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Abstract In this second Chapter, we recall some basic notions on stably-stratiied
lows before focusing on internal gravity wave dynamics. In Section 1, we illustrate 
the occurence of stably-stratiied lows in nature and, in Section 2, we derive the 
Boussinesq approximation. Except for a very brief presentation of the Kelvin­
Helmholtz instability in Section 3, we start discussing about internal gravity waves 
from this section on. The linear properties of the wave are discussed in this Section. 
The mechanisms that can lead the wave ield to breaking are addressed in Sections 
4 to 6: parametric and buoyancy-induced instabilities (Section 4) ,  interaction with 
a shear low (Section 5) ,  interaction with a sloping boundary (Section 6). We briely 
discuss about the statistical properties of the breaking wave ield in Section 7 and 
introduce some notions on mixing in Section 8. 

1 Stably-stratiied luids: why are they important

1.1 Stably-stratiied luids are ubiquitous

An incompressible luid is stably-stratiied if it displays a vertical density gradient with 
negative sign (or a vertical temperature gradient with positive sign) :  the luid becomes 
less dense, or warmer, as the altitude increases. Such luids are ubiquitous in nature: the 
oceanic water masses, the stratosphere (which is the part of the atmosphere comprised 
between::: 10 and 50 kms) are stably-stratiied. This is exempliied in the oceanic case in 
Figure 1: the temperature proile measured in the Mindanao trench during the 1929-1930 
Snellius expedition in eastern Indonesia is displayed as a function of depth. The gradient 
is positive down to 3500m but compressibility efects become important below this depth 
leading to a slight warming of the water masses. Such a change of sign in the temperature 
gradient therefore does not imply that the luid is unstably stratiied but simply results 
from compression of the water columns. The concept of potential temperature, which 
is discussed in detail in Chapter 4 of the lecture notes, is introduced to account for 
compressibility efects. Indeed, the vertical gradient of the potential temperature ield is 
now everywhere positive. 

In this example, the huge depth of the temperature record, close to 10 km, along 
with the sparsity of the sampling, implies that the overall (large scale) behaviour of
the temperature proile is captured. If one considers much smaller scales however, the 
vertical potential temperature gradient is not always positive. An example is provided 
in the stratosphere in Figure 2, which displays the potential temperature as a function 
of altitude. While the gradient is positive in overall, negative gradients exist locally, 
which are due to turbulent motions. In the stratosphere, the temperature and velocity 
luctuations are mostly due to internal gravity waves so that this turbulence results from 
the breaking of the waves, as we shall further discuss it . 

Stably-stratiied media are also found in the interior of stars. In the Sun for instance, 
a stably stratiied region exists below the convective zone, in the so-called radiative zone. 
As we shall show it , internal gravity waves can propagate in a stably-stratiied medium. 
It has been proposed by Schatzman (1996) that the superposition of these waves results 
in a net transport of mass toward the interior of the Sun, which would account for the 
under-abundance of Lithium observed in this star: the Lithium would be transported 
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Figure 1 .  Temperature and potential temperature proiles from data in the Mindanao 
trench collected during the 1929-1930 Snellius expedition around Indonesia. 

toward the core where it would be burned. 
Stably-stratiied media may also be used within an industrial, or environmental, con-
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Figure 2.  High resolution (20cm) temperature proile, just above the tropopause. Boxes 
marked with letters (a . . .  g) contain examples of sheets. Two close-ups of sheets "b" and 
"e" are displayed with the three proiles measured on the main gondola. Ongoing mixing 
is clearly present in the sheet "b" (from Dalaudier et al. , 1994). 
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Figure 3. A solar pond (from www.solarpond.utep.edu) . 

text. The solar pond (Figure 3) is a nice illustration. The idea is to capture heat by a 
stable stratiication. The principle is very simple: the bottom of a pond is made dark and 
very salty, in order for the bottom water, when heated by the sun (more precisely, when 
heated by the dark bottom) to remain heavier than the layer above. The temperature of 
the bottom water may reach 70 to 100 degrees and is used, for instance, to warm water 
inside a pipe that would cross the pond in its lowest part. 

Stably-stratiied luids are also found in the cooling circuits of nuclear reactors. 

1 .2  Stably-stratiied luids give rise to phenomena with environmental im­
plications 

The solar pond just discussed provides one example that stably-stratiied luids may 
give rise to phenomena with environmental implications. Another common phenomenon, 
which has a negative impact on the environment, is the well-known situation of a thermal 
inversion in the atmosphere of a valley in winter. The process is again simple (f.i. Stull, 
1988): the ground cools when no longer heated by the sun and, when its temperature 
becomes lower than that of the neighbouring air, the air cools in turn in transfering heat 
to the ground. A very cold layer of air thus exists at the bottom of the valley, which is 
surmounted by warmer air, leading to a stable (potential) temperature gradient. This 
stable situation may persist for the whole day in winter. If cities are located at the 
bottom of the valley, the pollutants emitted by road traic and factories remain trapped 
in the stably-stratified layer of air, leading to high concentrations of pollutants. Two 
examples are provided in Figure 4, in the Grenoble valley and the Chamonix valley. 

