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POSITIVE DEGREE AND ARITHMETIC BIGNESS

Huayi Chen

Abstract. — We establish, for a generically big Hermitian line bundle, the conver-

gence of truncated Harder-Narasimhan polygons and the uniform continuity of the

limit. As an application, we generalize several results of Moriwaki concerning arith-

metically big Hermitian line bundles to the case of continuous metrics. Furthermore,

we prove a conjecture of him asserting that the arithmetic volume function is actually

a limit instead of a sup-limit.
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1. Introduction

Let K be a number field and OK be its integer ring. Let X be a projective
arithmetic variety of total dimension d over SpecOK . For any Hermitian line bundle
L on X , the arithmetic volume of L introduced by Moriwaki (see [16]) is

(1) v̂ol(L) = lim sup
n→∞

ĥ0(X ,L
⊗n

)

nd/d!
,

where ĥ0(X ,L
⊗n

) := log #{s ∈ H0(X ,L⊗n) | ∀σ : K → C, ‖s‖σ,sup ≤ 1}. The

Hermitian line bundle L is said to be arithmetically big if v̂ol(L) > 0. The notion of
arithmetic bigness had been firstly introduced by Moriwaki [15] §2 in a different form.
Recently he himself ([16] Theorem 4.5) and Yuan ([20] Corollary 2.4) have proved
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that the arithmetic bigness in [15] is actually equivalent to the strict positivity of the
arithmetic volume function (1), at least in the smooth metric case. In [16], Moriwaki
has proved the continuity of (1) with respect to L and then deduced some comparisons
to arithmetic intersection numbers (loc. cit. Theorem 6.2).

Note that the volume function (1) is an arithmetic analogue of the classical volume
function for a line bundle on a projective variety: if L is a line bundle on a projective
variety X of dimension d defined over a field k, the volume of L is

(2) vol(L) := lim sup
n→∞

rkk H
0(X,L⊗n)

nd/d!
.

Similarly, L is said to be big if vol(L) > 0. After Fujita’s approximation theorem (see
[9], and [19] for positive characteristic case), the sup-limit in (2) is in fact a limit (see
[14] 11.4.7).

During a presentation at Institut de Mathématiques de Jussieu, Moriwaki has

conjectured that, in arithmetic case, the sequence
(
ĥ0(X ,L)/nd

)
n≥1

also converges.

In other words, one has

v̂ol(L) = lim
n→∞

ĥ0(X ,L
⊗n

)

nd/d!
.

The strategy proposed by him is to develop an analogue of Fujita’s approximation
theorem in arithmetic setting (see [16] Remark 5.7).

In this article, we prove Moriwaki’s conjecture by establishing a convergence re-
sult of Harder-Narasimhan polygons (Theorem 4.2), which is a generalization of the
author’s previous work [8] where the main tool is the Harder-Narasimhan filtration
(indexed by R) of a Hermitian vector bundle on SpecOK and its associated Borel

measure. To apply the convergence of polygons, the main idea is to compare ĥ0(E),
defined as the logarithm of number of effective points in E, to the positive degree

d̂eg+(E), which is the maximal value of the Harder-Narasimhan polygon of E. Here

E denotes a Hermitian vector bundle on SpecOK . We show that the arithmetic vol-
ume function coincides with the limit of normalized positive degrees and therefore
prove the conjecture.

In [16] and [20], the volume function and the arithmetic bigness have been studied
under the smoothness assumption for metrics of L. The important (analytical) technic
used by both authors is the estimation of the distortion function, which has already
appeared in [1]. The approach in the present work, which is similar to that in
[17], relies on purely algebraic arguments and allows to study the arithmetic bigness
without regularity condition: the continuity of metrics suffices. We also establish an
explicit link between the volume function and some geometric invariants of L such as
asymptotic slopes, which permits us to prove that L is big if and only if the norm of

the smallest non-zero section of L
⊗n

decreases exponentially when n tends to infinity.
This result is analogous to Theorem 4.5 of [16] or Corollary 2.4 (1)⇔(4) of [20] except
that we avoid using analytical methods and hence relax the smoothness condition to
continuity.

In our approach, the arithmetic volume function can be interpreted as the limit of
maximal values of Harder-Narasimhan polygons. Inspired by Moriwaki’s work [16],
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we shall establish the uniform continuity for limit of truncated Harder-Narasimhan
polygons (Theorem 6.4). This result refines considerably loc. cit. Theorem 5.4,
and holds in the general setting without regularity conditions for any generically big
Hermitian line bundles.

The rest of this article is organized as follows. We fist recall some notation in
Arakelov geometry in the second section. In the third section, we introduce the notion
of positive degree for a Hermitian vector bundle on SpecOK and we compare it to the
logarithm of the number of effective elements. The main tool is the Riemann-Roch
inequality on SpecOK due to Gillet and Soulé [11]. In the fourth section, we establish
the convergence of the measures associated to suitably filtered section algebra of a big
line bundle (Theorem 4.2). We show in the fifth section that the arithmetic bigness
of L implies the classical one of LK , which is a generalization of a result of Yuan
[20]. By the convergence result in the fourth section, we are able to prove that the
volume of L coincides with the limit of normalized positive degrees, and therefore the
sup-limit in (1) is in fact a limit (Theorem 5.2). Here we also need the comparison
result in the third section. Finally, we prove that the arithmetic bigness is equivalent
to the positivity of asymptotic maximal slope (Theorem 5.5). In the last section, we
establish the continuity of the limit of truncated polygons.

I would like to thank J.-B. Bost for stimulating suggestions and helpful comments,
also for having pointed out an error in a previous version of this article. I am also
thankful to A. Moriwaki and C. Soulé for discussions.

2. Notation and reminders

Throughout this article, we fix a number field K and denote by OK its algebraic
integer ring, and by ∆K its discriminant. By (projective) arithmetic variety we mean
an integral projective flat OK -scheme.

