ (∆m × {a0}) ց ∆m × {a0} (by choosing a
vertex y ∈ ∆m and considering the collapsing ∆m ց {y}) which gives the result.

In case n = 1, this construction is the same as the one of lemma 3.8. �

Theorem 3.11. Let f be a generic Morse function on a cobordism (M ; M0, M1)
with exactly one critical point p of index k. Then, there exists a C1-triangulation
of the cobordism (T ; T0, T1) such that

(1) the stable manifold of p is a subcomplex of T denoted T s
p and T ց T s

p ∪T0,
(2) there is a cell σp of dimension ind(p) such that p ∈ σp ⊂ T s

p and T s
p −σp ց

(T s
p ∩ T0)

In particular, the combinatorial Morse vector field given by these two collapsings
has exactly one critical cell σp outside cells of T0.

Proof. Suppose a Morse–Smale gradient v for f is fixed. Let W s(p, v) be the cor-
responding stable manifold of p. We follow the proof of Milnor which proves that
M0 ∪W s(p, v) is a deformation retract of M (see the proof of Theorem 3.14 [12]).
Let C be a (small enough) tubular neighbourhood of W s(p, v). The original proof
consists of two steps. First, M0 ∪C is a deformation retract of M : this is done by
pushing along the gradient lines of v. Then, M0∪W s(p, v) is a deformation retract
of M0 ∪ C. We prove the theorem in two steps.
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First step: construction of a good triangulation of C.

The tubular neighbourhood C is diffeomorphic to Dk × Dn−k (for i ∈ N
∗, Di

is the unit disk in R
i). Thanks to this diffeomorphism, the stable manifold is

identified with Dk × {0} and the adherence of the unstable manifold is identified
with {0}×Dn−k. Triangulate the stable manifold by the standard simplex ∆k and
denote σp its interior (so T s

p = σp).

We triangulate Dn−k by choosing an arbitrary triangulation of ∂Dn−k = Sn−k−1

and considering Dn−k as the cone over its center {0}: this gives a triangulation of
Dn−k. The triangulation of σp × Dn−k is the following one: choose a simplicial
subdivision of σp×∂Dn−k without any new vertex given by proposition 3.7. Then,
triangulate the cartesian product σp×Dn−k with the triangulation of σp× ∂Dn−k

already fixed thanks to lemma 3.10:

• for each simplex ν ∈ ∂Dn−k, the lemma constructs a triangulation of σp ×
({0} ∗ ν),
• for each pair of simplexes (ν0, ν1) ∈ (∂Dn−k)2, the simplicial subidivisions

of σp × ({0} ∗ νi) coincides over σp × ({0} ∗ (ν0 ∩ ν1)).

Let T C be the triangulation of σp ×Dn−k constructed above. By construction,
we have the following collapsing

(3.9) T C ց T s
p ∪ T C

|∂σp×Dn−k

Second step: combinatorial realization of the first retraction.

Let T0 be a triangulation of M0 which coincides over M0 ∩ C with the triangula-
tion above. Consider the following submanifolds with boundary: ∂C− = M0 ∩ C,

MC
0 = M0 − Int(∂C−) and ∂C+ = ∂C − Int(∂C−). Let V be ∂C− ∩ ∂C+ : it is

diffeomorphic to ∂Dk × ∂Dn−k = Sk−1 × Sn−k−1 a manifold of dimension n− 2.
The manifold (∂C+, V ) is a manifold with boundary which is triangulated. The

gradient lines of v starting at any point of this manifold are transverse to it: we
push along the gradient lines of v the triangulation until it meets M1. It gives a

triangulation of (M
∂C+

1 , MV
1 ) which is a submanifold of M1 with boundary. This

triangulation is C1 since pushing along the flow in this case is a diffeomorphism.
Then, we get a product cobordism (with boundary) with triangulation of the top
and the bottom already fixed: lemma 3.9 gives a triangulation of this cobordism
with the desired collapsing.

