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Abstract: A new real time in-situ scattering method to study texture evolution kinetic is exposed. 

The technique is adapted from an existing set up used at the Institut Laue-Langevin neutron 

facility to check monochromators. It uses a white hard X ray beam and works in transmission 

geometry. The 2D detector allows to follow recrystallization phenomena. A study of the annealing 

behavior of copper-nickel alloy rolled tapes, used as substrate for high temperature 

superconductor, is presented. 
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1. Introduction 

In material science field it is often necessary to check crystallographic property 

evolution with temperature. Basic experiments could be done with ex-situ 

measurements, i.e. material properties are tested after a specific heat treatment. 

Two disadvantages can be noticed: first, the experiments are done at room 

temperature after cooling, which means that the samples should be quenched to 

reveal the crystallographic structure at high temperature. In some cases, these 

quenches are not possible. Secondly, to get fine evolution of the phase structure a 

lot of experiments are needed. An answer to this ex-situ problem is to develop real 

time in-situ measurements. Some common experiments are available to look for 

phase changes on polycrystalline material like X-ray diffraction used with a 

Debye-Scherrer geometry, a position-sensitive detector and an heated sample 

holder [1]. But this device can only reveals phase transformation of 
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polycrystalline materials and is not sensitive to texture changes. In the case of a 

monocrystal or a not random distributed orientated polycristal, crystallographic 

changes versus temperature are much more difficult to analyse. Calorimetric 

experiments can give some information about phase transformation but are few 

sensitive to texture evolutions due to the small energy involved. Moreover, this 

can not inform about the crystallographic orientation. 

The purpose of this paper is to describe an original real time in-situ experiment 

able to show texture evolution versus temperature of a polycrystalline tape. 

This experiment is adapted from an existing set-up used at the Institut Laue-

Langevin neutron facility of Grenoble by the monochromator group [2]. It uses 

hard X-ray photons which allow working in transmission through the all sample 

thickness, and give information of the whole sample structure [3]. 

To illustrate possibilities given by this new method, analysis were done on two 

copper-nickel alloys rolled tapes which are developed as substrate for high 

temperature coated superconductors. These substrates should present a biaxially 

textured surface to favor the epitaxial growth of upper layers, whose one of them 

is the superconductor ceramic (i.e. YBCO). Indeed this oxide should be well 

oriented to present good superconducting properties. Cu55Ni44Mn (known as 

Constantan) and Cu70Ni30 alloys were chosen for their cell parameters closed to 

the YBCO one and for their mechanical and magnetic properties [4]. 

2. Experimental specifications 

A white X-ray beam issued from a 1.5×1.5 mm² focus size was used. The Philips 

MCN 421 X-ray generator with a tungsten anticathode may supply photons with 

an energy up to 420 kV. In this experiment the maximum voltage was 300 kV 

with an intensity of 3 mA. The spectrum has a continuous high energy 

background which corresponds to the bremsstrahlung (braking radiation) on 

which the two characteristic lines of the W tube superimpose. They are located at 

59 keV (Kα=0.21 Å) and 67 keV (Kβ=0.18 Å), see figure 1. The beam is 

collimated with a 3 mm diameter hole located at 3.2 m from the source, giving a 

0.08° divergent beam. 
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Figure 1 Energy X-ray spectrum used for experiment. 

The two-dimensional detector is composed of an X-ray image intensifier with 

22 cm diameter (Thomson TH 9428) coupled with a cooled CCD camera with 

weak noise (Princeton 512×512 pixels). This detector can be moved laterally and 

vertically to be aligned with the direct beam. The important X-ray intensity, 

reinforced by the focusing effect and the very high detector sensitivity, allows a 

short acquisition time, typically 100 s for one measurement. A "beam stop" 

aligned on the detector center attenuates the transmitted rays to avoid the 

saturation of the detector but also allows to follow the direct beam. 

The tape was vertically applied on a sample-holder which was fixed at a stick 

equipped with thermocouples (figure 2). The furnace was used up to 1030°C, with 

a heating rate of 5°C/min. The outer part of the furnace was cooled by a water 

jacket, and two silicon monocrystal windows allow the X-rays beam path. The 

furnace was placed on a motorized goniometer allowing an adjustment of the 

angular sample positioning. Vertical and horizontal shifts were ensured manually 

by moving the lifting truck. A turbomolecular pump ensures a 10-4 to 10-5 mbar 

vacuum inside the furnace. 



4 

 

Figure 2 Sample-holder, with the sample. 

Currently used to perform mosaïcity measurements on monocrystals, the line is 

originally built with a symmetrical ratio, i.e. the source-sample distance is equal 

to the sample-detector distance (usually 3.6 m). With this particular condition, if 

the crystal is oriented with an angle satisfying the Bragg conditions, all diffracted 

X-Rays are focused on a thin line [5-7]. In our case, measurements were done to 

follow the texture evolution in a polycristal sample. The main important fact is 

then to collect intensities from the two characteristic emission peaks. 