2.1. Hermitian vector bundles. — If X is an arithmetic variety, one calls Her-
mitian vector bundle on X any pair E = (E , (‖ · ‖σ)σ:K→C) where E is a locally free
OX -module, and for any embedding σ : K → C, ‖·‖σ is a continuous Hermitian norm
on Eσ,C. One requires in addition that the metrics (‖ · ‖σ)σ:K→C are invariant by the

action of complex conjugation. The rank of E is just that of E . If rkE = 1, one says
that E is a Hermitian line bundle. Note that SpecOK is itself an arithmetic variety. A
Hermitian vector bundle on SpecOK is just a projective OK-module equipped with
Hermitian norms which are invariant under complex conjugation. Let a be a real
number. Denote by La the Hermitian line bundle

(3) La := (OK , (‖ · ‖σ,a)σ:K→C),

where ‖1‖σ,a = e−a, 1 being the unit of OK .

2.2. Arakelov degree, slope and Harder-Narasimhan polygon. — Several
invariants are naturally defined for Hermitian vector bundles on SpecOK , notably
the Arakelov degree, which leads to other arithmetic invariants (cf. [3]). If E is a



4 HUAYI CHEN

Hermitian vector bundle of rank r on SpecOK , the Arakelov degree of E is defined as
the real number

d̂eg(E) := log #
(
E/(OKs1 + · · · + OKsr)

)
−

1

2

∑

σ:K→C

log det
(
〈si, sj〉σ

)
1≤i,j≤r

,

where (si)1≤i≤r is an element in Er which forms a basis of EK . This definition does

not depend on the choice of (si)1≤i≤r. If E is non-zero, the slope of E is defined to

be the quotient µ̂(E) := d̂eg(E)/ rkE. The maximal slope of E is the maximal value
of slopes of all non-zero Hermitian subbundles of E. The minimal slope of E is the
minimal value of slopes of all non-zero Hermitian quotients of E. We say that E is
semistable if µ̂(E) = µ̂max(E).

Recall that the Harder-Narasimhan polygon PE is by definition the concave function

defined on [0, rkE] whose graph is the convex hull of points of the form (rkF, d̂eg(F )),
where F runs over all Hermitian subbundles of E. By works of Stuhler [18] and
Grayson [12], this polygon can be determined from the Harder-Narasimhan flag of
E, which is the only flag

(4) E = E0 ⊃ E1 ⊃ · · · ⊃ En = 0

such that the subquotients Ei/Ei+1 are all semistable, and verifies

(5) µ̂(E0/E1) < µ̂(E1/E2) < · · · < µ̂(En−1/En).

In fact, the vertices of PE are just (rkEi, d̂eg(Ei)).
For details about Hermitian vector bundles on SpecOK , see [3, 4, 7].

2.3. Reminder on Borel measures. — Denote by Cc(R) the space of all contin-
uous functions of compact support on R. Recall that a Borel measure on R is just a
positive linear functional on Cc(R), where the word “positive” means that the linear
functional sends a positive function to a positive number. One says that a sequence
(νn)n≥1 of Borel measures on R converges vaguely to the Borel measure ν if, for any
h ∈ Cc(R), the sequence of integrals

( ∫
h dνn

)
n≥1

converges to
∫
h dν. This is also

equivalent to the convergence of integrals for any h ∈ C∞
0 (R), the space of all smooth

functions of compact support on R.
Let ν be a Borel probability measure on R. If a ∈ R, we denote by τaν the Borel

measure such that
∫
h dτaν =

∫
h(x+a)ν(dx). If ε > 0, let Tεν be the Borel measure

such that
∫
h dTεν =

∫
h(εx)ν(dx).

If ν is a Borel probability measure on R whose support is bounded from above,
we denote by P (ν) the Legendre transformation (see [13] II §2.2) of the function
x 7→

∫ x

0
ν(]y,+∞[) dy. It is a concave function on [0, 1[ which takes value 0 at the

origin. If ν is a linear combination of Dirac measures, then P (ν) is a polygon (that
is to say, concave and piecewise linear). An alternative definition of P (ν) is, if we

denote by F ∗
ν (t) = sup{x | ν(]x,+∞[) > t}, then P (ν)(t) =

∫ t

0
F ∗

ν (s) ds. One has
P (τaν)(t) = P (ν)(t) + at and P (Tεν) = εP (ν).

If ν1 and ν2 are two Borel probability measures on R, we use the symbol ν1 ≻ ν2
or ν2 ≺ ν1 to denote the following condition:

for any increasing and bounded function h,
∫
h dν1 ≥

∫
h dν2.
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It defines an order on the set of all Borel probability measures on R. If in addition
ν1 and ν2 are of support bounded from above, then P (ν1) ≥ P (ν2).

2.4. Filtered spaces. — Let k be a field and V be a vector space of finite rank
over k. We call filtration of V any family F = (FaV )a∈R of subspaces of V subject
to the following conditions

1) for all a, b ∈ R such that a ≤ b, one has FaV ⊃ FbV ,
2) FaV = 0 for a sufficiently positive,
3) FaV = V for a sufficiently negative,
4) the function a 7→ rkk(FaV ) is left continuous.

Such filtration corresponds to a flag

V = V0 ) V1 ) V2 ) · · · ) Vn = 0

together with a strictly increasing real sequence (ai)0≤i≤n−1 describing the points
where the function a 7→ rkk(FaV ) is discontinuous.

We define a function λ : V → R ∪ {+∞} as follows:

λ(x) = sup{a ∈ R |x ∈ FaV }.

This function actually takes values in {a0, · · · , an−1,+∞}, and is finite on V \ {0}.
If V is non-zero, the filtered space (V,F) defines a Borel probability measure νV

which is a linear combination of Dirac measures:

νV =

n−1∑

i=0

rkVi − rkVi+1

rkV
δai
.

Note that the support of νV is just {a0, · · · , an−1}. We define λmin(V ) = a0 and
λmax(V ) = an−1. Denote by PV the polygon P (νV ). If V = 0, by convention we
define νV as the zero measure.

If 0 // V ′ // V // V ′′ // 0 is an exact sequence of filtered vector

spaces, where V 6= 0, then the following equality holds (cf. [8] Proposition 1.2.5):

(6) νV =
rkV ′

rkV
νV ′ +

rkV ′′

rkV
νV ′′ .