1.3 Quantiication of the stability: the Brunt-VaisaUi frequency 

The Brunt-VaisaEi frequency is the frequency of a luid particle displaced adiabatically 
from its equilibrium position along the vertical. The demonstration is very standard. Let 
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Figure 4. (a) The valley of Grenoble in winter, when a thermal inversion exists all day 
long. (b) Photograph of the Chamonix valley, with the Green Needle (Aiguille Verte) in 
background. Water and pollutant particles are again trapped in a stable thermal layer 
at the bottom of the valley. 

us do a thought experiment and consider one luid particle of unit volume, at equilibrium 
position z in a stably-stratiied luid with density proile p(z). When the particle is
displaced adiabatically by a vertical distance (, the local density at the new position is 
p(z + (). The fluid particle is thus subjected to two forces, its weight p(z) and the
Archimedean force -p(z + () . Applying Newton's law to the luid particle results in

- g � the equation ( + N2( = 0, where N2 = - p(z) dz is the Brunt-Vaisala, or buoyancy,

frequency. Stability implies that N2 is positive. 

A standard approximation to describe stably-stratiied incompressible luid motions 
is the Boussinesq approximation, described in Section 2.2;  in this case, the density and 
the temperature proiles are linearly related. Therefore, the Brunt-Vaisala frequency may 

also be deined as N2 = _Y dT. When the luid is compressible, the potential tempera-T(z) dz 
ture is used instead of the temperature and the expression of the Brunt-Vaisala frequency 
is the same as the previous one with the temperature profile being simply replaced by 
the potential temperature proile. 
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Figure 5. Atmospheric lee waves generated by a wind blowing over two islands. 

1 .4  What are the generic motions? 

As announced above, the generic luid motions in a stably-stratiied luid are internal 
gravity waves. Indeed, the sum of the weight and of the Archimedean force acting on a 
luid particle displaced from equilibrium position is (at irst order in() -?(z, which is
a restoring force. This is the restoring buoyancy force. A restoring force in a continuous 
medium generates wave motions. We shall show in Section 3 that linear waves are indeed 
a solution of the equations of motions. Before doing so, we provide two illustrations of 
internal gravity waves in the atmosphere (Figure 5) and in the ocean (Figure 6) .

In the atmosphere, the main mechanims for gravity wave generation is the wind 
blowing over topography. The generated waves are called lee waves and are made visible 
by clouds. Figure 5 thus displays the cloud cover over the sea when the blowing wind
interacts with two islands. The island located on the left of the picture is too high 
for the air advected by the wind to go over the island and the advected air simply lows 
around the island. In this case, the luid particles are not lifted and no wave is generated. 
Instead, a quasi-two-dimensional pattern (in a horizontal plane) of vortices are produced, 
of the Karmann street type. By contrast , the island located on the right of the picture 
is low enough for the advected air to go over the island and a quite diferent pattern is 
observed: in this case, waves are generated, with horizontal wave length of the order of 
the island size. 

In the ocean, the two main mechanisms for the generation of internal waves are 
the wind and the tide. The wind forcing is indirect: the wind mixes the upper layer 
of the ocean (over a depth of order lOOm) and motions at the bottom of this layer 
perturbs the stably-stratiied luid below which generates internal gravity waves. By  
contrast, the tide generates internal gravity waves directly, through its interaction with 
topography (seamounts, continental slopes, etc.) Internal gravity waves generated in the 
neighbourhood of a continental slope by the tide are displayed in Figure 6. The waves 
are in the interior of the water masses but, because their amplitude is large and they 
propagate not far from the surface, the velocity ield they induce perturbs the free surface 
which makes them visible using a radar on board of a satellite. 
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Figure 6 .  Internal waves (propagating below the free surface) generated by the interac­
tion of the tide with a continental slope. This is a radar image acquired by the Synthetic 
Radar Aperture aboard of a satellite. 

1.5  What about unstably stratiied lows? 

Unstably stratiied lows are also very common in natural media. In this situation, 
no waves are generated since the buoyancy force is not a restoring one. On the opposite, 
this force lifts the luid particle further away from the position it has been brought. The 
commonest example occurs in the atmospheric boundary layer : the ground is heated by 
the Sun during the day, which heats the air (the direct heating of air by the Sun is much
less important, especially if the air is dry) . The vertical gradient of the potential tem­
perature proile is therefore negative in this case. Such a situation is highly unstable and 
gives rise to large scale turbulent motions, which mix the luid. Therefore, if pollutants 
are emitted at the ground level, the local concentrations are generally smaller than in a 
stable situation, but may be found very far from their emission region. For instance, in 
summer in the Chamonix valley, high concentrations of heavy metals (such as Mercury) 
have been found at 4300m altitude, at Dome du Gouter (Veysseyre et al. ,  2000) . 

2 Basic equations

2.1  Governing equations 

Let (x, y, z ) be a cartesian coordinate system in an absolute reference frame where
the luid velocity is 1 = (u, v, w). The luid motions in this reference frame are governed
by the compressible Navier-Stokes equations. These equations are composed of 

• the momentum equation, which is, when expressed per unit mass:

D1 " _ ; _ L "2 -- = - vp + g - 2H A U + - v U Dt p ' (2.1) 
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D 
where 

Dt 
:

t 
+ l. ' refers to the material derivative, p is the pressure ield,

-20 \ 1 is the Coriolis acceleration due to earth rotation and l is the dynamical
viscosity; 

• the mass conservation equation:

� + '.(pl) = 0, (2.2) 

where p is the density ield; 
• and a dynamical equation for the internal energy e, stemming from the irst law of

thermodynamics applied to a system made of a unit mass of volume v = 11 p: 

De Dv 
Dt 

= Q- p 
Dt. (2.3)

Q is the amount of heat added to the system v and -p� is the work of pressure
forces on the system. 

2.2 The Boussinesq approximation 

Water is a very weakly compressible luid so that oceanic luid motions may be as­
sumed to be incompressible over the typical vertical scale of the motions. The fact that 
density, that is the mass of the luid system, still varies in space and time may be in­
compatible with the assumption that the luid velocity is incompressible. A consistent, 
and very well-known, approximation that satisies the former requirement while assum­
ing that the luid is close to incompressiblity is the Boussinesq approximation. We now 
describe in detail this approximation (see also Cushman-Raisin, 1994, p. 37). 