When the sample is too thick to enable the overlapping of the Kα and Kβ lines, a 

local energy analyzer is used to separate intensities from each family plane (NaI 

scintillator for low energy resolution or cooled Ge diode for high resolution 

analysis are used). But in this study no energy detector was used as samples are 

150 µm thick and allowed the transmission of these characteristic Kα and Kβ lines. 

Considering the first interreticular distances of the alloy cells (d111=2.06 Å and 

d200=1.78 Å) and the Kα, Kβ wavelengths, the 2θ angles are between 5° and 14°. 

With a 22 cm detector diameter, the sample-detector distance should be smaller 

than 90 cm. In this experiment a non-symmetrical transmission geometry was 

adopted with a 60 cm sample-detector distance. A picture of the assembly is 

shown figure 3 where all experimental devices are visible except the control-

acquisition board. 
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Figure 3 View of the hard X-ray scattering experimental assembly. 

When the beam and the detector are aligned, a "white experiment" (without 

sample) is carried out (figure 4). With this diagram, intrinsic intensities of the 

alignment are revealed, like: absorption of the beam-stop and its holder, a more or 

less homogeneous background and small spots (due to the diffraction of the 

monocrystal silicon windows of the furnace). This background has been substrate 

to all experimental diffraction patterns.  
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Figure 4 2D diffraction diagram without sample. 

Finally, a radiographic image (i.e. using a broad beam with low intensity) is 

performed to ensure the good sample positioning in the X-ray beam. 

All the data computations were done with the LAMP software [8]. 

3. Experimental results and discussion 

2D diffraction diagrams of Cu70Ni30 tape are recorded each 10°C during the 

annealing (5°C/min). Figure 5 presents four of them. a) is the diffraction pattern at 

the beginning: 30°C. That means that the tape shows the rolled structure after 98% 

deformation. b) and c) are respectively recorded at 610°C and 1000°C (maximum 

temperature of the experiment). d) is the diffraction diagram of the sample after 

cooling at room temperature (RT). 

To better understand the diagram, figure 6 shows the theoretical diffraction circles 

calculated for a Cu70Ni30 random powder. Each circle corresponds to the 

diffraction of a specific wavelength with different interreticular distances. The 

smaller dashed circle is the theoretical position for the (111) diffraction plane by 

the smallest wavelength, i.e. the highest energy: 300 keV. Inside this circle no 

intensity from the sample can diffract. The solid circles are the scattering 

positions for the (111), (200) and (220) planes with Kα and Kβ energies. The 

(111)Kα, and the (200)Kβ circles are very close and it is not possible to distinguish 

their respective contribution. Plans that have h²+k²+l² higher than 8 can not 

diffract in the 2D detector with Kα and Kβ energies. In addition to the intensities 

diffracted by the W characteristic energies, the radial streak intensities are due to 

the diffraction by wavelengths of the bremsstrahlung.  

The use of transmission geometry and high energy radiation allowed to be 

sensitive to the diffraction planes which are almost parallel to the normal of the 

tape surface. These intensities correspond to the ones observed in the pole figure 

periphery. To simplify the correlation between intensities observed in figure 5 

with a given orientation, theoretical pole figures of the tape are presented in figure 

7. The three upper figures are the (111), (200) and (220) pole figures of a rolling 

tape. The represented intensities are those of a fcc metal with a "pure metal" type 

deformation structure. These structures are composed with 8 different orientations 

which are the S = {123}<63 4>, the C = {112}<11 1>, the B = {110}<1 12> and 

their symmetric orientations. The three lower figures are the (111), (200) and 
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(220) pole figures of the cubic orientation {100}<001>. This structure is the 

annealed texture of a tape that acquires a C+S+B structure after rolling. 

 

Figure 5 2D diffraction pattern of a Cu70Ni30 rolled tape a) not annealed, b) during the annealing 

process at 610°C, c) at 1000°C and d) after cooling at room temperature. 
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Figure 6 Theoretical diffraction circle positions for a Cu70Ni30 random powder for different 

energies and different planes. The measured pattern is the same that the figure 6b. 

On the figure 5a it is possible to observe all the intensities from the rolled tape 

diffraction pole figures periphery. For example on the transverse direction (TD) 

the intensities correspond to the B orientation diffraction of the (111) plane and 

are well located on the (111)Kα and (111)Kβ circles. Similar observations can be 

made at 15° on each side of the rolling direction (RD) also on the (111)Kα and 

(111)Kβ circles and correspond to the B and S orientation diffractions of the (111) 

plane. The weak intensities on the RD on the same circles are due to the C 

orientation diffractions of the (111) plane. On the (200)Kα and (200)Kβ circles at 

35° on each side of the RD, intensities are due to the B orientation diffractions of 

the (200) plane. Figure 5 are then well representative of a rolling deformation 

texture. 