If E is a non-zero Hermitian vector bundle on SpecOK , then the Harder-
Narasimhan flag (4) and the successive slope (5) defines a filtration of V = EK ,
called the Harder-Narasimhan filtration. We denote by νE the Borel measure associ-
ated to this filtration, called the measure associated to the Hermitian vector bundle
E. One has the following relations:

(7) λmax(V ) = µ̂max(E), λmin(V ) = µ̂min(E), PV = PE = P (νE).

For details about filtered spaces and their measures and polygons, see [8] §1.2.



6 HUAYI CHEN

2.5. Slope inequality and its measure form. — For any maximal ideal p of
OK , denote by Kp the completion of K with respect to the p-adic valuation vp on K,

and by | · |p be the p-adic absolute value such that |a|p = #(OK/p)−vp(a).

Let E and F be two Hermitian vector bundles on SpecOK . Let ϕ : EK → FK

be a non-zero K-linear homomorphism. For any maximal ideal p of OK , let ‖ϕ‖p be
the norm of the linear mapping ϕKp

: EKp
→ FKp

. Similarly, for any embedding
σ : K → C, let ‖ϕ‖σ be the norm of ϕσ,C : Eσ,C → Fσ,C. The height of ϕ is then
defined as

(8) h(ϕ) :=
∑

p

log ‖ϕ‖p +
∑

σ:K→C

‖ϕ‖σ.

Recall the slope inequality as follows (cf. [3] Proposition 4.3):

Proposition 2.1. — If ϕ is injective, then µ̂max(E) ≤ µ̂max(F ) + h(ϕ).

The following estimation generalizing [8] Corollary 2.2.6 is an application of the
slope inequality.

Proposition 2.2. — Assume ϕ is injective. Let θ = rkE/ rkF . Then we have
νF ≻ θτh(ϕ)νE + (1 − θ)δµ̂min(F ).

Proof. — We equip EK and FK with Harder-Narasimhan filtrations. The slope
inequality implies that λ(ϕ(x)) ≥ λ(x) − h(ϕ) for any x ∈ EK (see [8] Proposition
2.2.4). Let V be the image of ϕ, equipped with induced filtration. By [8] Corollary
2.2.6, νV ≻ τh(ϕ)νE . By (6), νF ≻ θνV + (1 − θ)δµ̂min(F ), so the proposition is

proved.

3. Positive degree and number of effective elements

Let E be a Hermitian vector bundle on SpecOK . Define

ĥ0(E) := log #{s ∈ E | ∀σ : K → C, ‖s‖σ ≤ 1},

which is the logarithm of the number of effective elements in E. Note that if

0 //

E
′

// E //

E
′′

// 0 is a short exact sequence of Hermitian vector

bundles, then ĥ0(E
′
) ≤ ĥ0(E) ≤ ĥ0(E

′
) + ĥ0(E

′′
).

In this section, we define an invariant of E, suggested by J.-B. Bost, which is called
the positive degree:

d̂eg+(E) := max
t∈[0,1]

PE(t).

If E is non-zero, define the positive slope of E as µ̂+(E) = d̂eg+(E)/ rkE. Using
the Riemann-Roch inequality established by Gillet and Soulé [11], we shall compare

ĥ0(E) to d̂eg+(E).
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3.1. Reminder on dualizing bundle and Riemann-Roch inequality. —
Denote by ωOK

the arithmetic dualizing bundle on SpecOK : it is a Hermitian line
bundle on SpecOK whose underlying OK-module is ωOK

:= HomZ(OK ,Z). This
OK-module is generated by the trace map trK/Q : K → Q up to torsion. We choose
Hermitian metrics on ωOK

such that ‖trK/Q‖σ = 1 for any embedding σ : K → C.
The arithmetic degree of ωOK

is log |∆K |, where ∆K is the discriminant of K over Q.
We recall below a result in [11], which should be considered as an arithmetic

analogue of classical Riemann-Roch formula for vector bundles on a smooth projective
curve.

Proposition 3.1 (Gillet and Soulé). — There exists an increasing function C0 :
N∗ → R+ satisfying C0(n) ≪K n logn such that, for any Hermitian vector bundle E
on SpecOK , one has

(9)
∣∣ĥ0(E) − ĥ0(ωOK

⊗ E
∨
) − d̂eg(E)

∣∣ ≤ C0(rkE).

3.2. Comparison of ĥ0 and d̂eg+. — Proposition 3.3 below is a comparison

between ĥ0 and d̂eg+. The following lemma, which is consequences of the Riemann-
Roch inequality (9), is needed for the proof.

Lemma 3.2. — Let E be a non-zero Hermitian vector bundle on SpecOK .

1) If µ̂max(E) < 0, then ĥ0(E) = 0.

2) If µ̂min(E) > log |∆K |, then
∣∣ĥ0(E) − d̂eg(E)

∣∣ ≤ C0(rkE).

3) If µ̂min(E) ≥ 0, then
∣∣ĥ0(E) − d̂eg(E)

∣∣ ≤ log |∆K | rkE + C0(rkE).

Proof. — 1) Assume that E has an effective section. There then exists a homomor-
phism ϕ : L0 → E whose height is negative or zero. By slope inequality, we obtain
µ̂max(E) ≥ 0.

2) Since µ̂min(E) > log |∆K |, we have µ̂max(ωOK
⊗E

∨
) < 0. By 1), ĥ0(ωOK

⊗E
∨
) =

0. Thus the desired inequality results from (9).
3) Let a = log |∆K | + ε with ε > 0. Then µ̂min(E ⊗ La) > log |∆K |. By 2),

ĥ0(E ⊗ La) ≤ d̂eg(E ⊗ La) + C0(rkE) = d̂eg(E) + a rkE + C0(rkE). Since a > 0,

ĥ0(E) ≤ ĥ0(E ⊗ La). So we obtain ĥ0(E) − d̂eg(E) ≤ a rkE + C0(rkE). Moreover,

(9) implies ĥ0(E)− d̂eg(E) ≥ ĥ0(ωOK
⊗E

∨
)−C0(rkE) ≥ −C0(rkE). Therefore, we

always have
∣∣ĥ0(E)− d̂eg(E)

∣∣ ≤ a rkE+C0(rkE). Since ε is arbitrary, we obtain the
desired inequality.

Proposition 3.3. — The following inequality holds:

(10)
∣∣ĥ0(E) − d̂eg+(E)

∣∣ ≤ rkE log |∆K | + C0(rkE).

