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POSITIVE DEGREE AND ARITHMETIC BIGNESS

We establish, for a generically big Hermitian line bundle, the convergence of truncated Harder-Narasimhan polygons and the uniform continuity of the limit. As applications, we prove a conjecture of Moriwaki asserting that the arithmetic volume function is actually a limit instead of a sup-limit, and we show how to compute the asymptotic polygon of a Hermitian line bundle, by using the arithmetic volume function.

Introduction

Let K be a number field and O K be its integer ring. Let X be a projective arithmetic variety of total dimension d over Spec O K . For any Hermitian line bundle L on X , the arithmetic volume of L introduced by Moriwaki (see [START_REF]Continuity of volumes on arithmetic varieties[END_REF]) is [START_REF] Abbes | Bouche -Théorème de Hilbert-Samuel "arithmétique[END_REF] vol(L) = lim sup n→∞ h 0 (X , L ⊗n )

n d /d! ,
where h 0 (X , L ⊗n ) := log #{s ∈ H 0 (X , L ⊗n ) | ∀σ : K → C, s σ,sup ≤ 1}. The Hermitian line bundle L is said to be arithmetically big if vol(L) > 0. The notion of arithmetic bigness had been firstly introduced by Moriwaki [START_REF] Moriwaki | Arithmetic height functions over finitely generated fields[END_REF] §2 in a different form.

Recently he himself ( [START_REF]Continuity of volumes on arithmetic varieties[END_REF] Theorem 4.5) and Yuan ([25] Corollary 2.4) have proved that the arithmetic bigness in [START_REF] Moriwaki | Arithmetic height functions over finitely generated fields[END_REF] is actually equivalent to the strict positivity of the arithmetic volume function [START_REF] Abbes | Bouche -Théorème de Hilbert-Samuel "arithmétique[END_REF]. In [START_REF]Continuity of volumes on arithmetic varieties[END_REF], Moriwaki has proved the continuity of (1) with respect to L and then deduced some comparisons to arithmetic intersection numbers (loc. cit. Theorem 6.2). Note that the volume function ( 1) is an arithmetic analogue of the classical volume function for a line bundle on a projective variety: if L is a line bundle on a projective variety X of dimension d defined over a field k, the volume of L is [START_REF] Berman | Boucksom -Capacities and weighted volumes of line bundles[END_REF] vol(L) := lim sup

n→∞ rk k H 0 (X, L ⊗n ) n d /d! .
Similarly, L is said to be big if vol(L) > 0. After Fujita's approximation theorem (see [START_REF] Fujita | Approximating Zariski decomposition of big line bundles[END_REF], and [START_REF] Takagi | Fujita's approximation theorem in positive characteristics[END_REF] for positive characteristic case), the sup-limit in (2) is in fact a limit (see [START_REF] Lazarsfeld | Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] 11.4.7).

During a presentation at Institut de Mathématiques de Jussieu, Moriwaki has conjectured that, in arithmetic case, the sequence h 0 (X , L)/n d n≥1 also converges. In other words, one has vol(L) = lim n→∞ h 0 (X , L ⊗n )

n d /d! .
The strategy proposed by him is to develop an analogue of Fujita's approximation theorem in arithmetic setting (see [START_REF]Continuity of volumes on arithmetic varieties[END_REF] Remark 5.7).

In this article, we prove Moriwaki's conjecture by establishing a convergence result of Harder-Narasimhan polygons (Theorem 4.2), which is a generalization of the author's previous work [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] where the main tool is the Harder-Narasimhan filtration (indexed by R) of a Hermitian vector bundle on Spec O K and its associated Borel measure. To apply the convergence of polygons, the main idea is to compare h 0 (E), defined as the logarithm of the number of effective points in E, to the positive degree deg + (E), which is the maximal value of the Harder-Narasimhan polygon of E.

Here E denotes a Hermitian vector bundle on Spec O K . We show that the arithmetic volume function coincides with the limit of normalized positive degrees and therefore prove the conjecture.

In [START_REF]Continuity of volumes on arithmetic varieties[END_REF] and [START_REF] Yuan | Big line bundles over arithmetic varieties[END_REF], the important (analytical) technic used by both authors is the estimation of the distortion function, which has already appeared in [START_REF] Abbes | Bouche -Théorème de Hilbert-Samuel "arithmétique[END_REF]. The approach in the present work, which is similar to that in [START_REF] Rumely | Existence of the sectional capacity[END_REF], relies on purely algebraic arguments. We also establish an explicit link between the volume function and some geometric invariants of L such as asymptotic slopes, which permits us to prove that L is big if and only if the norm of the smallest non-zero section of L ⊗n decreases exponentially when n tends to infinity. This result is analogous to Theorem 4.5 of [START_REF]Continuity of volumes on arithmetic varieties[END_REF] or Corollary 2.4 (1)⇔(4) of [START_REF] Yuan | Big line bundles over arithmetic varieties[END_REF] except that we avoid using analytical methods.

In our approach, the arithmetic volume function can be interpreted as the limit of maximal values of Harder-Narasimhan polygons. Inspired by Moriwaki's work [START_REF]Continuity of volumes on arithmetic varieties[END_REF], we shall establish the uniform continuity for limit of truncated Harder-Narasimhan polygons (Theorem 6.4). This result refines loc. cit. Theorem 5.4. Furthermore, we show that the asymptotic polygon can be calculated from the volume function of the Hermitian line bundle twisted by pull-backs of Hermitian line bundles on Spec O K .

Our method works also in function field case. It establishes an explicit link between the geometric volume function and some classical geometry such as semistability and Harder-Narasimhan filtration. This generalizes for example a work of Wolfe [START_REF] Wolfe | Asymptotic invariants of graded systems of ideals and linear systems on projective bundles[END_REF] (see also [START_REF] Ein | Popa -Asymptotic invariants of line bundles[END_REF] Example 2.12) concerning volume function on ruled varieties over curves. Moreover, recent results in [START_REF]Boucksom -On the volume of a line bundle[END_REF][START_REF] Boucksom | Differentiability of volumes of divisors and a problem of Teissier[END_REF][START_REF] Berman | Boucksom -Capacities and weighted volumes of line bundles[END_REF] show that at least in function field case, the asymptotic polygon is "differentiable" with respect to the line bundle, and there may be a "measure-valued intersection product" from which we recover arithmetic invariants by integration.