In the following, we set p = p0 + p where p0 is some constant reference density and 
p refers to the deviation ield about p0. In the ocean for instance, p0 is the mean value 
of the density, equal to 1028kglm3 (at atmospheric pressure) and PI Po � w-3. We 
also introduce reference values for the temperature and the salinity: To = l0°C and 
So= 34glkg. 

How does the mass conservation equation become '.l = 0? Let us ind in which 
sense the mass conservation equation can be approximated by '.l = 0. 

We introduce the small parameter E such that JI Po= E p(ll I po, with p(l) I Po= 0(1). 
We also decompose 1 into J(O) + EJ(l); hence, J(O) is the velocity ield in the limit E-+ 0,
that is, in the limit of ininitely small density luctuations. Introducing this decomposition 
of the ields into the mass conservation equation, one gets 

(2.4) 

At order zero in E, the mass conservation reduces to '.J(O). This implies that the mo­
mentum equations for an incompressible luid are also valid in this limit (that is, with 
1 � J(0l). This also implies that the gravity acceleration g should be large enough for 
the product gpl p0 to stay inite. 
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How does the energy equation become the usual heat equation? For any 
constant volume transformation, the internal energy e is equal to CvT where Cv is the 
heat capacity per unit mass and T is the temperature. Equation (2.3) can thus be 
rewritten as 

C 
DT 

= 
_ Dp

v Dt 
Q + 

p2 Dt
. (2.5) 

Since the state variable T has been introduced, we need an equation of state. In the 
limit of very small density deviation about a constant reference density, the luid may be 
assumed to be incompressible, as just seen. Hence, p only weakly depends on pressure. 
Density luctuations arise from temperature and salinity changes about the background 
state so that, at irst approximation, a linear equation of state may be assumed 

p = Po[l- a(T- To)+ 3(S- So)], (2.6) 

where a is the thermal expansion coeicient and 3 is the haline contraction coeicient. 
Assuming that the heat added to the luid volume v results from difusion process, Q 

can be related to T using Fourier law: pQ = "V2T. Replacing Q by this expression in 

equation (2.5) and using � = -pl.l, one gets (k is the thermal conductivity of the 

luid) 
C 

DT � 2 p v Dt 
+pV.u= k1 T. (2.7) 

In the limit p « p0, that is, 1 � ](O) one eventually recover the usual heat equation

(2.8) 

k 
The coeicient -0 is the thermal difusity in the luid, usually denoted "· If the density

Po v 
luctuation p mainly arises from temperature luctuations, the above equations become, 
using (2.6): 

Dp 2-
Dt 

= "1 p. (2.9) 

And what about the momentum equation? We use the assumptions p « p0 and 
p � Po· In the momentum equations, p comes into play in two terms of quite diferent 
physical meaning: (i) in the acceleration and Coriolis terms, pDlj Dt and -2p0 \ l,
and (ii) in the gravity term gp. While p can be replaced by Po in the former two 
terms, it certainly cannot be replaced also in the latter term because the luid would be 
homogeneous otherwise, with constant density p0. Therefore 

• pDlj Dt -* poDlj Dt ; -2p0 \ u --* -2p00 \ u.
• -lp+ p§-* -lp+ p§, decomposing the dynamical pressure p into Po (hydrostatic

pressure) plus p and using the hydrostatic balance of the rest state dPo / dz = -p0g.
The equations of motions become 

Dl 7 _ _ � 2 n 72 � Po- = - v p + p g - PoH \ u + L v u. 
dt 

(2.10) 
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The Boussinesq equations are equations (2.9) and (2.10) above along with the incom­
pressibility condition l.u = 0. We recall that this approximation is strictly valid in the
limit u = l(o) and p «Po·

2.3 Non-dimensional parameters 

Models of geophysical (or astrophysical) lows are often designed in the laboratory. 
The idea is to model not the whole system but only a part of it, whereof dynamics are to 
be studied. For instance, the formation and dynamics of the Great Red Spot of Jupiter 
has been modelled in a laboratory experiment using two counter-rotating disks, in order 
to reproduce the zonal shear that prevails on this planet (as in any strongly rotating 
planet) and controls the dynamics. The scales are very diferent in the natural and 
laboratory systems but comparison can be performed by considering the non-dimensional 
equations of motions. These non-dimensional equations involve a few non-dimensional 
parameters and the application of the laboratory results to the natural system can be 
done if the non-dimensional parameters are the same. The other interest of working with 
non-dimensional equations, especially when natural systems are to be studied, is that 
one deals with values of order 1. Such a non-dimensionalization is actually necessary 
when the equations of motions are solved on a computer. 

We now list the main non-dimensional parameters that govern the dynamics of a 
Boussinesq low (that is, a low whose dynamics can be described by the Navier-Stokes 
equations in the Boussinesq approximation) subjected to the Coriolis force. 

Let U be the scale of the velocity ield, L be a typical length scale of the luid motions 
and T the time scale. Three non-dimensional parameters compare the nonlinear time 
scale L/U to the time scale T, depending upon the physical process whereof T is the time 

T UL 
scale: (i) if T is the time scale of viscous efects, then T = L2 /v andRe = 

L/U 
= -;-

is the Reynolds number; (ii) if T is the time scale of stratiication efects, then T = N-1

and Fr = L�U 
= :L is the Froude number; (iii) if T is the time scale of rotation (or

Coriolis) efects, then T = (20)-1 and Ro = 
L�U 

= 
2�L 

is the Rossby number. Finally,
v 

the Prandtl number compares the viscosity to the thermal difusivity: Pr = -. 
, 

A few other non-dimensional parameters can be inferred from these four ones. These 
are for instance the Ekman number, which compares viscous and Coriolis efects: Ek = 

v 
20£2 = ReRo; and the ratio of rotation to stratiication efects (also referred to as the

Prandtl ratio): � = Ro
.