The same construction holds for (MC
0 , V ) (we suppose that the triangulation

of V × [0, 1] is the same as the one given above). Let T be the corresponding
triangulation of M . Then, we have the following collapsing

(3.10) T ց T0 ∪ T C

Conclusion. The composition of collapsings (3.10) and (3.9) give

T ց T0 ∪ T s
p

Since T s
p = σp we get the following collapsing: T s

p−σp ց ∂T s
p . Thus a combinatorial

Morse vector field which satifies the conclusion of the theorem has been constructed.
Nevertheless, note that the triangulation above in not C1: the triangulation of the
stable manifold done by ∆k gives only a topological triangulation. To correct this,
push the level M0 (denote this level M ′

0) along the gradient line a little inside
the cobordism so that the stable manifold can be C1-triangulated by the standard
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simplex. Then, we endow the cobordism whose boundary is M0 ∪M ′
0 with a C1-

triangulation given by Lemma 3.8. �

Corollary 3.12. Let f be a generic Morse function on a Riemannian closed man-
ifold M . Then, there exists T a C1-triangulation of M and a combinatorial Morse
vector field V defined on T such that for every k ∈ N the set of critical poins of
index k is in bijection with the set of critical cells of dimension k.

Proof. Since the Morse function f is generic, we have that for any critical points
p 6= q, f(p) 6= f(q). Let a1 < a2 < . . . < al be the ordered set of critical values of
f . For each k ∈ {1, . . . , l}, let εk > 0 be small enough so that the cobordism

(Mak ; Mak

− , Mak

+ ) =
(
f−1([ak − εk, ak + εk]); f−1(ak − εk), f−1(ak + εk)

)

is a cobordism with exactly one critical point. Define for k ∈ {1, . . . , l − 1} the
product cobordisms

(M bk ; M
ak−1

+ , Mak

− ) =
(
f−1([ak−1 +εk−1, ak−εk]); f

−1(ak−1 +εk−1), f
−1(ak−εk)

)

The manifold M is equal to:

Ma1 ∪M b1 ∪ . . . ∪M bl−1 ∪Mal

Theorem 3.11 gives for k = 1, . . . , l a combinatorial realization of the cobordism
(Mak ; Mak

− , Mak

+ ). Lemma 3.9 gives a combinatorial realization of each cobordism

(M bk ; M
ak−1

+ , Mak

− ) for k = 1, . . . , l− 1 (with the convention that Ma0 = ∅). Then,
we construct a C1-triangulation of M and define on it a combinatorial vector field.
It is in fact a combinatorial Morse vector field since along V -paths we only can go
down and the conclusion of the corollary follows. �

3.3. Proof of Theorem 3.1. Since f is generic, we use the Rearrangement The-
orem [13, Theorem 4.8] to consider g a generic self-indexed Morse function such
that

• the set of critical points of index k of g coincides with the one of f for every
k ∈ N,
• for each pair of critical points p and q of successive index, the set of integral

curves up to renormalization connecting q to p for g is in bijection with the
corresponding set for f (we suppose here that Morse–Smale gradients have
been chosen for f and for g),
• this bijection induces an isomorphism between the Thom-Smale complexes

of f and g (we suppose that orientations of stable manifolds have been
chosen).

Thus, we suppose that f : Mn → R is a generic self-indexed Morse function i.e.
for every k ∈ N, for every p ∈ Critk(f), f(p) = k. In particular f(M) = [0, n]. We
suppose whenever we need it that a Morse–Smale gradient v for f is given.

One more time, we will cut M in cobordisms (almost) elementary and control
combinatorially the behavior of V -paths. For i ∈ {0, . . . , n} choose 0 < εi < 1/2.
For i ∈ {0, . . . , n}, let (M i; M i

−,, M
i
+) be the cobordism

(f−1([i− εi, i + εi]); f
−1(i− εi), f

−1(i + εi))

Similarly, define (M i,i+1; M i
+, M i+1

− ) the product cobordism equal to

(f−1([i + εi, i + 1− εi+1]); M
i
+, M i+1

− )
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Then
M = M0 ∪M0,1 ∪M1 ∪ . . . ∪Mn−1,n ∪Mn

For all i ∈ {0, . . . , n}, (M i; M i
−, M i

+) is a cobordism with |Criti(f)| critical points
of index i (maybe there is no critical point). The triangulation of M is constructed
in the following way:

(1) triangulation of cobordisms (M i; M i
−, M i

+) for all i ∈ {0, . . . , n} given by
Theorem 3.11,

(2) triangulation of cobordisms (M i,i+1; M i
+, M i+1

− ) for all i ∈ {0, . . . , n} given
by lemma 3.9.