The rest of this article is organized as follows. We fist recall some notation in Arakelov geometry in the second section. In the third section, we introduce the notion of positive degree for a Hermitian vector bundle on Spec O K and we compare it to the logarithm of the number of effective elements. The main tool is the Riemann-Roch inequality on Spec O K due to Gillet and Soulé [START_REF] Gillet | On the number of lattice points in convex symmetric bodies and their duals[END_REF]. In the fourth section, we establish the convergence of the measures associated to suitably filtered section algebra of a big line bundle (Theorem 4.2). We show in the fifth section that the arithmetic bigness of L implies the classical one of L K , which is a generalization of a result of Yuan [START_REF] Yuan | Big line bundles over arithmetic varieties[END_REF]. By the convergence result in the fourth section, we are able to prove that the volume of L coincides with the limit of normalized positive degrees, and therefore the sup-limit in (1) is in fact a limit (Theorem 5.2). Here we also need the comparison result in the third section. Finally, we prove that the arithmetic bigness is equivalent to the positivity of asymptotic maximal slope (Theorem 5.5). In the sixth section, we establish the continuity of the limit of truncated polygons. Then we show in the seventh section how to compute the asymptotic polygon.
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Notation and reminders

Throughout this article, we fix a number field K and denote by O K its algebraic integer ring, and by ∆ K its discriminant. By (projective) arithmetic variety we mean an integral projective flat O K -scheme.

2.1. Hermitian vector bundles. -If X is an arithmetic variety, one calls Hermitian vector bundle on X any pair E = (E, ( • σ ) σ:K→C ) where E is a locally free O X -module, and for any embedding σ : K → C, • σ is a continuous Hermitian norm on E σ,C . One requires in addition that the metrics ( • σ ) σ:K→C are invariant by the action of complex conjugation. The rank of E is just that of E. If rk E = 1, one says that E is a Hermitian line bundle. Note that Spec O K is itself an arithmetic variety. A Hermitian vector bundle on Spec O K is just a projective O K -module equipped with Hermitian norms which are invariant under complex conjugation. Let a be a real number. Denote by L a the Hermitian line bundle

(3) L a := (O K , ( • σ,a ) σ:K→C ),
where 1 σ,a = e -a , 1 being the unit of O K .

2.2. Arakelov degree, slope and Harder-Narasimhan polygon. -Several invariants are naturally defined for Hermitian vector bundles on Spec O K , notably the Arakelov degree, which leads to other arithmetic invariants (cf. [START_REF] Bost | Périodes et isogénies des variétés abéliennes sur les corps de nombres (d'après D. Masser et G. Wüstholz)[END_REF]). If E is a Hermitian vector bundle of rank r on Spec O K , the Arakelov degree of E is defined as the real number

deg(E) := log # E/(O K s 1 + • • • + O K s r ) - 1 2 σ:K→C log det s i , s j σ 1≤i,j≤r ,
where (s i ) 1≤i≤r is an element in E r which forms a basis of E K . This definition does not depend on the choice of (s i ) 1≤i≤r . If E is non-zero, the slope of E is defined to be the quotient µ(E) := deg(E)/ rk E. The maximal slope of E is the maximal value of slopes of all non-zero Hermitian subbundles of E. The minimal slope of E is the minimal value of slopes of all non-zero Hermitian quotients of E. We say that E is semistable if µ(E) = µ max (E).

Recall that the Harder-Narasimhan polygon P E is by definition the concave function defined on [0, rk E] whose graph is the convex hull of points of the form (rk F, deg(F )), where F runs over all Hermitian subbundles of E. By works of Stuhler [START_REF] Stuhler | Eine Bemerkung zur Reduktionstheorie quadratischen Formen[END_REF] and Grayson [START_REF]Grayson -Reduction theory using semistability[END_REF], this polygon can be determined from the Harder-Narasimhan flag of E, which is the only flag

(4) E = E 0 ⊃ E 1 ⊃ • • • ⊃ E n = 0
such that the subquotients E i /E i+1 are all semistable, and verifies

(5) µ(E 0 /E 1 ) < µ(E 1 /E 2 ) < • • • < µ(E n-1 /E n ).
In fact, the vertices of P E are just (rk E i , deg(E i )). For details about Hermitian vector bundles on Spec O K , see [START_REF] Bost | Périodes et isogénies des variétés abéliennes sur les corps de nombres (d'après D. Masser et G. Wüstholz)[END_REF][START_REF]Algebraic leaves of algebraic foliations over number fields[END_REF][START_REF]Chambert-Loir -Théorèmes d'algébricité en géométrie diophantienne[END_REF].

2.3. Reminder on Borel measures. -Denote by C c (R) the space of all continuous functions of compact support on R. Recall that a Borel measure on R is just a positive linear functional on C c (R), where the word "positive" means that the linear functional sends a positive function to a positive number. One says that a sequence (ν n ) n≥1 of Borel measures on R converges vaguely to the Borel measure ν if, for any h ∈ C c (R), the sequence of integrals h dν n n≥1 converges to h dν. This is also equivalent to the convergence of integrals for any h in C ∞ 0 (R), the space of all smooth functions of compact support on R.

Let ν be a Borel probability measure on R. If a ∈ R, we denote by τ a ν the Borel measure such that h dτ a ν = h(x + a)ν(dx). If ε > 0, let T ε ν be the Borel measure such that h dT ε ν = h(εx)ν(dx).

If ν is a Borel probability measure on R whose support is bounded from above, we denote by P (ν) the Legendre transformation (see [START_REF]Hörmander -Notions of convexity[END_REF] 

(t) = sup{x | ν(]x, +∞[) > t}, then P (ν)(t) = t 0 F * ν (s) ds. One has P (τ a ν)(t) = P (ν)(t) + at and P (T ε ν) = εP (ν).
If ν 1 and ν 2 are two Borel probability measures on R, we use the symbol ν 1 ≻ ν 2 or ν 2 ≺ ν 1 to denote the following condition:

for any increasing and bounded function h, h dν 1 ≥ h dν 2 . It defines an order on the set of all Borel probability measures on R. If in addition ν 1 and ν 2 are of support bounded from above, then P (ν 1 ) ≥ P (ν 2 ).

2.4. Filtered spaces. -Let k be a field and V be a vector space of finite rank over k. We call filtration of V any family F = (F a V ) a∈R of subspaces of V subject to the following conditions 1) for all a, b ∈ R such that a ≤ b, one has

F a V ⊃ F b V , 2) F a V = 0 for a sufficiently positive, 3) F a V = V for a sufficiently negative, 4) the function a → rk k (F a V ) is left continuous. Such filtration corresponds to a flag V = V 0 V 1 V 2 • • • V n = 0
together with a strictly increasing real sequence (a i ) 0≤i≤n-1 describing the points where the function a → rk k (F a V ) is discontinuous.