2H Fr 

2.4 Linearization about a basic state 

Since we are interested in motions of small amplitude relative to a basic state, it is 
useful to decompose the ields into a part associated with the basic state and a part 
associated with the small amplitude motions. Thus we write: u = J + u', p = R + 
p', p = P + p' where J and R may depend upon the spatial coordinates but (this is
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our assumption) do not depend upon time, R and P are in hydrostatic balance, and
the amplitude of u', p' and p' is much smaller than that of U, R and P respectively.
Introducing this decomposition into the Boussinesq equations and linearizing about the 
basic state yield the linearized Boussinesq equations. We shall consider two speciic cases. 

• The basic state is a luid at rest in hydrostatic balance.
In this case, U = 0 and, therefore, the amplitude of u' is much smaller than 1. The

linearized Boussinesq equations become in this case (v is the kinematic viscosity) :

a a' 
at 
ap' 
at 

1 �t . u 

1 
' p' � � ' 2' --lp - g -iz- 20\ u + v1 a 

Po Po 
,dR 2, 

-w- +£1 p 
dz 

0 . 

(2.11)

(2.12) 

(2.13) 

• The basic state is a parallel shear low U(z) with density ield R(z) in
hydrostatic balance. 

The linearized Boussinesq equations of motions become in this case 

au' au' -+U-
at ax 

av' av' 
-+U-
at ax 

ow' ow' - +U-
at ax 

ap' ap' -+U-
at ax 

1 �' . u 

, dU 1 ap' , 2 ,-w - - --+ 20v + v1 u 
dz Po ax 

l ap' 0, 2'----2 u +v1 v 
Po ay 

1 ap' p' -- - - g-
Po az Po 

+ v12w'

,dR 2 , -w- +£1 p 
dz 

0 . 

3 Solutions of the linearized Boussinesq equations: internal

gravity waves, Kelvin-Helmholtz instability 

3.1 Generalities on linear waves 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

A linear wave in a homogeneous and steady medium1 is characterized by a frequency
n and a wave vector k. For a plane wave in an ininite medium, the motion is of the
form 

A ei(k.x-nt) ' (3.1)
1The properties of the medium remain unchanged by translation of the reference frame and do
not depend upon time. 
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where A is the wave amplitude. The properties of the wave are completely set by the 
dispersion relation, namely a relation between n and k: 

(3.2) 

where the function F also involves the luid parameters upon which the wave propagation 
depends (N, g, etc.) The dispersion relation does not depend upon space and time 
because of the homogeneity and steadiness assumptions. 

Since the dispersion relation characterizes the wave ield, its derivation is an essential 
step in the wave study. One can distinguish two methods for this purpose. In the classical 
method, one irst needs to derive the linearized equations of motion. Since the medium 
is homogeneous, the coeicients of these equations are constant. The general form of the 
wave solution is then substituted in these equations, from where the dispersion relation 
is obtained. 

A general method that gives access directly to the dispersion relation, without using 
the equations of motion, can be used instead (Lighthill, 1978). Because it is simpler than 
the classical method and very powerful, we shall rely on this second method to compute 
the dispersion relation. 

3.2 A general method to compute the dispersion relation 

The frequency D of an oscillating system, whether consisting of a inite number of 
degrees of freedom (like the pendulum and or chain of springs) or evolving in a continuous 
medium, can be computed directly in three diferent ways (Lighthill, 1978): 

1. From the restoring force. The square of D is then obtained as follows:

12 = restoring force .
displacement x mass ' 

2. From energetic considerations. 12 is then deined as:

12 = generalized stifness
generalized inertia ' 

(3.3) 

(3.4) 

where the generalized stifness is the coeicient of the displacement squared in the 
expression of the potential energy and the generalized inertia is the coeicient of 
the temporal derivative of the displacement squared in the expression of the kinetic 
energy; 

3. From dimensional analysis.
Before applying this general method to internal gravity waves, let us show how it 

works for a simple discrete system. For this purpose, we consider the harmonic oscillator, 

whose frequency is D = ;, where K is the stifness of the spring and m the mass of 

the object attached to the spring. 
In case 1., the restoring force is -K.x where x is the displacement of the mass from

equilibrium position. Hence, 12 should be equal to IK.xl divided by lxl times m, which
yields the actual expression for D. In case 2., the potential energy is 0.5Kx2 so that
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the "generalized" stifness is K and the kinetic energy is 0.5mx2 so that the generalized 
inertia is m. Finally, in case 3., let us assume that 1 is a function of K and m, of the form
K:m3. By writing that the unit of n, m and K are rad.s-1, kg (also Newton.m-1.s2) 
and Newton.m-1 respectively, one gets a =  -3 = 1/2.

3.3 Internal gravity waves in an ininite medium 

The dispersion relation from general principles. In the following, we assume that 
the stably-stratiied medium is homogeneous, which implies that N is constant. We shall 
assume that the medium is steady throughout the paper. 