Remark. Theorem 3.11 is proved in the case where there is exactly one critical
point. This proof extends directly to the case of k critical points of the same index
under the condition that tubular neighbourhoods of stable manifolds are chosen to
be disjoints one from each other.

Let p be a critical point of index k and C(p) be a tubular neighbourhood (small
enough) of the stable manifold of p in the corresponding cobordism. Denote ∂C−(p)
(resp. ∂C+(p)) the submanifold diffeomorphic to ∂Dk×Dn−k (resp. Dk×∂Dn−k).
Denote σp the critical cell of dimension k corresponding to p (see Theorem 3.11).

Hypothesis on the triangulation of ∂C+(p).

(1) stable manifolds of critical points of index k + 1 intersect ∂C+(p) along a
subcomplex of dimension k and intersect σp × ∂Dn−k along cells of dimen-
sion k of the type σ × {ai} where ai is a vertex of ∂Dn−k,

(2) each integral curve up to renormalization γ from p to q ∈ Critk+1(f) in-
tersects ∂C+(p) in the interior of a k-cell σγ ∈ σp × ∂Dn−k,

(3) given two distinct integral curves up to renormalization γ and γ′ from p to
critical points of index k + 1 then σγ 6= σγ′ .

Remark. The first hypothesis is satisfied by choosing small enough εk and since
stable and unstable manifolds are transverse. For such a small enough εk the last
hypothesis will be satisfied. The second hypothesis is automatically satisfied if the
first hypothesis is satisfied.

In each triangulated cobordism (Mk; Mk
−, Mk

+), stable manifolds of critical points
of index k are subcomplexes. Following notations of Theorem 3.11, we have the
following collapsing

T s
p − σp ց ∂T s

p

Using lemma 3.9, we obtain the following collapsing

Mk−1,k ցMk−1
+

which can be restricted to the stable manifold of p since it is a submanifold of Mk
−.

With respect to the stable manifold, the combinatorial Morse vector field satisfies
the ancestor’s property.

Let γ be an integral curve of v up to renormalization from q ∈ Critk−1(f) to p. It
intersects ∂C+(q) in a point which by hypothesis belongs to a cell σq×{aγ}. There
is a 1− 1 correspondance between the set of integral curves up to renormalization
from q to p (with ind(p) = ind(q) + 1) and V -paths from hyperfaces of σp to σq

given by γ ←→ σγ .
From σγ , there is a unique V -path ending at σq. Since V satisfies the ancestor’s

property in the stable manifold and σγ is a cell of dimension k−1 there is an ancestor
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of σγ which is an hyperface of σp. This gives a V -path between an hyperface of σp

to σq which corresponds to γ.
We endow each critical cell with the orientation of the corresponding stable

manifold and every other cell is endowed with an arbitrary orientation.
By construction, the multiplicity of V -path coincides with the sign of the corre-

sponding gradient path and the theorem follows.

4. Complete matchings and Euler structures

In this section, we use Theorem 3.1 to prove the following: given a closed oriented
3-manifold and an Euler structure on it, there is a triangulation such that a complete
matching on the Hasse diagram of a triangulation realizes this Euler structure.

4.1. Complete matchings.

Definition 4.1. A complete matching on a graph is a matching such that every
vertex belongs to an edge of the matching.

As a corollary of theorem 3.1 we obtain:

Corollary 4.2. Let M be a closed smooth manifold of dimension 3. Then there
exits a C1-triangulation of M such that a complete matching on its Hasse diagram
exists.