We define a function λ : V → R ∪ {+∞} as follows:

λ(x) = sup{a ∈ R | x ∈ F a V }.
This function actually takes values in {a 0 , • • • , a n-1 , +∞}, and is finite on V \ {0}. If V is non-zero, the filtered space (V, F ) defines a Borel probability measure ν V which is a linear combination of Dirac measures:

ν V = n-1 i=0 rk V i -rk V i+1 rk V δ ai . Note that the support of ν V is just {a 0 , • • • , a n-1 }. We define λ min (V ) = a 0 and λ max (V ) = a n-1 . Denote by P V the polygon P (ν V ). If V = 0, by convention we define ν V as the zero measure. If 0 / / V ′ / / V / / V ′′
/ / 0 is an exact sequence of filtered vector spaces, where V = 0, then the following equality holds (cf. [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] Proposition 1.2.5):

(6) ν V = rk V ′ rk V ν V ′ + rk V ′′ rk V ν V ′′ .
If E is a non-zero Hermitian vector bundle on Spec O K , then the Harder-Narasimhan flag (4) and the successive slope (5) defines a filtration of V = E K , called the Harder-Narasimhan filtration. We denote by ν E the Borel measure associated to this filtration, called the measure associated to the Hermitian vector bundle E. One has the following relations:

(7) λ max (V ) = µ max (E), λ min (V ) = µ min (E), P V = P E = P (ν E ).
For details about filtered spaces and their measures and polygons, see [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] §1.2.

2.5. Slope inequality and its measure form. -For any maximal ideal p of O K , denote by K p the completion of K with respect to the p-adic valuation v p on K, and by | • | p be the p-adic absolute value such that |a| p = #(O K /p) -vp (a) . Let E and F be two Hermitian vector bundles on Spec O K . Let ϕ : E K → F K be a non-zero K-linear homomorphism. For any maximal ideal p of O K , let ϕ p be the norm of the linear mapping ϕ Kp : E Kp → F Kp . Similarly, for any embedding

σ : K → C, let ϕ σ be the norm of ϕ σ,C : E σ,C → F σ,C . The height of ϕ is then defined as (8) h(ϕ) := p log ϕ p + σ:K→C ϕ σ .
Recall the slope inequality as follows (cf. [START_REF] Bost | Périodes et isogénies des variétés abéliennes sur les corps de nombres (d'après D. Masser et G. Wüstholz)[END_REF] Proposition 4.3):

Proposition 2.1. -If ϕ is injective, then µ max (E) ≤ µ max (F ) + h(ϕ).
The following estimation generalizing [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] Corollary 2.2.6 is an application of the slope inequality.

Proposition 2.2. -Assume ϕ is injective. Let θ = rk E/ rk F . Then one has ν F ≻ θτ h(ϕ) ν E + (1 -θ)δ µmin(F ) .
Proof. -We equip E K and F K with Harder-Narasimhan filtrations. The slope inequality implies that λ(ϕ(x)) ≥ λ(x) -h(ϕ) for any x ∈ E K (see [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] Proposition 2.2.4). Let V be the image of ϕ, equipped with induced filtration. By [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] 

Corollary 2.2.6, ν V ≻ τ h(ϕ) ν E . By (6), ν F ≻ θν V + (1 -θ)δ µmin(F )
, so the proposition is proved.

Positive degree and number of effective elements

Let E be a Hermitian vector bundle on Spec O K . Define

h 0 (E) := log #{s ∈ E | ∀σ : K → C, s σ ≤ 1}, which is the logarithm of the number of effective elements in E. Note that if 0 / / E ′ / / E / / E ′′ / / 0 is a short exact sequence of Hermitian vector bundles, then h 0 (E ′ ) ≤ h 0 (E) ≤ h 0 (E ′ ) + h 0 (E ′′ ).
In this section, we define an invariant of E, suggested by J.-B. Bost, which is called the positive degree: 

deg + (E) := max t∈[0,1] P E (t). If E is non-zero,
:= Hom Z (O K , Z).
This O K -module is generated by the trace map tr K/Q : K → Q up to torsion. We choose Hermitian metrics on ω OK such that tr K/Q σ = 1 for any embedding σ :

K → C. The arithmetic degree of ω OK is log |∆ K |, where ∆ K is the discriminant of K over Q.
We recall below a result in [START_REF] Gillet | On the number of lattice points in convex symmetric bodies and their duals[END_REF], which should be considered as an arithmetic analogue of classical Riemann-Roch formula for vector bundles on a smooth projective curve.

Proposition 3.1 (Gillet and Soulé

). -There exists an increasing function C 0 :

N * → R + satisfying C 0 (n) ≪ K n log n such that, for any Hermitian vector bundle E on Spec O K , one has (9) h 0 (E) -h 0 (ω OK ⊗ E ∨ ) -deg(E) ≤ C 0 (rk E).

3.2.

Comparison of h 0 and deg + . -Proposition 3.3 below is a comparison between h 0 and deg + . The following lemma, which is consequences of the Riemann-Roch inequality [START_REF] Bourbaki | Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d'une mesure, Espaces L p , Deuxième édition revue et augmentée[END_REF], is needed for the proof.

Lemma 3.2.

-Let E be a non-zero Hermitian vector bundle on Spec O K .

1) If µ max (E) < 0, then h 0 (E) = 0. 2) If µ min (E) > log |∆ K |, then h 0 (E) -deg(E) ≤ C 0 (rk E). 3) If µ min (E) ≥ 0, then h 0 (E) -deg(E) ≤ log |∆ K | rk E + C 0 (rk E).
Proof. -1) Assume that E has an effective section. There then exists a homomorphism ϕ : L 0 → E whose height is negative or zero. By slope inequality, we obtain

µ max (E) ≥ 0. 2) Since µ min (E) > log |∆ K |, we have µ max (ω OK ⊗E ∨ ) < 0. By 1), h 0 (ω OK ⊗E ∨ ) = 0.
Thus the desired inequality results from [START_REF] Bourbaki | Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d'une mesure, Espaces L p , Deuxième édition revue et augmentée[END_REF].
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) Let a = log |∆ K | + ε with ε > 0. Then µ min (E ⊗ L a ) > log |∆ K |. By 2), h 0 (E ⊗ L a ) ≤ deg(E ⊗ L a ) + C 0 (rk E) = deg(E) + a rk E + C 0 (rk E). Since a > 0, h 0 (E) ≤ h 0 (E ⊗ L a ). So we obtain h 0 (E) -deg(E) ≤ a rk E + C 0 (rk E). Moreover, (9) implies h 0 (E) -deg(E) ≥ h 0 (ω OK ⊗ E ∨ ) -C 0 (rk E) ≥ -C 0 (rk E). Therefore, we always have h 0 (E) -deg(E) ≤ a rk E + C 0 (rk E).
Since ε is arbitrary, we obtain the desired inequality.