Proof. — Let the Harder-Narasimhan flag of E be as in (4). For any integer i such
that 0 ≤ i ≤ n−1, let αi = µ̂(Ei/Ei+1). Let j be the first index in {0, · · · , n−1} such

that αj ≥ 0; if such index does not exist, let j = n. By definition, d̂eg+(E) = d̂eg(Ej).

Note that, if j > 0, then µ̂max(E/Ej) = αj−1 < 0. Therefore we always have

h0(E/Ej) = 0 and hence ĥ0(E) = ĥ0(Ej).
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If j = n, then ĥ0(Ej) = 0 = d̂eg+(E). Otherwise µ̂min(Ej) = αj ≥ 0 and by
Lemma 3.2 3), we obtain

∣∣ĥ0(Ej) − d̂eg(Ej)
∣∣ ≤ rkEj log |∆K | + C0(rkEj) ≤ rkE log |∆K | + C0(rkE).

4. Asymptotic polygon of a big line bundle

Let k be a field and B =
⊕

n≥0Bn be an integral graded k-algebra such that, for
n sufficiently positive, Bn is non-zero and has finite rank. Let f : N∗ → R+ be a
mapping such that lim

n→∞
f(n)/n = 0. Assume that each vector space Bn is equipped

with an R-filtration F (n) such that B is f -quasi-filtered (cf. [8] §3.2.1). In other
words, we assume that there exists n0 ∈ N∗ such that, for any integer r ≥ 2 and all
homogeneous elements x1, · · · , xr in B of degree n1, · · · , nr in N≥n0

, one has

λ(x1 · · ·xr) ≥

r∑

i=1

(
λ(xi) − f(ni)

)
.

We suppose in addition that supn≥1 λmax(Bn)/n < +∞. Recall below some results
in [8] (Proposition 3.2.4 and Theorem 3.4.3).

Proposition 4.1. — 1) The sequence (λmax(Bn)/n)n≥1 converges in R.
2) If B is finitely generated, then the sequence of measures (T 1

n
νBn

)n≥1 converges

vaguely to a Borel probability measure on R.

In this section, we shall generalize the second assertion of Proposition 4.1 to the
case where the algebra B is given by global sections of tensor power of a big line
bundle on a projective variety.

4.1. Convergence of measures. — Let X be an integral projective scheme of
dimension d defined over k and L be a big invertible OX -module: recall that an
invertible OX -module L is said to be big if its volume, defined as

vol(L) := lim sup
n→∞

rkk H
0(X,L⊗n)

nd/d!
,

is strictly positive.

Theorem 4.2. — With the above notation, if B =
⊕

n≥0H
0(X,L⊗n), then the

sequence of measures (T 1

n
νBn

)n≥1 converges vaguely to a probability measure on R.

Proof. — For any integer n ≥ 1, denote by νn the measure T 1

n
νBn

. Since L is big,

for sufficiently positive n, H0(X,L⊗n) 6= 0, and hence νn is a probability measure. In
addition, Proposition 4.1 1) implies that the supports of the measures νn are uniformly
bounded from above. After Fujita’s approximation theorem (cf. [9, 19], see also [14]
Ch. 11), the volume function vol(L) is in fact a limit:

vol(L) = lim
n→∞

rkk H
0(X,L⊗n)

nd/d!
.
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Furthermore, for any real number ε, 0 < ε < 1, there exists an integer p ≥ 1 together
with a finitely generated sub-k-algebra Aε of B(p) =

⊕
n≥0Bnp which is generated

by elements in Bp and such that

lim
n→∞

rkk H
0(X,L⊗np) − rkAε

n

rkk H0(X,L⊗np)
≤ ε.

The graded k-algebraAε, equipped with induced filtrations, is f -quasi-filtered. There-
fore Proposition 4.1 2) is valid for Aε. In other words, If we denote by νε

n the Borel
measure T 1

np
νAε

n
, then the sequence of measures (νε

n)n≥1 converges vaguely to a Borel

probability measure νε on R. In particular, for any function h ∈ Cc(R), the se-
quence of integrals

( ∫
h dνε

n

)
n≥1

is a Cauchy sequence. This assertion is also true

when h is a continuous function on R whose support is bounded from below: the
supports of the measures νε

n are uniformly bounded from above. The exact sequence

0 // Aε
n

// Bnp // Bnp/A
ε
n

// 0 implies that

νBnp
=

rkAε
n

rkBnp
νAε

n
+

rkBnp − rkAε
n

rkBnp
νBnp/Aε

n
.

Therefore, for any bounded Borel function h, one has

(11)
∣∣∣
∫
h dνnp −

rkAε
n

rkBnp

∫
h dνε

n

∣∣∣ ≤ ‖h‖sup
rkBnp − rkAε

n

rkBnp
.

Hence, for any bounded continuous function h satisfying inf(supp(h)) > −∞, there
exists Nh,ε ∈ N such that, for any n,m ≥ Nh,ε,

(12)
∣∣∣
∫
h dνnp −

∫
h dνmp

∣∣∣ ≤ 2ε‖h‖sup + ε.

Let h be a smooth function on R whose support is compact. We choose two
increasing continuous functions h1 and h2 such that h = h1−h2 and that the supports
of them are bounded from below. Let n0 ∈ N∗ suffciently large such that, for any
r ∈ {n0p+1, · · · , n0p+p−1}, one has H0(X,L⊗r) 6= 0. We choose, for such r, a non-
zero element er ∈ H0(X,L⊗r). For any n ∈ N and any r ∈ {n0p+1, · · · , n0p+p−1},
let Mn,r = erBnp ⊂ Bnp+r, M

′
n,r = e2n0p+p−rMn,r ⊂ B(n+2n0+1)p and denote by

νn,r = T 1

np
νMn,r

, ν′n,r = T 1

np
νM ′

n,r
, where Mn,r and M ′

n,r are equipped with the

induced filtrations. As the algebra B is f -quasi-filtered, we obtain, by [8] Lemma
1.2.6, ν′n,r ≻ τan,r

νn,r ≻ τbn,r
νnp, where

an,r =
λ(e2n0p+p−r) − f(np+ r) − f(2n0p+ p− r)

np
, bn,r = an,r+

λ(er) − f(np) − f(r)

np
.