On the figure 5c, intensities from the cubic orientation are visible on the RD et TD 

if considering the (200)Kα and (200)Kβ circles and on the bisecting lines if 

considering the (220)Kα and (220)Kβ circles. No intensity from the Kα and Kβ 

energy on the (111)Kα and (111)Kβ circles can be seen, as no intensity is observed 

in the (111) pole figure periphery. Intensities are less important in the half lower 

part because the tape is probably bent slightly with the temperature as the sample 

is only fixed to one side with screws. 
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Figure 5b is recorded during annealing at 610°C. Both textures, rolled and 

annealed, can be seen. 

Figure 5d is the diffraction pattern recorded at RT after cooling down. Intensities 

are in the same place than these observed on figure 5c but they are less spread 

with a higher maximum level. The difference is probably not due to structure 

changes but should be the consequence of a better structure of the diffusion 

pattern at low temperature through the Debye-Waller coefficient [9]. 

 

Figure 7 (111), (200), (220) pole figures with theoretical intensity localizations which can be seen 

on a fcc material with a "pure metal" type after a heavy rolling (up), then annealed (bottom). 

Marks represent specific orientations (and their equivalences)    = S = {123}<63-4>,   = C = 

{112}<11-1>,   = B = {110}<1-12>,   = cubic = {100}<001> 

To allow a better visualization of the transition, intensities from a small horizontal 

stripe which goes through the centre for each recorded pattern, are plotted versus 

temperature (figure 8a). Figure 8b is the same but considering the vertical stripes. 

On these graphs, it is possible to follow the intensity evolutions of the (111)Kβ, 

(111)Kα, (200)Kβ and (200)Kα lines. As in one hand the (111)Kβ line has too small 

intensities and in the other hand (111)Kα and (200)Kβ lines are to close to separate 

their respective contribution, the better choice is to follow the (200)Kα evolution. 

Contributions of each 4 lines are summed and plotted with temperature (figure 9, 

blue line). The same works have been done with a Constantan tape which has a 

higher nickel content: Cu55Ni44Mn (red line). 

With these two curves, the recrystallisation kinetics can be followed. In the insert 

the beginning transformation temperatures may be evaluated. The intersection of 
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the two tangents points out the temperatures: 582°C and 595°C for Cu70Ni30 and 

Constantan respectively. These values fit well with other measurements 

performed elsewhere with other diffraction techniques [10]. The small difference 

between these temperatures is probably due to higher nickel content of the 

Constantan which increases the thermic phenomena to higher temperature level. 

a)  
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b)  

Figure 8 TD (a) and RD (b) cross section of each recorded scattering pattern plot versus annealing 

temperature. 

The curves show that the transformation is very abrupt, as the half of the 

maximum intensity is reached in 50°C which is equivalent to 10 min. 

The interpretation of the transformation around the maximum (between 900°C 

and 950°C) needs much more experiments to better understand the contributions 

to the phenomena. Indeed, in one hand biaxial texture breaks down after a critical 

temperature which leads the intensity to decrease, and in the other hand intensity 

normally decreases even for a stable crystal due to Debye-Waller coefficient. 
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Figure 9 Sum of the 4 contributions of the (200) Kα peak is plotted with annealing temperature for 

both Constantan and Cu70Ni30 tapes. 

Some quantitative informations about the sharpness of the annealed texture can 

also be extracted from the data. The out-of-plane disorientation, normally given 

by the rocking curve may be directly checked by measuring the full width half 

maximum (FWHM) of the (200)Kα intensity distribution (perpendicularly to the 

radial direction). Out-of-plan disorientation in the rolling direction (RD) and in 

the transverse direction (TD) can be separately measured by checking respectively 

the intensity distribution in the RD or TD. Figure 10 shows the evolution of the 

intensity distribution corresponding to a rocking curve in the RD. 

 

Figure 10 (200)Kα intensity of the rolling direction recorded during the annealing of a Constantan 

tape. Arrows represent the FWHM of respective curves at different temperatures. 
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Despite an increasing of the intensity, FWHM does not present any significant 

variation between 700°C and 1000C°. The out-of plan disorientation (RD) is 

about 7° which corresponds more or less to figures find in a normal rocking curve 

measurement at RT on an annealed tape by X-ray pole figures. 

4. Conclusions 

This original real time in-situ hard X-ray diffraction method first developed for 

monocrystal measurements provides also interests for non-random polycristal 

studies. Indeed with this transmission geometry alignment, texture evolution 

could be followed in real time during heating treatments. Qualitative, as well as 

quantitative, results are available. 

First experiments done on the annealing behaviour of copper-nickel alloys rolled 

tapes, have allowed to validate the method, the setting and the new dedicated 

furnace. Interesting biaxially textured recrystallisation kinetics data have been 

recorded. The beginning of the transformation has been found at 580-595°C 

depending of the nickel content. Fast evolution is then noticed before that the 

intensity slowly decreases after a maximum value. The interpretation of this last 

phenomena could be explained either by the untexturation of the material or the 

intrinsic decrease of the intensity with high temperature (Debye-Waller 

coefficient). Quantitative out-of-plan disorientation may also be checked with this 

method. 

This real time in-situ, non destructive technique able to check texture evolution 

versus temperature in bulk material by using relatively cheap device is surely 

promising for future developments. 
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