Proposition 3.3. -The following inequality holds:

(10) h 0 (E) -deg + (E) ≤ rk E log |∆ K | + C 0 (rk E).
Proof. -Let the Harder-Narasimhan flag of E be as in [START_REF] Bost | Périodes et isogénies des variétés abéliennes sur les corps de nombres (d'après D. Masser et G. Wüstholz)[END_REF]. For any integer i such that 0

≤ i ≤ n-1, let α i = µ(E i /E i+1 ). Let j be the first index in {0, • • • , n-1} such that α j ≥ 0; if such index does not exist, let j = n. By definition, deg + (E) = deg(E j ).
Note that, if j > 0, then µ max (E/E j ) = α j-1 < 0. Therefore we always have h 0 (E/E j ) = 0 and hence h 0 (E) = h 0 (E j ).

If j = n, then h 0 (E j ) = 0 = deg + (E). Otherwise µ min (E j ) = α j ≥ 0 and by Lemma 3.2 3), we obtain

h 0 (E j ) -deg(E j ) ≤ rk E j log |∆ K | + C 0 (rk E j ) ≤ rk E log |∆ K | + C 0 (rk E).

Asymptotic polygon of a big line bundle

Let k be a field and B = n≥0 B n be an integral graded k-algebra such that, for n sufficiently positive, B n is non-zero and has finite rank. Let f : N * → R + be a mapping such that lim n→∞ f (n)/n = 0. Assume that each vector space B n is equipped with an R-filtration

F (n) such that B is f -quasi-filtered (cf. [11] §3.2.

1).

In other words, we assume that there exists n 0 ∈ N * such that, for any integer r ≥ 2 and all homogeneous elements

x 1 , • • • , x r in B respectively of degree n 1 , • • • , n r in N ≥n0 , one has λ(x 1 • • • x r ) ≥ r i=1 λ(x i ) -f (n i ) .
We suppose in addition that sup n≥1 λ max (B n )/n < +∞. Recall below some results in [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] (Proposition 3.2.4 and Theorem 3.4.3).

Proposition 4.1. -1) The sequence (λ max (B n )/n) n≥1 converges in R.
2) If B is finitely generated, then the sequence of measures (T 1 n ν Bn ) n≥1 converges vaguely to a Borel probability measure on R.

In this section, we shall generalize the second assertion of Proposition 4.1 to the case where the algebra B is given by global sections of tensor power of a big line bundle on a projective variety.

4.1. Convergence of measures. -Let X be an integral projective scheme of dimension d defined over k and L be a big invertible O X -module: recall that an invertible O X -module L is said to be big if its volume, defined as vol(L) := lim sup

n→∞ rk k H 0 (X, L ⊗n ) n d /d! ,
is strictly positive.

Theorem 4.2. -With the above notation, if B = n≥0 H 0 (X, L ⊗n ), then the sequence of measures (T 1 n ν Bn ) n≥1 converges vaguely to a probability measure on R. Proof. -For any integer n ≥ 1, denote by ν n the measure T 1 n ν Bn . Since L is big, for sufficiently positive n, H 0 (X, L ⊗n ) = 0, and hence ν n is a probability measure. In addition, Proposition 4.1 1) implies that the supports of the measures ν n are uniformly bounded from above. After Fujita's approximation theorem (cf. [START_REF] Fujita | Approximating Zariski decomposition of big line bundles[END_REF][START_REF] Takagi | Fujita's approximation theorem in positive characteristics[END_REF], see also [START_REF] Lazarsfeld | Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF] Ch. 11), the volume function vol(L) is in fact a limit:

vol(L) = lim n→∞ rk k H 0 (X, L ⊗n ) n d /d! .
Furthermore, for any real number ε, 0 < ε < 1, there exists an integer p ≥ 1 together with a finitely generated sub-k-algebra A ε of B (p) = n≥0 B np which is generated by elements in B p and such that lim

n→∞ rk k H 0 (X, L ⊗np ) -rk A ε n rk k H 0 (X, L ⊗np ) ≤ ε.
The graded k-algebra A ε , equipped with induced filtrations, is f -quasi-filtered. Therefore Proposition 4.1 2) is valid for A ε . In other words, If we denote by ν ε n the Borel measure T 1 np ν A ε n , then the sequence of measures (ν ε n ) n≥1 converges vaguely to a Borel probability measure ν ε on R. In particular, for any function h ∈ C c (R), the sequence of integrals h dν ε n n≥1 is a Cauchy sequence. This assertion is also true when h is a continuous function on R whose support is bounded from below: the supports of the measures ν ε n are uniformly bounded from above. The exact sequence 0

/ / A ε n / / B np / / B np /A ε n / / 0 implies that ν Bnp = rk A ε n rk B np ν A ε n + rk B np -rk A ε n rk B np ν Bnp/A ε n .
Therefore, for any bounded Borel function h, one has

(11) h dν np - rk A ε n rk B np h dν ε n ≤ h sup rk B np -rk A ε n rk B np .
Hence, for any bounded continuous function h satisfying inf(supp(h)) > -∞, there exists N h,ε ∈ N such that, for any n, m ≥ N h,ε ,

h dν np -h dν mp ≤ 2ε h sup + ε. (12) 
Let h be a smooth function on R whose support is compact. We choose two increasing continuous functions h 1 and h 2 such that h = h 1 -h 2 and that the supports of them are bounded from below. Let n 0 ∈ N * suffciently large such that, for any r ∈ {n 0 p + 1, • • • , n 0 p + p -1}, one has H 0 (X, L ⊗r ) = 0. We choose, for such r, a nonzero element e r ∈ H 0 (X, L ⊗r ). For any n ∈ N and any r ∈ {n

0 p + 1, • • • , n 0 p + p -1}, let M n,r = e r B np ⊂ B np+r , M ′ n,r = e 2n0p+p-r M n,r ⊂ B (n+2n0+1)p and denote by ν n,r = T 1 np ν Mn,r , ν ′ n,r = T 1 np ν M ′ n,r
, where M n,r and M ′ n,r are equipped with the induced filtrations. As the algebra B is f -quasi-filtered, we obtain, by [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] Lemma 1.2.6, ν ′ n,r ≻ τ an,r ν n,r ≻ τ bn,r ν np , where

a n,r = λ(e 2n0p+p-r ) -f (np + r) -f (2n 0 p + p -r) np , b n,r = a n,r + λ(e r ) -f (np) -f (r) np .
This implies ( 13)

h i dν ′ n,r ≥ h i dτ an,r ν n,r ≥ h i dτ bn,r ν np , i = 1, 2.
In particular, ( 14) According to [START_REF] Ein | Popa -Asymptotic invariants of line bundles[END_REF], we obtain that there exists N ′ h,ε ∈ N * such that, for all integers l and l

h i dτ an,r ν n,r -h i dτ bn,r ν np ≤ h i dν ′ n,
′ such that l ≥ N ′ h,ε , l ′ ≥ N ′ h,ε , one has h dν l -h dν l ′ ≤ 4ε( h 1 sup + h 2 sup ) + 2ε h sup + 6ε,
which implies that the sequence ( h dν n ) n≥1 converges in R.