This implies

(13)

∫
hi dν′n,r ≥

∫
hi dτan,r

νn,r ≥

∫
hi dτbn,r

νnp, i = 1, 2.

In particular,

(14)
∣∣∣
∫
hi dτan,r

νn,r −

∫
hi dτbn,r

νnp

∣∣∣ ≤
∣∣∣
∫
hi dν′n,r −

∫
hi dτbn,r

νnp

∣∣∣
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As lim
n→∞

rkB(n+2n0+1)p − rkBnp

rkB(n+2n0+1)p
= 0, lim

n→∞

∣∣∣
∫
hi dν′n,r −

∫
hi dν(n+2n0+1)p

∣∣∣ = 0.

Moreover, lim
n→∞

bn,r = 0. By [8] Lemma 1.2.10, we obtain

lim
n→∞

∣∣∣
∫
hi dτbn,r

νnp −

∫
hi dνnp

∣∣∣ = 0.

Therefore,

lim sup
n→∞

∣∣∣
∫
hi dν′n,r −

∫
hi dτbn,r

νnp

∣∣∣

≤ lim sup
n→∞

∣∣∣
∫
hi dν(n+2n0+1)p −

∫
hi dνnp

∣∣∣ ≤ 2ε‖hi‖sup + ε.

By (14), lim sup
n→∞

∣∣∣
∫
hi dτan,r

νn,r −

∫
hi dτbn,r

νnp

∣∣∣ ≤ 2ε‖hi‖sup + ε. Note that

lim
n→∞

rkBnp+r − rkBnp

rkBnp+r
= lim

n→∞
an,r = 0.

So

lim
n→∞

∣∣∣
∫
hi dνn,r −

∫
hi dνnp+r

∣∣∣ = lim
n→∞

∣∣∣
∫
hi dνn,r −

∫
hi dτan,r

νn,r

∣∣∣ = 0.

Hence

lim sup
n→∞

∣∣∣
∫
h dνnp+r −

∫
h dνnp

∣∣∣ ≤ 2ε(‖h1‖sup + ‖h2‖sup) + 2ε.

According to (12), we obtain that there exists N ′
h,ε ∈ N∗ such that, for all integers l

and l′ such that l ≥ N ′
h,ε, l

′ ≥ N ′
h,ε, one has

∣∣∣
∫
h dνl −

∫
h dνl′

∣∣∣ ≤ 4ε(‖h1‖sup + ‖h2‖sup) + 2ε‖h‖sup + 6ε,

which implies that the sequence (
∫
h dνn)n≥1 converges in R.

Let I : C∞
0 (R) → R be the linear functional defined by I(h) = lim

n→∞

∫
h dνn. It

extends in a unique way to a continuous linear functional on Cc(R). Furthermore,
it is positive, and so defines a Borel measure ν on R. Finally, by (11), |ν(R) − (1 −
ε)νε(R)| ≤ ε. Since ε is arbitrary, ν is a probability measure.

4.2. Convergence of maximal values of polygons. — If ν is a Borel probability
measure on R and α ∈ R, denote by ν(α) the Borel probability measure on R such
that, for any h ∈ Cc(R),

∫
h dν(α) =

∫
h(x)11[α,+∞[(x)ν(dx) + h(α)ν(] −∞, α[).

The measure ν(α) is called the truncation of ν at α. The truncation operator preserves
the order “≻”.
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Assume that the support of ν is bounded from above. The truncation of ν at α
modifies the “polygon” P (ν) only on the part with derivative < α. More precisely,
one has

P (ν) = P (ν(α)) on {t ∈ [0, 1[
∣∣F ∗

ν (t) ≥ α}.

In particular, if α ≤ 0, then

(15) max
t∈[0,1[

P (ν)(t) = max
t∈[0,1[

P (ν(α))(t).

The following proposition shows that given a vague convergence sequence of Borel
probability measures, almost all truncations preserve vague limit.

Proposition 4.3. — Let (νn)n≥1 be a sequence of Borel probability measures which
converges vaguely to a Borel probability measure ν. Then there exists a countable

subset Z of R such that, for any α ∈ R \Z, the sequence (ν
(α)
n )n≥1 converges vaguely

to ν(α).

Proof. — Let Z be the set of all points x in R such that {x} has a strictly positive
mass for the measure ν. It is a countable set. Then by [6] IV §5 n◦12 Proposition 22,

for any real number α outside Z, ν
(α)
n converges vaguely to να.

Corollary 4.4. — Under the assumption of Theorem 4.2, the sequence
(

max
t∈[0,1]

PBn
(t)/n

)
n≥1

converges in R.

Proof. — For n ∈ N∗, denote by νn = T 1

n
νBn

. By Theorem 4.2, the sequence (νn)n≥1

converges vaguely to a Borel probability measure ν. Let α < 0 be a number such that

(ν
(α)
n )n≥1 converges vaguely to ν(α). Note that the supports of να

n are uniformly

bounded. So P (ν
(α)
n ) converges uniformly to P (ν(α)) (see [8] Proposition 1.2.9). By

(15),
(

max
t∈[0,1]

PBn
(t)/n

)
n≥1

converges to max
t∈[0,1]

P (ν)(t).

If V is a finite dimensional filtered vector space over k, we shall use the expression
λ+(V ) to denote max

t∈[0,1]
PV (t). With this notation, the assertion of Corollary 4.4

becomes: lim
n→∞

λ+(Bn)/n exists in R.

Lemma 4.5. — Assume that ν1 and ν2 are two Borel probability measures whose
supports are bounded from above. Let ε ∈]0, 1[ and ν = εν1 + (1 − ε)ν2. Then

(16) max
t∈[0,1]

P (ν)(t) ≥ ε max
t∈[0,1]

P (ν1)(t).

Proof. — After truncation at 0 we may assume that the supports of ν1 and ν2
are contained in [0,+∞[. In this case ν ≻ εν1 + (1 − ε)δ0 and hence P (ν) ≥
P (εν1 + (1 − ε)δ0). Since

P (εν1 + (1 − ε)δ0)(t) =

{
εP (ν1)(t/ε), t ∈ [0, ε],

εP (ν1)(1), t ∈ [ε, 1[,

we obtain (16).
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Theorem 4.6. — Under the assumption of Theorem 4.2, one has

lim
n→∞

λ+(Bn)/n > 0 if and only if lim
n→∞

λmax(Bn)/n > 0.