Proof. Since M is a closed smooth manifold of dimension 3 we have χ(M) = 0
where χ denotes the Euler characteristic. Take a pointed Heegaard splitting of M
(Σg; α = (α1, . . . , αg), β = (β1, . . . , βg); z) of genus g so that there is an n-uplets of
intersection points x between the α’s and the β’s which defines a bijection between
the sets α and β. It is always possible to find such a pointed Heegaard splitting

after a finite number of isotopies of the α’s and β’s curves (see [7]). The Morse
function f corresponding to this Heegaard splitting has one critical point of index
0 and 3 and g critical points of index 1 and 2. Denote the set of index 1 (resp. 2)
critical points by {qi}

g
i=1 (resp. {pi}

g
i=1) where qi (resp. pi) corresponds to αi (resp.

βi) for all i ∈ {1, . . . , g}. The n-uplet of intersection points x = (x1,i1 , . . . , xn,in
)

gives for each j ∈ {1, . . . , g} an integral curve connecting qj to pij
. The point z

gives an integral curve connecting the index 0 critical point to the index 3 critical
point.

Take a combinatorial realization (T, V ) as given by Theorem 3.1 of (M, f). Then
to each point xi,ji

correspond now a V -path γ from an hyperface of the critical cell
σpij

to σqi
: we change the matching along this path so that both τpij

and σqi
are

no more critical cells. If γ : σ0, . . . , σr = σqi
, then do the following:

• match σ0 with τ ,
• for every i ∈ {1, . . . , r} match σi with V (σi−1).

Now suuppose that z belongs to the interior of a 2-cell τz (if not, subdivide T ).
Denote by ς the critical cell of dimension 3 and by υ the critical cell of dimension
0. There is by construction a V -path γ : τ0, . . . , τr = τz from an hyperface of ς to
τz since z is in the stable manifold of the index 3 critical point. We modify the
matching along γ this way:

• match τ0 with ς,
• for every i ∈ {1, . . . , r} match τi with V (τi−1).
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In fact, it is no more a matching since τz belongs to two edges of the matching.
Nevertheless, τz belongs to the unstable manifold of υ the critical cell of dimen-

sion 0. By the construction done in Theorem 3.1, the tubular neighbourhood of
the critical point of index 0 is equal to D3 = ∂D3 ∗ {0}. The triangulation of
this tubular neighbourhood is given by making the cone over {0} = υ of a trian-
gulation of ∂D3. We modify the matching as follows. Let ν denotes the critical
0-cell and suppose τ z ∗ ν is the tetrahedron ABCD where A corresponds to ν. The
collapsing ∂D3 ∗ {0} ց {0} gives in particular the following matching on ABCD:
(BCD, ABCD), (BC, ABC) and (B, AB) (A is critical). Modify the matching by
(A, AB), (B, BC) and (ABC, ABCD). Then, BCD (which is τz) is critical. This
gives a complete matching over T . �

4.2. Euler structures and homologous vector fields. Throughout this sub-
section we use conventions of Turaev [20].

4.2.1. Combinatorial Euler structures. Complete matchings have an interpretation
as Euler chains. First, we recall Euler structures as defined by Turaev [20]. Let
(M, ∂M) be a smooth manifold of dimension n and T be a C1-triangulation of M .

Suppose ∂M = ∂0M
∐

∂1M be such that χ(M, ∂0M) = 0 and let Ti be equal to
T|∂iM for i ∈ {0, 1}.

Denote K the set of cells of T and Ki the set of cells of Ti for i ∈ {0, 1}. For each
cell σ ∈ K, let sgn(σ) be equal to (−1)dim(σ) and pick aσ a point in the interior
of σ. An Euler chain in (T, T0) is a one-dimensional singular chain ξ in T with
the boundary of the form

∑
σ∈K−K0

sgn(σ)aσ. Since χ(M, ∂0M) = 0, the set of
Euler chains is non-empty. Given two Euler chains ξ and η, the difference ξ − η is
a cycle. If ξ − η = 0 ∈ H1(M) then we say that ξ and η are homologous. A class
of homologous Euler chains in (T, T0) is called a combinatorial Euler structure on
(T, T0). Let Eul(T, T0) be the set of Euler structures on (T, T0). If ξ is an Euler
chain, denote by [ξ] its class as a combinatorial Euler structure. Euler chains behave
well with respect to the subdivision of a triangulation: this allows us to consider
the set Eul(M, ∂0M) of Euler structures on (M, ∂0M). Taking ξ an element of this
set means choosing a triangulation (T, T0) of (M, ∂0M) and considering an Euler
chain on (T, T0).