To compute n, we shall use the second expression provided above (case 2.). We 
irst need to compute the potential energy to infer the generalized stifness. The po­
tential energy is the work done by the restoring force from the current position to the 
equilibrium position. We showed in section 1.4 that the restoring force is gp ( so that

dz 

Ep = jo gzzdz = -N2p0 jo zdz = 0.5p0N2(2. The generalized stifness is therefore 

p0N2• Let us now compute the kinetic energy to get the generalized inertia. As we show 
it in the next section, the motion induced by a monochromatic internal gravity wave 
occurs in a two-dimensional vertical plane, made by k and § (this is the propagation
plane of the wave). We assume that this plane coincides with the (x, z) plane. Hence,
the kinetic energy is Ek = 0.5p0(u2 + w2). rom continuity equation: kxu + kzw = 0, 
implying that u = -tan} w, where } is the angle of the wave vector with the horizontal. 

;2 . 
2 .

2 , Since, w = (, one gets Ek = 0.5p0(1 +tan })( = 0.5po�
}

. The generalized inertia iscos 
Po therefore --2-. cos } 

Hence, the frequency (and dispersion relation) of a monochromatic internal gravity 
waves in a homogeneous medium is 

(3.5) 

It follows that internal gravity waves are dispersive waves, because the phase velocity 
c = 1/lkl depends upon k, with an anisotropic dispersion relation, because n depends
upon the angle that k makes with the horizontal.

Main properties of internal gravity waves. The properties of internal gravity 
waves are described in several textbooks (Lighthill, 1978; Leblond and Mysak, 1978; 
Cushman-Roisin, 1994) and we refer to these books for a detailed account. We make a 
brief summary of the important properties which we illustrate with laboratory experi­
ments. 

We cannot avoid discussing the beautiful experiment of Mowbray and Rarity (1967), 
which was designed to check the dispersion relation (3.5). A horizontal cylinder oscillates 
vertically at a constant frequency 1 in a constant N luid. The vertical motion of the
cylinder perturbs the low and relation (3.5) show that, if .12 :; N2, waves will be 
produced. Linear waves in a non dissipative medium carry the momentum and the 
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Figure 7. Laboratory experiments performed by Mowbray and Rarity (1967). Visual­
ization is made in a vertical plane and the dark vertical bar is the cylinder support. 

energy of their source without material transport (f.i. Andrews et al. , 1987). The energy 
is transported at the group velocity 8D/8k. For internal gravity waves, the group velocity 
is perpendicular to k. Hence the energy should be carried away by the waves along 
directions making an angle e with the vertical. This peculiar pattern is displayed in 
Figure 7 and is referred to as the St-Andrews cross. 

Perhaps the most important property of internal gravity waves in a homogeneous 
stratiied medium is that only a time scale is imposed, namely N-1. There is no scale 
selection by the stratiied medium2 . It follows that in laboratory experiments of internal 
gravity waves forced by a paddle, the size of the paddle (or, more generally, of the forcing 
mechanism) selects the scale (f.i . McEwan, 1971). In the experiment by Mowbray and 
Rarity discussed above, the diameter of the cylinder selects the width of the energetic 
region. It may thus be expected that in experiments where the forcing mechanism at 
frequency n has no length scale, all wave vectors which make an angle cos-1 (D/N) with 
the horizontal will be excited, acording to the dispersion relation (3.5). In the labora­
tory experiments of McEwan and Robinson (1975) and Benielli and Sommeria (1998), 
internal gravity waves were forced by parametric instability: a tank stably-stratiied with 
salted water oscillates vertically. In a frame of reference attached to the tank, the gravity 
appears to oscillate which triggers a parametric instability which generates in turn in­
ternal gravity waves. Though the forcing mechanim does not impose any length scale, it 
eventually appears that the size of the tank provides the scale selection: only the largest 
wavelength was excited. 

When Coriolis efects are important , the waves are named "inertia-gravity waves", 
with dispersion relation D2 = N2cos2e + f2sin2B where f is twice the projection of the
angular vector of the Earth onto the local vertical. In a laboratory experiment, f is 

2By contrast, in the stratiied shear low problem for instance, the basic low is made of a 
velocity proile of the form Utanh(z/8), which imposes both a velocity scale (U) and a length 
scale (8), so that a time scale (8/U) is imposed as well. 
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Figure 8. (a) Laboratory experiment of a vertically oscillating sphere in a stably­
stratiied rotating medium with constant N and f (half a domain is shown due to 
symmetry) .  (b)  Veriication of the dispersion relation (3.6) for diferent values of N 
and f. Note that ) denotes here the angle that the wave vector makes with the vertical 
and that the intrinsic wave frequency is denoted as w (from Peacock and Tabaei, 2005). 

twice the angular frequency of the rotating tank. It follows that f2 now becomes double­
bounded: P :; f22 :; N2 . The dispersion relation can also be written as 

2 n2 -P 
cos ) = 2 j2 N -

(3.6) 

so that, again, one angle should be selected in a rotating stably-stratiied medium by a 
forcing mechanism with frequency l. The laboratory experiment by Peacock and Tabaei
(2005) nicely illustrates this relation (Figure 8).

3.4 The Kelvin-Helmholtz instability in a stably-stratiied luid 

Evidence for the Kelvin-Helmholtz instability in natural media. The Kelvin­
Helmholtz instability is also described by the linearized Boussinesq equations, when the 
basic low is made of a velocity proile of the hyperbolic (or error function) type in a 
stably-stratiied medium. 