Furthermore, in this case, the inequality lim
n→∞

λ+(Bn)/n ≤ lim
n→∞

λmax(Bn)/n holds.

Proof. — For any filtered vector space V , λmax(V ) > 0 if and only if λ+(V ) > 0, and
in this case one always has λmax(V ) ≥ λ+(V ). Therefore the second assertion is true.
Furthermore, this also implies

lim
n→∞

1

n
λ+(Bn) > 0 =⇒ lim

n→∞

1

n
λmax(Bn) > 0.

It suffices then to prove the converse implication. Assume that α > 0 is a real
number such that lim

n→∞
λmax(Bn)/n > 4α. Choose sufficiently large n0 ∈ N such that

f(n) < αn for any n ≥ n0 and such that there exists a non-zero x0 ∈ Bn0
satisfying

λ(x0) ≥ 4αn0. Since the algebra B is f -quasi-filtered, λ(xm
0 ) ≥ 4αn0m −mf(n) ≥

3αmn0. By Fujita’s approximation theorem, there exists an integer p divisible by n0

and a subalgebra A of B(p) =
⊕

n≥0Bnp generated by a finite number of elements

in Bp and such that lim inf
n→∞

rkAn/ rkBnp > 0. By possible enlargement of A we

may assume that A contains x
p/n0

0 . By Lemma 4.5, lim
n→∞

λ+(An)/n > 0 implies

lim
n→∞

λ+(Bnp)/np = lim
n→∞

λ+(Bn)/n > 0. Therefore, we reduce our problem to the

case where

1) B is an algebra of finite type generated by B1,
2) there exists x1 ∈ B1, x1 6= 0 such that λ(x1) ≥ 3α with α > 0,
3) f(n) < αn.

Furthermore, by Noether’s normalization theorem, we may assume that B =
k[x1, · · · , xq] is an algebra of polynomials, where x1 coincides with the element in
condition 2). Note that

(17) λ(xa1

1 · · ·xaq

q ) ≥

q∑

i=1

ai

(
λ(xi) − α

)
≥ 2αa1 +

q∑

i=2

ai

(
λ(xi) − α

)
.

Let β > 0 such that −β ≤ λ(xi)−α for any i ∈ {2, · · · , q}. We obtain from (17) that

λ(xa1

1 · · ·x
aq

q ) ≥ αa1 as soon as a1 ≥ β
α

∑q
i=2 ai. For n ∈ N∗, let

un = #
{

(a1, · · · , aq) ∈ Nq
∣∣∣ a1 + · · · + aq = n, a1 ≥

β

α
(a2 + · · · + aq)

}

= #
{

(a1, · · · , aq) ∈ Nq
∣∣∣ a1 + · · · + aq = n, a1 ≥

β

α+ β
n
}

=

(
n− ⌊ β

α+βn⌋ + q − 1

q − 1

)
,

and

vn = #
{
(a1, · · · , aq) ∈ Nq

∣∣ a1 + · · · + aq = n
}

=

(
n+ q − 1

q − 1

)
.
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Thus lim
n→∞

un/vn =
( α

α+ β

)q−1

> 0, which implies lim
n→∞

1

n
λ+(Bn) > 0 by Lemma

4.5.

5. Volume function as a limit and arithmetic bigness

Let X be an arithmetic variety of dimension d and L be a Hermitian line bundle
on X . Denote by X = XK and L = LK . Using the convergence result established
in the previous section, we shall prove that the volume function is in fact a limit of
normalized positive degrees. We also give a criterion of arithmetic bigness by the
positivity of asymptotic maximal slope.

5.1. Volume function and asymptotic positive degree. — For any n ∈ N,

we choose a Hermitian vector bundle π∗(L
⊗n

) = (π∗(L
⊗n), (‖ · ‖σ)σ:K→C) whose

underlying OK-module is π∗(L
⊗n) and such that

max
06=s∈π∗(L⊗n)

∣∣∣ log ‖s‖sup − log ‖s‖σ

∣∣∣ ≪ logn, n > 1.

Denote by rn the rank of π∗(L
⊗n). One has rn ≪ nd−1. For any n ∈ N, define

ĥ0(X ,L
⊗n

) := log #{s ∈ H0(X ,L⊗n) | ∀σ : K → C, ‖s‖σ,sup ≤ 1}.

Recall that the arithmetic volume function of L defined by Moriwaki (cf. [16]) is

v̂ol(L) := lim sup
n→∞

ĥ0(X ,L
⊗n

)

nd/d!
,

and L is said to be big if and only if v̂ol(L) > 0 (cf. [16] Theorem 4.5 and [20]
Corollary 2.4).

In the following, we give an alternative proof of a result of Morkwaki and Yuan
without regularity condition.

Proposition 5.1. — If L is big, then L is big on X in usual sense.

Proof. — For any integer n ≥ 1, we choose two Hermitian vector bundles E
(1)

n =

(π∗(L
⊗n), (‖ · ‖

(1)
σ )σ:K→C) and E

(2)

n = (π∗(L
⊗n), (‖ · ‖

(2)
σ )σ:K→C) such that

‖s‖(1)
σ ≤ ‖s‖σ,sup ≤ ‖s‖(2)

σ ≤ rn‖s‖
(1)
σ ,

where rn is the rank of π∗(L
⊗n). This is always possible due to an argument of John

and Löwner ellipsoid, see [10] definition-theorem 2.4. Thus ĥ0(E
(2)

n ) ≤ ĥ0(X ,L
⊗n

) ≤

ĥ0(E
(1)

n ). Furthermore, by [8] Corollay 2.2.9,
∣∣d̂eg+(E

(1)

n ) − d̂eg+(E
(2)

n )
∣∣ ≤ rn log rn.

By (10), we obtain
∣∣ĥ0(X,L

⊗n
) − ĥ0(E

(1)

n )
∣∣ ≤ 2rn log |∆K | + 2C0(rn) + rn log rn.