Remark. Let C be a complete matching on a C1-triangulation (T, T0) of (M, ∂0M).
Then it defines an Euler chain [ξc] ∈ Eul(T, T0): orient every edge of the matching
from odd dimensional cells to even dimensional cells. Complete matchings are
special Euler chains that do not pass through a cell more than one time.

4.2.2. Homologous vector fields. By a vector field on (M, ∂0M) we mean (except in
clearly mentioned case) a non-singular continuous vector field of tangent vectors on
M directed into M on ∂0M and directed outwards on ∂1M . Since χ(M, ∂0M) = 0,
there exists such vector fields on (M, ∂0M).

Vector fields u and v on (M, ∂0M) are called homologous if for some closed ball
B ⊂ Int(M) the restriction of the fields u and v are homotopic in the class of
non-singular vector fields on M − Int(B) directed into M on ∂0M , outwards on
∂1M , and arbitrarily on ∂B. Denote by vect(M, ∂0M) the set of homologous vector
fields on (M, ∂0M) and the class of a vector field u is denoted by [u].

4.2.3. The canonical bijection. Turaev proved the following:
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Theorem 4.3 (Turaev [20]). Let (M, ∂0M) be a smooth pair such that dim(M) ≥ 2.
For each C1-triangulation (T, T0) of the pair (M, ∂0M) there exists a bijection

ρ : Eul(T, T0)→ vect(M, ∂0M)

Remark. In fact, this bijection is an H1(T )-isomorphism, but we’ll make no use of
it.

Let us describe the construction of Turaev in the case ∂M = ∅. Let T be a
C1-triangulation of M and T ′ be the first barycentric subdivision of T . We recall
the definition of the vector field F1 with singularities on M . For a simplex a of the
triangulation T , let a denotes its barycenter. If A =< a0, a1, . . . , ap > is a simplex
of the triangulation T ′, where a0 < a1 < . . . < ap are simplexes of T , then, at a
point x ∈ Int(A),

F1(x) =
∑

0≤i<j≤p

λi(x)λj(x)(aj − x)

Here λ0, λ1, . . . , λp are barycentric coordinates in A and aj − x is the image of the
tangent vector aj − x ∈ TxA via the homeomorphism between T and M .

Every barycenter of each cell of T is a singular point of F1. LetM be a matching
on the Hasse diagram of T : in particular, every edge of the matching connects two
singular points. Turaev proved that the index of F1 in a neighbourhood of every
edge of the Hasse diagram (thought as embedded in M in the obvious way) is
equal to zero. Thus, if we think about combinatorial (not necessarily Morse) vector
field on T as a Matching on its Hasse diagram, it encodes a desingularization of
the vector field F1 (where critical points of F1 remain if the corresponding cell is
critical). This can be done in the case of Euler chain. More precisely, if ξ is an
Euler chain, let Fξ denote an extension of F1 to a non-singular vector field. Turaev
proved that the homotopy [Fξ] ∈ V ect(M) depends only on [ξ] ∈ Eul(T ). The map
ρ is defined by ρ([ξ]) = [Fξ].

In the general case where ξ corresponds to a matching (instead of a complete
matching), we still denote by ρ the map which assigns to ξ the vector field Fξ given
by the construction above.

We refer to [20] in the case ∂M 6= ∅.

4.3. M-realization of Euler structures.

Definition 4.4. Let [ξ] ∈ Eul(M, ∂0M). We say that [ξ] has a M-realization if
there exists a C1-triangulation T of (M, ∂M) and a matching η on the corresponding
Hasse diagram such that [η] = [ξ].

Theorem 4.5. Any Euler structure on a smooth oriented closed riemannian 3-
manifold has an M-realization.