The Kelvin-Helmholtz instability develops at the interface between two luids lowing 
horizontally at diferent velocities. This coniguration is strongly unstable when the two 
luids have the same density: a perturbation ampliies as soon as the Reynolds number 
associated with the shear low is of order 1 or larger. As the perturbation ampliies, 
nonlinear efects come into play which make the instability saturate. The nonlinear 
development of the instability is manifested as Kelvin-Helmholtz vortices. Examples for 
this instability are ubiquitous in geophysical lows, whether in the atmosphere (Figure 9) 
or in the ocean (Figure 10). In the former case, the instability results from a vertically 
sheared wind; in latter case, the instability is due to tidal motion over a sill. 
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Figure 9. Kelvin-Helmholtz instability visualized by clouds on top of a mountain. 

The Richardson number. A shear low may exist in a constant N stably-stratiied 
medium but a coniguration most encountered in real lows is the one when the two luids 
have also diferent densities (the lower luid being of course heavier) , leading to a vertical
density proile of the hyperbolic tangent type, like the velocity proile. In this case, 
the density diference between the two luids comes into play and the Froude number is 
no longer the most appropriate parameter to account for stratiication efects. A bulk 
(or global or overall) Richardson number is rather introduced, whose deinition comes
naturally when the Boussinesq equations are made non-dimensional. The Richardson 
number is a measure of the stabilizing efect of buoyancy relative to the destabilizing 
efect of the shear. 

ID� 

- . -M 

Figure 10. Kelvin-Helmholtz instability due to tidal motion over a sill (from Farmer
and Armi, 1999). 
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Let us start from the Boussinesq equations linearized about a basic state consisting 
of the stratiied shear low (U(z), R(z)) (see the inal set of equations at the end of
section 2). We nondimensionalize these equations by choosing the following scales: U, 
the velocity scale, is half the velocity diference across the shear low; 8, the length scale, 
is the thickness of the shear low; .p, the density scale, is half the density diference 
across the shear low. T, the time scale, is equal to 8/ U. It follows that the pressure 
scale is p0U2. 

The non-dimensional equations are (using the same notation for dimensional and
dimensionless variables) :

au' au' 
- + U-
at ax 
8v' 8v' 
-+U-
at ax 

ow' ow' - + U-
at ax 
ap' ap' 
- + U-
at ax 

V �t . u 

-w' 
dU _ ap' + _ V2u'
dz ax Re 

- ap' + _1_V2v' 
ay Re 
ap' -- -J p'
az 

_ dR
w' + __ 1_V2 

dz Pr Re 
p' 

0 . 

1 V2 '+ - w 
Re 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

These equations involve three non-dimensional parameters: the Reynolds number, 
m �L 

Re =-, the Prandtl number and the bulk Richardson number J = g - uz. v Po 

The Richardson number criterion. When the two luids have diferent densities 
such that the lower luid is heavier, the instability cannot develop whatever the density 
diference: as luid particles raise because of the instability, kinetic energy is converted 
into potential energy so that, intuitively, a too strong density diference prevents the 
instability from developing. Chandrashekar (1961) derived an heuristic criterion for local 
instability based upon energetic considerations, which was demonstrated rigorously by 
Howard (1961) (see also Drazin and Reid, 1981, p. 326). The energetic considerations
compare kinetic and potential energies, that is nonlinear and stratiication efects, which 
relates to the Richardson number. Since the bulk Richardson number does not provide 
any information about the local stability of the shear low, a local Richardson number 
was introduced for this purpose: 

g dR 
Ri(z) = __ _ . 

Po (�)2 (3.12) 

The stability criterion is the following: a necessary condition for instability is Ri(z) < 1/4 
somewhere in the luid. It has been shown by Hazel (1972) that this condition is necessary 
and suicient for a velocity and a density proile of the hyperbolic tangent type. 
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4 Instability of internal gravity waves in a constant N luid at

rest 

4.1 Resonant interaction theory 

Resonant interactions in the luid dynamical context were discovered independently 
by Phillips (1960) and Hasselmann (1962) for surface gravity waves and progressively 
extended to internal gravity waves by considering, in particular, the interaction of two 
surface waves with an internal gravity wave (Ball, 1964) ;  the case of an internal wave 
triad was eventually considered by Phillips (1966) and Hasselmann (1967) . Extensive 
work was next performed in the oceanographic context (see the reviews by Phillips, 
1981; Muller et al. ,  1986; Staquet and Sommeria, 2002) . It was shown in particular that 
energy transfers in the spectrum of large scale, low frequency internal gravity waves in the 
ocean (the Garrett-Munk spectrum) mostly consist of resonant interactions (McComas 
and Bretherton, 1977) . In the atmosphere, the decrease of density with altitude ampliies 
the waves, so that resonant interactions are only rarely expected (a signiicant fraction of 
the wave energy is still backscattered downward, see f.i . Barat and Cot, 1992) . Perhaps 
one exception is the Antartic atmospheric boundary layer, which is surmonted by a very 
cold layer of air in which the waves may be trapped and interact resonantly (Rees et al. ,  
2000) . 

We briely summarize this theory in the following, which we illustrate by results from 
Koudella and Staquet (2005) .  

Wave steepness. In the following, we consider a monochromatic internal gravity wave 
(k, 0). We show below that luid motions may be assumed to occur in the propagation
plane (k, §) of the wave if the wave amplitude is ininitely small. Henceforth we assume
two-dimensional luid dynamics in the vertical ( x, z) propagation plane. Let 

(u, w) = (Au, Aw) exp [ I(k.x- Ot)] + c.c. ( 4 .1) 

denote the velocity ield induced by the wave, where 0 = F(k) obeys the dispersion
relation (3.5) . 