Furthermore,
∣∣d̂eg+(E

(1)

n ) − d̂eg+(π∗(L
⊗n

))
∣∣ = O(rn log rn). Hence

∣∣ĥ0(X,L
⊗n

) − ĥ0(π∗(L
⊗n

))
∣∣ = O(rn log rn).
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Since rn ≪ nd−1, we obtain

(18) lim
n→∞

∣∣∣∣
ĥ0(X ,L

⊗n
)

nd/d!
−

d̂eg+(π∗(L
⊗n

))

nd/d!

∣∣∣∣ = 0,

and therefore v̂ol(L) = lim sup
n→∞

d̂eg+(π∗(L
⊗n

))

nd/d!
. If L is big, then v̂ol(L) > 0, and

hence π∗(L
⊗n) 6= 0 for n sufficiently positive. Combining with the fact that

lim sup
n→+∞

d̂eg+(π∗(L
⊗n))

nrn
≤ lim

n→+∞

µ̂max(π∗(L
⊗n

))

n
< +∞,

we obtain lim sup
n→+∞

rn
nd−1

> 0.

Theorem 5.2. — The following equalities hold:
(19)

v̂ol(L) = lim
n→∞

ĥ0(X ,L
⊗n

)

nd/d!
= lim

n→∞

d̂eg+(π∗(L
⊗n

))

nd/d!
= vol(L) lim

n→∞

µ̂+(π∗(L
⊗n

))

n/d
,

where the positive slope µ̂+ was defined in §3.

Proof. — We first consider the case where L is big. The graded algebra B =⊕
n≥0H

0(X,L⊗n) equipped with Harder-Narasimhan filtrations is quasi-filtered for

a function of logarithmic increasing speed at infinity (see [8] §4.1.3). Therefore
Corollary 4.4 shows that the sequence (λ+(Bn)/n)n≥1 converges in R. Note that

λ+(Bn) = µ̂+(π∗(L
⊗n

)). So the last limit in (19) exists. Furthermore, L is big on X ,
so

vol(L) = lim
n→∞

rk(π∗(L
⊗n

))

nd−1/(d− 1)!
,

which implies the existence of the third limit in (19) and the last equality. Thus the
existence of the first limit and the second equality follow from (18).

When L is not big, since

lim
n→∞

µ̂+(π∗(L
⊗n

))

n/d
≤ lim

n→∞

µ̂max(π∗(L
⊗n

))

n/d
< +∞

the last term in (19) vanishes. This implies the vanishing of the second limit in (19).
Also by (18), we obtain the vanishing of the first limit.

Corollary 5.3. — The following relations hold:

(20) v̂ol(L) ≥ lim sup
n→∞

d̂eg(π∗(L
⊗n

))

nd/d!
= lim sup

n→∞

χ(π∗(L
⊗n

))

nd/d!
.

Proof. — The inequality is a consequence of Theorem 5.2 and the comparison

d̂eg+(E) ≥ d̂eg(E). Here E is an arbitrary Hermitian vector bundle on SpecOK .
The equality follows from a classical result which compares Arakelov degree and
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Euler-Poincaré characteristic (see [8] 4.1.4 for a proof). Attention: in [8], the author

has adopted the convention µ̂(E) = d̂eg(E)/[K : Q] rkE.

Remark 5.4. — Corollary 5.3 is a generalization of [16] Theorem 6.2 to continuous
metrics case.

5.2. A criterion of arithmetic bigness. — We shall prove that the bigness of L
is equivalent to the positivity of the asymptotic maximal slope of L. This result is
strongly analogous to Theorem 4.5 of [16]. In fact, by a result of Borek [2] (see also [5]
Proposition 3.3.1), which reformulate Minkowski’s First Theorem, the maximal slope
of a Hermitian vector bundle on SpecOK is “close” to the opposite of the logarithm
of its first minimum. So the positivity of the asymptotic maximal slope is equivalent
to the existence of (exponentially) small section when n goes to infinity.

Theorem 5.5. — L is big if and only if lim
n→∞

µ̂max(π∗(L
⊗n

))/n > 0. Furthermore,

the following inequality holds:

v̂ol(L)

dvol(L)
≤ lim

n→∞

µ̂max(π∗(L
⊗n

))

n
.

Proof. — Since both conditions imply the bigness of L, we may assume that L is big.
Let B =

⊕
n≥0H

0(X,L⊗n) equipped with Harder-Narasimhan filtrations. One has

µ̂+(π∗(L
⊗n

)) = λ+(Bn), µ̂max(π∗(L
⊗n

) = λmax(Bn).

Therefore, the assertion follows from Theorems 4.6 and 5.2.

Remark 5.6. — After [5] Proposition 3.3.1, for any non-zero Hermitian vector bun-
dle E on SpecOK , one has

(21)
∣∣∣µ̂max(E) +

1

2
log inf

06=s∈E

∑

σ:K→C

‖s‖2
σ

∣∣∣ ≤ 1

2
log[K : Q] +

1

2
log rkE +

log |∆K |

2[K : Q]
.

Therefore, by (21), the bigness of L is equivalent to each of the following conditions:

1) L is big, and there exists ε > 0 such that, when n is sufficiently large, L
⊗n

has a
global section sn satisfying ‖sn‖σ,sup ≤ e−εn for any σ : K → C.

2) L is big, and there exists an integer n ≥ 1 such that L
⊗n

has a global section sn

satisfying ‖sn‖σ,sup < 1 for any σ : K → C.

Thus we recover a result of Moriwaki ([16] Theorem 4.5 (1)⇐⇒(2)).

Corollary 5.7. — Assume L is big. Then there exists a Hermitian line bundle M
on SpecOK such that L ⊗ π∗M is arithmetically big.
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6. Continuity of truncated asymptotic polygon

Let us keep the notation of §5 and assume that L is big on X . For any integer
n ≥ 1, denote by νn the dilated measure T 1

n
ν

π∗(L
⊗n

)
. Recall that in §4 we have

actually established the followint result:

Proposition 6.1. — 1) the sequence of Borel measures (νn)n≥1 converges vaguely
to a Borel probability measure ν;

2) there exists a countable subset Z of R such that, for any α ∈ R\Z, the sequence of

polygons (P (ν
(α)
n ))n≥1 converges uniformly to P (ν(α)), which impies in particular

that P (ν(α)) is Lipschitz.