Let I : C ∞ 0 (R) → R be the linear functional defined by I(h) = lim n→∞ h dν n . It extends in a unique way to a continuous linear functional on C c (R). Furthermore, it is positive, and so defines a Borel measure ν on R. Finally, by [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF],

|ν(R) -(1 - ε)ν ε (R)| ≤ ε. Since ε is arbitrary, ν is a probability measure. 4.2.
Convergence of maximal values of polygons. -If ν is a Borel probability measure on R and α ∈ R, denote by ν (α) the Borel probability measure on R such that, for any h ∈ C c (R),

h dν (α) = h(x)1 1 [α,+∞[ (x)ν(dx) + h(α)ν(] -∞, α[).
The measure ν (α) is called the truncation of ν at α. The truncation operator preserves the order "≻". Assume that the support of ν is bounded from above. The truncation of ν at α modifies the "polygon" P (ν) only on the part with derivative < α. More precisely, one has

P (ν) = P (ν (α) ) on {t ∈ [0, 1[ F * ν (t) ≥ α}.
In particular, if α ≤ 0, then [START_REF] Gillet | On the number of lattice points in convex symmetric bodies and their duals[END_REF] max

t∈[0,1[ P (ν)(t) = max t∈[0,1[ P (ν (α) )(t).
The following proposition shows that given a vague convergence sequence of Borel probability measures, almost all truncations preserve vague limit. Proposition 4.3. -Let (ν n ) n≥1 be a sequence of Borel probability measures which converges vaguely to a Borel probability measure ν. Then there exists a countable subset Z of R such that, for any α ∈ R \ Z, the sequence (ν

(α) n ) n≥1 converges vaguely to ν (α) .
Proof. -Let Z be the set of all points x in R such that {x} has a strictly positive mass for the measure ν. It is a countable set. Then by [START_REF] Bourbaki | Inégalités de convexité, Espaces de Riesz, Mesures sur les espaces localement compacts, Prolongement d'une mesure, Espaces L p , Deuxième édition revue et augmentée[END_REF] IV §5 n • 12 Proposition 22, for any real number α outside Z, ν Proof. -For n ∈ N * , denote by ν n = T 1 n ν Bn . By Theorem 4.2, the sequence (ν n ) n≥1 converges vaguely to a Borel probability measure ν. Let α < 0 be a number such that (ν (α) n ) n≥1 converges vaguely to ν (α) . Note that the supports of ν α n are uniformly bounded. So P (ν (α) n ) converges uniformly to P (ν (α) ) (see [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] Proposition 1.2.9). By [START_REF] Gillet | On the number of lattice points in convex symmetric bodies and their duals[END_REF], max

t∈[0,1] P Bn (t)/n n≥1 converges to max t∈[0,1] P (ν)(t).
If V is a finite dimensional filtered vector space over k, we shall use the expression λ + (V ) to denote max 

P (ν)(t) ≥ ε max t∈[0,1] P (ν 1 )(t).
Proof.

-After truncation at 0 we may assume that the supports of ν 1 and ν 2 are contained in [0, +∞[. In this case ν ≻ εν 1 + (1 -ε)δ 0 and hence P (ν) ≥ P (εν 1 + (1 -ε)δ 0 ). Since

P (εν 1 + (1 -ε)δ 0 )(t) = εP (ν 1 )(t/ε), t ∈ [0, ε], εP (ν 1 )(1), t ∈ [ε, 1[,
we obtain [START_REF]Grayson -Reduction theory using semistability[END_REF].

Theorem 4.6. -Under the assumption of Theorem 4.2, one has

lim n→∞ λ + (B n )/n > 0 if and only if lim n→∞ λ max (B n )/n > 0.
Furthermore, in this case, the inequality lim

n→∞ λ + (B n )/n ≤ lim n→∞ λ max (B n )/n holds.
Proof. -For any filtered vector space V , λ max (V ) > 0 if and only if λ + (V ) > 0, and in this case one always has λ max (V ) ≥ λ + (V ). Therefore the second assertion is true. Furthermore, this also implies

lim n→∞ 1 n λ + (B n ) > 0 =⇒ lim n→∞ 1 n λ max (B n ) > 0.
It suffices then to prove the converse implication. Assume that α > 0 is a real number such that lim n→∞ λ max (B n )/n > 4α. Choose sufficiently large n 0 ∈ N such that f (n) < αn for any n ≥ n 0 and such that there exists a non-zero x 0 ∈ B n0 satisfying λ(x 0 ) ≥ 4αn 0 . Since the algebra B is f -quasi-filtered, λ(x m 0 ) ≥ 4αn 0 m -mf (n) ≥ 3αmn 0 . By Fujita's approximation theorem, there exists an integer p divisible by n 0 and a subalgebra A of B (p) = n≥0 B np generated by a finite number of elements in B p and such that lim inf n→∞ rk A n / rk B np > 0. By possible enlargement of A we may assume that A contains x p/n0 0 . By Lemma 4.5, lim

n→∞ λ + (A n )/n > 0 implies lim n→∞ λ + (B np )/np = lim n→∞ λ + (B n )/n > 0.
Therefore, we reduce our problem to the case where 1) B is an algebra of finite type generated by B 1 , 2) there exists

x 1 ∈ B 1 , x 1 = 0 such that λ(x 1 ) ≥ 3α with α > 0, 3) f (n) < αn.
Furthermore, by Noether's normalization theorem, we may assume that

B = k[x 1 , • • • , x q ] is
an algebra of polynomials, where x 1 coincides with the element in condition 2). Note that [START_REF]Hörmander -Notions of convexity[END_REF] λ(x a1

1 • • • x aq q ) ≥ q i=1 a i λ(x i ) -α ≥ 2αa 1 + q i=2 a i λ(x i ) -α . Let β > 0 such that -β ≤ λ(x i ) -α for any i ∈ {2, • • • , q}. We obtain from (17) that λ(x a1 1 • • • x aq q ) ≥ αa 1 as soon as a 1 ≥ β α q i=2 a i . For n ∈ N * , let u n = # (a 1 , • • • , a q ) ∈ N q a 1 + • • • + a q = n, a 1 ≥ β α (a 2 + • • • + a q ) = # (a 1 , • • • , a q ) ∈ N q a 1 + • • • + a q = n, a 1 ≥ β α + β n = n -⌊ β α+β n⌋ + q -1 q -1 ,
and

v n = # (a 1 , • • • , a q ) ∈ N q a 1 + • • • + a q = n = n + q -1 q -1 . Thus lim n→∞ u n /v n = α α + β q-1 > 0, which implies lim n→∞ 1 n λ + (B n ) > 0 by Lemma 4.5.