The normalized amplitude, or steepness, of the wave is deined as: 

Umax
s = - 'Cx 

(4.2) 

where ex is the phase velocity in the x-direction. As illustrated in Figure 11, this deinition 
implies that isopycnals (i.e. constant density surfaces) are nowhere overturned when 
s < 1 (the wave is also said statically stable) and that the isopycnals are locally overturned 
when s > 1 (statically unstable wave) .  The case s = 1 implies that vertical isopycnals 

have locally formed. Since Umax = Au and Cx = kn = � , the steepness is also deined as
X lkl 

s = A�kl for a monochromatic wave. Hence, taking Au as a velocity scale for the wave,

lkl as a length scale and N-1 as a time scale, the steepness is simply the wave Froude
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s << 1 �s<l 
s=l � s>l 

Figure 11 .  Illustration of the physical meaning of the steepness s of a monochromatic 
wave, deined by ( 4.2) .  A constant density line is drawn for diferent values of s. 

number. Let us show that luid motions may be assumed to occur in the propagation 
plane (k, §) of the wave for an ininitely small wave amplitude. In three dimensions, the 
equations of motion for the vorticity [ = 7 x 1 are expressed by:

a[ � ?C 2 7� 7 g -� 722 n + U · V, = , · v U - v X -pez + Vv ,· ut Po 
(4.3) 

The magnitude of the advective term l· 7[ or of the vortex stretching/tilting term {Vi
relative to the magnitude of the baroclinic term 7 x L pez scales as the square of the wave Po 
steepness. This shows that, when s2 « 1, the dynamics are not only weakly nonlinear
but the luid motions are mostly conined in a vertical plane if the vertical vorticity is 
initially zero. The linear stability analysis of a monochromatic internal gravity wave to 
three-dimensional perturbations by Klostermeyer (1991) , later discussed in this paper, 
actually showed that this result holds as long ass S 0.7.

Resonance relations. The resonant interaction theory describes the interaction among 
a triad of internal gravity waves of ininitely small steepness ( s « 1) . Consider a triad 
of waves (k0, 00), (k1 , 01) and (k2, 02) with Oi = F(ki) , 0; i ; 2. Since the waves are
nonlinearly interacting, 

( 4.4) 

This relation is a spatial resonance relation. If, moreover, 

(4.5) 

with Oi of any sign, eicient interactions can occur among the wave triad. This relation 
is a temporal resonance relation. If the temporal resonance relation is not satisied, the 
triad interaction produces harmonic perturbation, at frequency Oo + 01 + 02, without 
cumulative efects on wave amplitudes. These selective interactions are named 'resonant 
interactions' .  They are selective because they imply both a spatial and a temporal 
resonance relation. It was shown by Hasselmann (1967) that "sum interactions" I01I + 
I02I = IOol are unstable. In the limit of small-scale secondary waves, that is lk1l, lk2l » 
lkol, the instability is of the parametric type: 01 :' 02 :' -Oo/2. Hasselmann also
showed that "diference interactions" 101 1-1021 = IOol are stable. � E· � 

The energy and the quasi-momentum of the waves (Pi = o: ki for wave i) are con-

served within the triad: Eo + E1 + E2 = constant and Po + P1 + P2 = constant. But the
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E Eo Er E2 
wave action, deined for each wave by n �- , is not conserved: - + - + - = constant 

Ho no nl n2 
(Muller et al. ,  1986) . 

Resonant interaction equations. Resonant interactions among a triad occur over a 
slow time scale, inversely proportional to the wave steepness s (we recall that the theory 
is valid for s « 1). A slow time scale his therefore introduced, in addition to the (rapid) 

t 
time scale t ( := N-1) over which the waves evolve: t1 = - . To describe the interaction,

s 
the amplitude and the phase of each wave is assumed to vary over the slow time scale 
t1. A two-time scale asymptotic expansion of the velocity and density ields is performed 
and, at irst order in s, the evolution equations of the amplitudes Ai are obtained (f.i . 
McEwan and Plumb, 1977) : 

Ao +To Ao 
Ar + Tr Ar 
A2 +T2 A2 

s no Ar A2,
s nr Ao A2,
S n2 Ao Ar, 

(4.6) 
(4.7) 

(4.8) 

where Ti is the viscous damping rate, S is the interaction coeicient, which depends upon 
the wave vectors of the triad, and the bar denotes the complex conjugate. 

4.2 Stability of a primary wave of ininitely small steepness 

Theoretical results. The amplitude equations ( 4.6)-( 4.8) can be used to investigate 
the stability of a monochromatic internal gravity wave, termed the primary wave. Let 
(k0, n0) be the primary wave and assume that A1, A2 « A0. Equations (4.6)-(4.8) may 
then be linearized about the basic state of the primary wave. An evolution equation for 
A1 and A2 is obtained (neglecting viscous efects for simplicity) :  

(4.9) 

It follows immediately that if D1 D2 > 0, exponential growth of the secondary waves is 
possible, with growth rate equal to S[Ao[�. This condition was shown by Hassel­
mann (1967) to be equivalent to sum interactions, that is, the triad is unstable. The 
growth rate of the secondary waves is plotted as a function of k1 in Figure 12 for the 
run we consider below, which we shall refer to as run R1 for simplicity. For very large 
wavenumbers, resonance occurs through parametric instability and the growth rate satu­
rates: there is no scale selection in the inviscid case, arbitrary small scales being excited 
by the instability. When viscous efects are taken into account, A0 must be larger than 
a threshold amplitude for ampliication to occur. The smallest scales are damped by 
viscosity, whatever its (inite) value, so that the viscosity provides the scale selection. In 
the case displayed in Figure 12, a wavenumber close to 5 is selected. 