Let Z be as in the proposition above. For any α ∈ R \ Z, denote by P
(α)

L
the

concave function P (ν(α)) on [0, 1]. The following property of P
(α)

L
results from the

definition:

Proposition 6.2. — For any integer p ≥ 1, on has P
(pα)

L
⊗p = pP

(α)

L
.

Proof. — By definition T 1

n
ν

π∗(L
⊗pn

)
= Tpνn. Using (Tpνn)(pα) = Tpν

(α)
n , we obtain

the desired equality.

Remark 6.3. — We deduce from the previous proposition the equality v̂ol(L
⊗p

) =

pdv̂ol(L), which has been initially proved by Moriwaki ([16] Proposition 4.7).

The main purpose of this section is to establish the following continuity result,
which is a generalization of the continuity of the arithmetic volume function proved
by Moriwaki (cf. [16] Theorem 5.4).

Theorem 6.4. — Assume L is a Hermitian line bundle on X . Then, for all but

countably many α ∈ R, the sequence of functions
(

1
pP

(pα)

L
⊗p

⊗L

)
p≥1

converges uniformly

to P
(α)

L
.

Corollary 6.5 ([16] Theorem 5.4). — With the assumption of Theorem 6.4, one
has

lim
p→∞

1

pd
v̂ol(L

⊗p
⊗ L ) = v̂ol(L).

In order to prove Theorem 6.4, we need the following lemma.

Lemma 6.6. — Let L be an arbitrary Hermitian line bundle on SpecOK . If L is

arithmetically big, then there exists an integer q ≥ 1 such that L
⊗q

⊗ L is arith-
metically big and has at least one non-zero effective global section, that is, a non-zero
section s ∈ H0(X ,L⊗q ⊗ L ) such that ‖s‖σ,sup ≤ 1 for any embedding σ : K → C.

Proof. — As L is arithmetically big, we obtain that L is big on X . Therefore, there
exists an integer m0 ≥ 1 such that L⊗m0 ⊗ LK is big on X and π∗(L

⊗m0 ⊗ L ) 6= 0.
Pick an arbitrary non-zero section s ∈ H0(X ,L⊗m0⊗L ) and let M = sup

σ:K→C

‖s‖σ,sup.
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After Theorem 5.5 (see also Remark 5.6), there exists m1 ∈ N such that L⊗m1 has a
section s′ such that ‖s′‖σ,sup ≤ (2M)−1 for any σ : K → C. Let q = m0 +m1. Then

s ⊗ s′ is a non-zero strictly effective section of L
⊗q

⊗ L . Furthermore, L
⊗q

⊗ L is
arithmetically big since it is generically big and has a strictly effective section.

Proof of Theorem 6.4. — After Corollary 5.7, we may assume that L is arithmetically

big. Let q ≥ 1 be an integer such that L
⊗q

⊗ L is arithmetically big and has a non-
zero effective section s1 (cf. Lemma 6.6). For any integers p and n such that p > q,
n ≥ 1, let ϕp,n : π∗(L

⊗(p−q)n) → π∗(L
⊗pn ⊗ L ⊗n) be the homomorphism defined by

the multiplication by s⊗n
1 . Since s1 is effective, h(ϕp,n) ≤ 0. Let

θp,n = rk(π∗(L
⊗(p−q)n))/ rk(π∗(L

⊗pn ⊗ L
⊗n)).

Note that

lim
n→∞

θp,n = vol(L⊗(p−q))/vol(L⊗p ⊗ LK).

Denote by θp this limit. Let νp,n be the measure associated to π∗(L
⊗pn

⊗ L
⊗n

).

Let ap,n = µ̂min(π∗(L
⊗pn

⊗ L
⊗n

)). After Proposition 2.2, one has νp,n ≻
θp,nT(p−q)nν(p−q)n + (1 − θp,n)δap,n

, or equivalently

(22) T 1

np
νp,n ≻ θp,nT(p−q)/pν(p−q)n + (1 − θp,n)δap,n/np.

As L⊗p ⊗ LK is big, the sequence of measures (T 1

n
νp,n)n≥1 converges vaguely to a

Borel probability measure ηp. By truncation and then by passing n→ ∞, we obtain
from (22) that for all but countably many α ∈ R,

(23) (T 1

p
ηp)

(α) ≻ θp(T(p−q)/pν)
(α) + (1 − θp)δα,

where we have used the trivial estimation δ
(α)
a ≻ δα.

Now we apply Lemma 6.6 on the dual Hermitian line bundle L
∨

and obtain that

there exists an integer r ≥ 1 and an effective section s2 of L
⊗r

⊗ L
∨
. Consider now

the homomorphism ψp,n : π∗(L
⊗pn⊗L ⊗n) → π∗(L

⊗(p+r)n) induced by multiplication
by s⊗n

2 . Its height is negative. Let

ϑp,n = rk(π∗(L
⊗pn ⊗ L

⊗n))/ rk(π∗(L
⊗(p+r)n)).

When n tends to infinity, ϑp,n converges to

ϑp := vol(L⊗p ⊗ LK)/vol(L⊗(p+r)).

By a similar argument as above, we obtain that for all but countably many α ∈ R,

(24) (T(p+r)/pν)
(α) ≻ ϑp(T 1

p
ηp)

(α) + (1 − ϑp)δα.

We obtain from (23) and (24) the following estimation of polygons

ϑ−1
p P ((T(p+r)/pν)

(α))(ϑpt) ≥ P ((T 1

p
ηp)

(α))(t)(25)

P ((T 1

p
ηp)

(α))(t) ≥

{
θpP ((T(p−q)/pν)

(α))(t/θp), 0 ≤ t ≤ θp,

θpP ((T(p−q)/pν)
(α))(1) + α(t− θp), θp ≤ t ≤ 1.

.(26)
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Finally, since lim
p→∞

θp = lim
p→∞

ϑp = 1 (which is a consequence of the continuity of the

geometric volume function), combined with the fact that both T(p−q)/pν and T(p+r)/pν
converge vaguely to ν when p → ∞, we obtain, for all but countably many α ∈ R,
the uniform convergence of P ((T 1

p
ηp)

(α)) to P (ν(α)).
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