Volume function as a limit and arithmetic bigness

Let X be an arithmetic variety of dimension d and L be a Hermitian line bundle on X . Denote by X = X K and L = L K . Using the convergence result established in the previous section, we shall prove that the volume function is in fact a limit of normalized positive degrees. We also give a criterion of arithmetic bigness by the positivity of asymptotic maximal slope. Denote by r n the rank of π * (L ⊗n ). One has r n ≪ n d-1 . For any n ∈ N, define

h 0 (X , L ⊗n ) := log #{s ∈ H 0 (X , L ⊗n ) | ∀σ : K → C, s σ,sup ≤ 1}.
Recall that the arithmetic volume function of L defined by Moriwaki (cf. [START_REF]Continuity of volumes on arithmetic varieties[END_REF]) is

vol(L) := lim sup n→∞ h 0 (X , L ⊗n ) n d /d! ,
and L is said to be big if and only if vol(L) > 0 (cf. [START_REF]Continuity of volumes on arithmetic varieties[END_REF] Theorem 4.5 and [START_REF] Yuan | Big line bundles over arithmetic varieties[END_REF] Corollary 2.4).

In the following, we give an alternative proof of a result of Morkwaki and Yuan.

Proposition 5.1. -If L is big, then L is big on X in usual sense.

Proof. -For any integer n ≥ 1, we choose two Hermitian vector bundles E

n = (π * (L ⊗n ), ( • (1) σ ) σ:K→C ) and E (2) n = (π * (L ⊗n ), ( • (1) 
σ ) σ:K→C ) such that s (1) σ ≤ s σ,sup ≤ s (2) σ ≤ r n s (1) σ , where r n is the rank of π * (L ⊗n ). This is always possible due to an argument of John and Löwner ellipsoid, see [START_REF]Gaudron -Pentes de fibrés vectoriels adéliques sur un corps globale[END_REF] definition-theorem 2.4. Thus h 0 (E

(2) n ) ≤ h 0 (X , L ⊗n ) ≤ h 0 (E (1) 
n ). Furthermore, by [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] Corollay 2.2.9, deg + (E

n ) -deg + (E (1) 
n ) ≤ r n log r n . By [START_REF]Chambert-Loir -Théorèmes d'algébricité en géométrie diophantienne[END_REF], we obtain

h 0 (X, L ⊗n ) -h 0 (E (1) 
n ) ≤ 2r n log |∆ K | + 2C 0 (r n ) + r n log r n . Furthermore, deg + (E (1) 
n ) -deg + (π * (L ⊗n )) = O(r n log r n ). Hence h 0 (X, L ⊗n ) -h 0 (π * (L ⊗n )) = O(r n log r n ). Since r n ≪ n d-1 , we obtain (18) lim n→∞ h 0 (X , L ⊗n ) n d /d! - deg + (π * (L ⊗n )) n d /d! = 0,
and therefore vol(L) = lim sup 

n→∞ deg + (π * (L ⊗n )) n d /d! . If L is big, then vol(L) > 0,
n d /d! = vol(L) lim n→∞ µ + (π * (L ⊗n )) n/d ,
where the positive slope µ + was defined in §3.

Proof. -We first consider the case where L is big. The graded algebra B = n≥0 H 0 (X, L ⊗n ) equipped with Harder-Narasimhan filtrations is quasi-filtered for a function of logarithmic increasing speed at infinity (see [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] §4.1.3). Therefore Corollary 4.4 shows that the sequence (λ

+ (B n )/n) n≥1 converges in R. Note that λ + (B n ) = µ + (π * (L ⊗n )). So the last limit in (19) exists. Furthermore, L is big on X, so vol(L) = lim n→∞ rk(π * (L ⊗n )) n d-1 /(d -1)! ,
which implies the existence of the third limit in [START_REF] Moriwaki | Arithmetic height functions over finitely generated fields[END_REF] and the last equality. Thus the existence of the first limit and the second equality follow from [START_REF] Lazarsfeld | Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF].

When L is not big, since

lim n→∞ µ + (π * (L ⊗n )) n/d ≤ lim n→∞ µ max (π * (L ⊗n )) n/d < +∞
the last term in [START_REF] Moriwaki | Arithmetic height functions over finitely generated fields[END_REF] vanishes. This implies the vanishing of the second limit in [START_REF] Moriwaki | Arithmetic height functions over finitely generated fields[END_REF]. Also by [START_REF] Lazarsfeld | Positivity in algebraic geometry. II, Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF], we obtain the vanishing of the first limit. Proof. -The inequality is a consequence of Theorem 5.2 and the comparison deg

+ (E) ≥ deg(E).
Here E is an arbitrary Hermitian vector bundle on Spec O K .

The equality follows from a classical result which compares Arakelov degree and Euler-Poincaré characteristic (see [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF] 4.1.4 for a proof). Attention: in [START_REF] Chen | Convergence des polygones de Harder-Narasimhan[END_REF], the author has adopted the convention µ(E) = deg(E)/[K : Q] rk E.

Remark 5.4. -Corollary 5.3 is a generalization of [START_REF]Continuity of volumes on arithmetic varieties[END_REF] Theorem 6.2 to continuous metrics case.

5.2.

A criterion of arithmetic bigness. -We shall prove that the bigness of L is equivalent to the positivity of the asymptotic maximal slope of L. This result is strongly analogous to Theorem 4.5 of [START_REF]Continuity of volumes on arithmetic varieties[END_REF]. In fact, by a result of Borek [START_REF] Borek | Successive minima and slopes of Hermitian vector bundles over number fields[END_REF] (see also [START_REF] Bost | Künnemann -Hermitian vector bundles and extension groups on arithmetic schemes. I. geometry of numbers[END_REF] Proposition 3.3.1), which reformulate Minkowski's First Theorem, the maximal slope of a Hermitian vector bundle on Spec O K is "close" to the opposite of the logarithm of its first minimum. So the positivity of the asymptotic maximal slope is equivalent to the existence of (exponentially) small section when n goes to infinity. Proof. -Since both conditions imply the bigness of L, we may assume that L is big. Let B = n≥0 H 0 (X, L ⊗n ) equipped with Harder-Narasimhan filtrations. One has

µ + (π * (L ⊗n )) = λ + (B n ), µ max (π * (L ⊗n ) = λ max (B n ).
Therefore, the assertion follows from Theorems 4.6 and 5.2.