This theorem is a step toward Heegaard–Floer homology [14, 15]. Recall the
first steps of the construction of Heegaard–Floer homology for closed, oriented 3-
manifolds. Choose a pointed Heegaard splitting M = U0 ∪Σ U1 (that is choose a
Morse function) and fix a Spinc-structure on M given by an n-uplets of intersection
points between the α’s and the β’s. Turaev proved that Spinc-structures are in bi-
jection with Euler structures (and so the set vect(M)). Thus, Theorem 4.5 together
with Theorem 3.1 give for a closed oriented 3-manifold a combinatorial realization
of both the Spinc-structure and the pointed Heegaard splitting. The hard part
remaining is to understand how holomorphic disks can be combinatorially realized.

The following two lemmas will be useful to prove Theorem 4.5.
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Lemma 4.6. Let (M×[0, 1]; M×{0}, M×{1}) be a smooth n+1 product cobordism
such that Ti is a C1-triangulation of M × {i} for i ∈ {0, 1}. Let (T ; T0, T1) be any
triangulation given by lemma 3.9 and [ξ] ∈ Eul(M × [0, 1], M × {0}) the Euler
structure given by the combinatorial Morse vector field induced by T ց T0. Then
ρ([ξ]) ∈ vect(M × [0, 1], M ×{0}) is homologous to the vector field v : M × [0, 1]→
T (M × [0, 1]) defined by v(x, t) = ((x, t), dt).

Proof. The construction of the collapsing T ց T0 defines a combinatorial Morse
vector field pointing downwards. Let ξ ∈ Eul(T, T0) be the corresponding Euler
chain. The map ρ : Eul(M × [0, 1], M × {0})→ vect(M × [0, 1], M × {0}) sends ξ
to a non-singular vector field on (M × [0, 1], M × {0}) which is, by definition of ρ,
by the construction of the triangulation and by the definition of the combinatorial
Morse vector field, homologous to the desired vector field. �

Lemma 4.7. Let f be a generic Morse function on a cobordism (M ; M0, M1) with
exactly one critical point p of index k and (T ; T0, T1) be a C1-triangulation of the
cobordism (T ; T0, T1) given by Theorem 3.11. Let ξ be the one singular chain corre-
sponding to the matching given by the combinatorial Morse vector field on T . Then
ρ(ξ) is homologous to the chosen Morse–Smale gradient of f outside a small ball
neighbourhood of the critical point p. Moreover, the index of ρ(ξ) at p is equal to k.

Proof. We follow notations of Theorem 3.11. The two collapsings T ց T s
p ∪T0 and

T s
p −σp ց (T s

p ∩T0) define a combinatorial Morse vector field with only one critical
cell. Let ξ be the corresponding one singular chain. Thus, the barycenter of this
cell (which is p) must be a critical point of ρ(ξ). It remains to check that outside
a small neighbourhood of p, ρ(ξ) is homologous to the Morse–Smale gradient v.
Since outside the tubular neighbourhood C of the stable manifold the triangulation
is constructed by pushing it along gradient lines of v, we can use lemma 4.6 to see
that ρ(ξ) is homologous to v outside the tubular neighbourhood C of the stable
manifold. In a small ball neighbourhood (which is a Morse chart at p) of the
critical point p, the vector field F1 coincides with the Morse–Smale gradient v.
Since T C ց σp ∪ (T0 ∩ T C), ρ(ξ) is homologous to v outside the Morse chart of p .
The fact that the index of ρ(ξ) at p is equal to k is a consequence of the definition
of F1. �

Proof of Theorem 4.5. We apply Theorem 3.1 to obtain a C1-triangulation of the
3-manifold and a combinatorial Morse vector field which realizes combinatorially
the Thom-Smale complex. Then, the construction done in corollary 4.2 defines
a matching which in turns defines an Euler chain ξ. The map ρ sends ξ to a
non-singular vector field which is by construction homologous to the Morse–Smale
gradient of f . Thus, to prove the theorem for any [v] ∈ vect(M), it remains to
find a pointed Heegaard splitting (Σg; α = (α1, . . . , αg), β = (β1, . . . , βg); z) of the
3-manifold M such that an n-uplet of intersection points x corresponds to a given
[v] ∈ vect(M). Finally, [15, Lemma 5.2] tells that any [v] ∈ vect(M) can be realized
in such a way. This concludes the proof. �
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