Remark 

s 2 σ ≤ 1 2 log[K : Q] + 1 2 log rk E + log |∆ K | 2[K : Q] .
Therefore, by [START_REF] Rumely | Existence of the sectional capacity[END_REF], the bigness of L is equivalent to each of the following conditions:

1) L is big, and there exists ε > 0 such that, when n is sufficiently large, L ⊗n has a global section s n satisfying s n σ,sup ≤ e -εn for any σ : K → C. 2) L is big, and there exists an integer n ≥ 1 such that L ⊗n has a global section s n satisfying s n σ,sup < 1 for any σ : K → C. Thus we recover a result of Moriwaki ([20] Theorem 4.5 (1)⇐⇒( 2)).

Corollary 5.7. -Assume L is big. Then there exists a Hermitian line bundle M on Spec O K such that L ⊗ π * M is arithmetically big.

Continuity of truncated asymptotic polygon

Let us keep the notation of §5 and assume that L is big on X. For any integer n ≥ 1, denote by ν n the dilated measure T 1 n ν π * (L ⊗n ) . Recall that in §4 we have actually established the followint result: Proposition 6.1. -1) the sequence of Borel measures (ν n ) n≥1 converges vaguely to a Borel probability measure ν; 2) there exists a countable subset Z of R such that, for any α ∈ R \ Z, the sequence of polygons (P (ν

n )) n≥1 converges uniformly to P (ν (α) ), which impies in particular that P (ν (α) ) is Lipschitz.

Let Z be as in the proposition above. For any α ∈ R \ Z, denote by P The main purpose of this section is to establish the following continuity result, which is a generalization of the continuity of the arithmetic volume function proved by Moriwaki (cf. [START_REF]Continuity of volumes on arithmetic varieties[END_REF] Theorem 5.4). Theorem 6.4. -Assume L is a Hermitian line bundle on X . Then, for all but countably many α ∈ R, the sequence of functions In order to prove Theorem 6.4, we need the following lemma.

Lemma 6.6. -Let L be an arbitrary Hermitian line bundle on Spec O K . If L is arithmetically big, then there exists an integer q ≥ 1 such that L ⊗q ⊗ L is arithmetically big and has at least one non-zero effective global section, that is, a non-zero section s ∈ H 0 (X , L ⊗q ⊗ L ) such that s σ,sup ≤ 1 for any embedding σ : K → C.

Proof. -As L is arithmetically big, we obtain that L is big on X. Therefore, there exists an integer m 0 ≥ 1 such that L ⊗m0 ⊗ L K is big on X and π * (L ⊗m0 ⊗ L ) = 0. Pick an arbitrary non-zero section s ∈ H 0 (X , L ⊗m0 ⊗L ) and let M = sup σ:K→C s σ,sup .

After Theorem 5.5 (see also Remark 5.6), there exists m 1 ∈ N such that L ⊗m1 has a section s ′ such that s ′ σ,sup ≤ (2M ) -1 for any σ : K → C. Let q = m 0 + m 1 . Then s ⊗ s ′ is a non-zero strictly effective section of L ⊗q ⊗ L . Furthermore, L ⊗q ⊗ L is arithmetically big since it is generically big and has a strictly effective section.

Proof of Theorem 6.4. -After Corollary 5.7, we may assume that L is arithmetically big. Let q ≥ 1 be an integer such that L ⊗q ⊗ L is arithmetically big and has a nonzero effective section s 1 (cf. Lemma 6.6). For any integers p and n such that p > q, n ≥ 1, let ϕ p,n : π * (L ⊗(p-q)n ) → π * (L ⊗pn ⊗ L ⊗n ) be the homomorphism defined by the multiplication by s ⊗n 1 . Since s 1 is effective, h(ϕ p,n ) ≤ 0. Let θ p,n = rk(π * (L ⊗(p-q)n ))/ rk(π * (L ⊗pn ⊗ L ⊗n )).

Note that lim

n→∞ θ p,n = vol(L ⊗(p-q) )/vol(L ⊗p ⊗ L K ).

Denote by θ p this limit. Let ν p,n be the measure associated to π * (L ⊗pn ⊗ L ⊗n ).

Let a p,n = µ min (π * (L ⊗pn ⊗ L ⊗n )). After Proposition 2.2, one has ν p,n ≻ θ p,n T (p-q)n ν (p-q)n + (1 -θ p,n )δ ap,n , or equivalently (22) T 1 np ν p,n ≻ θ p,n T (p-q)/p ν (p-q)n + (1 -θ p,n )δ ap,n/np . As L ⊗p ⊗ L K is big, the sequence of measures (T 1 n ν p,n ) n≥1 converges vaguely to a Borel probability measure η p . By truncation and then by passing n → ∞, we obtain from [START_REF] Stuhler | Eine Bemerkung zur Reduktionstheorie quadratischen Formen[END_REF] that for all but countably many α ∈ R, [START_REF] Takagi | Fujita's approximation theorem in positive characteristics[END_REF] (T 1 p η p ) (α) ≻ θ p (T (p-q)/p ν) (α) + (1 -θ p )δ α , where we have used the trivial estimation δ When n tends to infinity, ϑ p,n converges to ϑ p := vol(L ⊗p ⊗ L K )/vol(L ⊗(p+r) ).

By a similar argument as above, we obtain that for all but countably many α ∈ R,

(T (p+r)/p ν) (α) ≻ ϑ p (T 1 p η p ) (α) + (1 -ϑ p )δ α . We obtain from ( 23) and ( 24) the following estimations of polygons ϑ -1 p P ((T (p+r)/p ν) (α) )(ϑ p t) ≥ P ((T 1 p η p ) (α) )(t) [START_REF] Yuan | Big line bundles over arithmetic varieties[END_REF] P ((T 1 p η p ) (α) )(t) ≥ θ p P ((T (p-q)/p ν) (α) )(t/θ p ), 0 ≤ t ≤ θ p , θ p P ((T (p-q)/p ν) (α) )(1) + α(t -θ p ), θ p ≤ t ≤ 1.

. (26) Finally, since lim p→∞ θ p = lim p→∞ ϑ p = 1 (which is a consequence of the continuity of the geometric volume function), combined with the fact that both T (p-q)/p ν and T (p+r)/p ν converge vaguely to ν when p → ∞, we obtain, for all but countably many α ∈ R, the uniform convergence of P ((T 1 p η p ) (α) ) to P (ν (α) ).

Compuation of asymptotic polygon by volume function

In this section we shall show how to compute the asymptotic polygon of a Hermitian line bundle by using arithmetic volume function. Our main method is the Legendre transformation of concave functions. Let us begin with a lemma concerning Borel measures. 

  ν α . Corollary 4.4. -Under the assumption of Theorem 4.2, the sequence max t∈[0,1] P Bn (t)/n n≥1 converges in R.

t∈[0, 1 ]

 1 P V (t). With this notation, the assertion of Corollary 4.4 becomes: lim n→∞ λ + (B n )/n exists in R.

Lemma 4 . 5 .

 45 -Assume that ν 1 and ν 2 are two Borel probability measures whose supports are bounded from above. Let ε ∈]0, 1[ and ν = εν 1 + (1 -ε)ν 2 . Then

5. 1 .

 1 Volume function and asymptotic positive degree. -For any n ∈ N, we choose a Hermitian vector bundle π * (L ⊗n ) = (π * (L ⊗n ), ( • σ ) σ:K→C ) whose underlying O K -module is π * (L ⊗n ) and such that max 0 =s∈π * (L ⊗n ) log s sup -log s σ ≪ log n, n > 1.

Corollary 5 . 3 .

 53 -The following relations hold:

Theorem 5 . 5 .

 55 -L is big if and only if lim n→∞ µ max (π * (L ⊗n ))/n > 0. Furthermore, the following inequality holds: vol(L) dvol(L) ≤ lim n→∞ µ max (π * (L ⊗n )) n .

  P (ν (α) ) on [0, 1]. The following property of P (α) L results from the definition: Proposition 6.2. -For any integer p ≥ 1, on has P By definition T 1 n ν π * (L ⊗pn ) = T p ν n . Using (T p ν n ) (pα) = T p ν (α) n , we obtain the desired equality. Remark 6.3. -We deduce from the previous proposition the equality vol(L ⊗p ) = p d vol(L), which has been proved by Moriwaki ([20] Proposition 4.7).

  Corollary 6.5 ([20] Theorem 5.4). -With the assumption of Theorem 6.4, one has lim p→∞ 1 p d vol(L ⊗p ⊗ L ) = vol(L).

≻

  δ α . Now we apply Lemma 6.6 on the dual Hermitian line bundle L ∨ and obtain that there exists an integer r ≥ 1 and an effective section s 2 of L ⊗r ⊗ L ∨ . Consider now the homomorphism ψ p,n : π * (L ⊗pn ⊗L ⊗n ) → π * (L ⊗(p+r)n ) induced by multiplication by s ⊗n 2 . Its height is negative. Let ϑ p,n = rk(π * (L ⊗pn ⊗ L ⊗n ))/ rk(π * (L ⊗(p+r)n )).

Lemma 7 . 1 .x

 71 -Let ν be a Borel measure on R whose support is bounded from below. Then + ν(dx), where x + stands for max{x, 0}.Proof. -Since the function F * ν defined in §2.3 is essentially the inverse of the distribution function of ν, by definition we obtain that, if η is a Borel measure of compact support, thenP (η)(1) := lim t→1-P (η)(t) = R xη(dx).Applying this equality on η = ν (0) , we obtain maxt∈[0,1[ P (ν)(t) = P (ν (0) )(1) = R xν (0) (dx) = R x + ν (0) (dx) = R x + ν(dx).Now let X be an arithmetic variety of total dimension d. For any Hermitian line bundle L on X whose generic fibre is big, we denote by ν L the vague limite of the sequence of measures (T 1 n ν π * (L ⊗n ) ) n≥1 . The existence of ν L has been established in Theorem 4.2.

  define the positive slope of E as µ + (E) = deg + (E)/ rk E. Using the Riemann-Roch inequality established by Gillet and Soulé [15], we shall compare h 0 (E) to deg + (E).3.1. Reminder on dualizing bundle and Riemann-Roch inequality. -Denote by ω OK the arithmetic dualizing bundle on Spec O K : it is a Hermitian line bundle on Spec O K whose underlying O K -module is ω OK

  r -h i dτ bn,r ν np dτ bn,r ν np -h i dν np = 0.

	As lim n→∞	rk B (n+2n0+1)p -rk B np rk B (n+2n0+1)p	= 0, lim n→∞	h i dν ′ n,r -h i dν (n+2n0+1)p = 0.
	Moreover, lim n→∞	b n,r = 0. By [11] Lemma 1.2.10, we obtain
	lim n→∞ h i Therefore,	
			lim sup	
	Hence			
		lim sup	

n→∞ h i dν ′ n,r -h i dτ bn,r ν np = lim sup n→∞ h i dν (n+2n0+1)p -h i dν np ≤ 2ε h i sup + ε.

By

[START_REF]Gaudron -Pentes de fibrés vectoriels adéliques sur un corps globale[END_REF]

, lim sup n→∞ h i dτ an,r ν n,r -h i dτ bn,r ν np ≤ 2ε h i sup + ε. Note that lim n→∞ rk B np+r -rk B np rk B np+r = lim n→∞ a n,r = 0. So lim n→∞ h i dν n,r -h i dν np+r = lim n→∞ h i dν n,r -h i dτ an,r ν n,r = 0. n→∞ h dν np+r -h dν np ≤ 2ε( h 1 sup + h 2 sup ) + 2ε.

  and hence π * (L ⊗n ) = 0 for n sufficiently positive. Combining with the fact that

	lim sup n→+∞	deg + (π * (L ⊗n )) nr n	≤ lim n→+∞	µ max (π * (L ⊗n )) n	< +∞,
	we obtain lim sup n→+∞	r n n d-1 > 0.	
	Theorem 5.2. -The following equalities hold:
	(19)				
	vol(L) = lim n→∞	h 0 (X , L n d /d! ⊗n )	= lim

n→∞ deg + (π * (L ⊗n ))

Proposition 7.2. -Let L = L K . For any real number a, one has

where L -a is the Hermitian line bundle on Spec O K defined in (3).

Proof.

-If M is a Hermitian line bundle on Spec O K , one has the equality

Applying this equality on M = L -a , one obtains

Remark 7.3. -Proposition 7.2 calculates actually the polygone P (ν L ). In fact, one has

Applying the Legendre transformation, we obtain the polygone P (ν L ).