Numerical results. The theoretical results are illustrated by studying numerically the 
stability of a primary wave of large scale relative to the numerical domain (Koudella and 
Staquet, 2005) .  The Boussinesq equations are solved in a vertical plane for this purpose. 
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Figure 12.  Theoretical predictions of the inviscid and viscous growth rates for an un­
stable triad as a function of wavenumber I k11, for run R1 (from Koudella and Staquet , 
2005) . 

Constant contours of the density and vorticity ields of the primary wave are displayed 
in Figure 13a. The primary wave vector is equal to (1, 1) in a (2r)2 periodic domain and 
the wave steepness is equal to 0.36. Since a monochromatic wave is an exact solution 
of the inviscid Boussinesq equations, a small amplitude noise is superimposed upon the 
primary wave at initial time to trigger the instability. The Brunt-Vaisala frequency has 
a constant value equal to 1. This is run Rl . 

For simplicity, we assume that frequencies are all positive. Since we shall focus on 
unstable interactions, the temporal resonance relation should be written as no = nl + 02
(sum interactions) and the associated spatial resonance condition is k0 = k1 + k2 . 

We found that a few triads are resonantly excited by the primary wave, among them 
being the triad [ko = (1, 1) , k1 = (3, 7) , k2 = ( -2, -6)], which we refer to as triad T. 
It can be checked easily that this triad satisies the spatial resonance condition. The 
temporal resonance condition is nearly satisied: indeed 00 = NcosB0 = 1/v2:: 0.707, 
01 = NcosB1 = 3/VS8 :: 0.394 and 02 = -NcosB2 = 1/IO :: 0.316, implying that 
00 - (01 + 02) = -0.003, which is smaller by two orders of magnitude than any of the
three frequencies. 

The latter values also show that the secondary waves ( k1, Or) and ( k2 , 02 ) are res­
onantly excited by the primary wave through parametric instability. Indeed, one has 
01 :: 02 :: 00/2. One would have 01 much closer to 02 if the wavenumbers of the 
secondary waves were larger but such small scale waves are damped by viscosity. The 
modulus of the secondary wave vectors in triad T is of order 5 instead, consistently with 
the scale selection observed in Figure 12. 

How do these parametrically excited secondary waves manifest themselves in physical 
space? Constant contours of the perturbation vorticity are plotted at a given time in 
Figure 14a. (The dark band on the Figure is the region where the primary wave vorticity 
is negative and may ignored in this section.)  We recall that the perturbation is made 
at initial time of the ininitely small amplitude noise, from where a few resonant triads 
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emerge as time elapses. The perturbation vorticity appears to be organized as bands of 
alternate sign, which make an angle 81 such that N cosB1 :: w0j2. Also, the sign of a 
given band changes sign after one primary wave period and recovers its sign after two 
periods. These observations are consistent with the perturbation being parametrically 
excited by the primary wave. 

The fact that the bands are associated with parametrically excited secondary waves 
is conirmed in Figure 14b. This calculation difers from the one displayed in frame (a) 
by the value of the viscosity, which has been decreased by a factor 100. The same bands 
are visible, with the same inclination (because the excited waves have a frequency close
to f10/2), but the wavelength is much smaller because of the smaller scale selection by 
the lower viscosity. 

Energetics of the parametric instability. In this section, we analyse the mechanism 
through which the perturbation grows. As usual in this type of study, we consider 
the energetics of the perturbation. The novel point here is that the spatio-temporal 
dependency of the forcing mechanisms of the perturbation is described (Koudella and
Staquet, 2005). We start with a rotation of the reference frame (f.i .  Mied, 1976) so that
Z is aligned with the primary wave vector ko in the new (0, X, Z) frame. We decompose
the velocity, density and pressure fields into a part associated with the primary wave and 
a part associated with the perturbation. The Boussinesq equations linearized about the 
primary wave state are, for the kinetic and potential energy of the perturbation (Lombard

N ' 
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Figure 13. (a) Vorticity (0 = dU0/dZ and density ields of a monochromatic wave. 
Note the quadrature relationship between the two ields. A few isopycnals are shown. 
The dark (light) inclined bands are the regions where dU0jdZ is negative (positive) .
(b) Same as (a) , with regions where either the kinetic energy or the potential energy of
the perturbation is forced. RSS (ISS) : reduced ( increased) static stability region (from
Koudella and Staquet, 2005). 
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(a) (b) 
Figure 14. (a) Constant contours of the perturbation vorticity for run 1. (b) Same
as (a) except that the viscosity has been decreased by a factor 100 (from Koudella and 
Staquet, 2005) . 

and Riley, 1996): 

-V(.P') - BF - U'W'
dUo 
dZ 

BF _1_ 'W' dRo 
-

N2
p 

dZ
. 

(4.10) 

( 4.11) 

where (U', W', P', p') are the perturbation ields in the rotated (0, X, Z) frame and BF 
is the buoyancy lux. In this frame, the primary wave velocity is (Uo, 0) ; we denote its 
density ield by Ro. 

These equations immediately show that the kinetic energy of the perturbation is 

forced by the term : -U'W'� , which involves the shear of the primary wave (as for

. . 1 dRo 
any unstable shear low) and the potential energy 1s forced by the term: 

N2 p'W' 
dZ 

,
which involves the vertical gradient of the primary wave density ield. 

Let us consider the forcing of the kinetic energy. If we assume that the perturbation 
is made of a superposition of linear intenal gravity waves, the correlation U'W' is one­
signed. It is not diicult to show here that U'W' :: 0 in the rotated reference frame: the 
velocity ield of the perturbation is aligned with the vorticity bands displayed in Figure 
14 so that U' has the same sign as W'. On the other hand, dU0jdZ oscillates in time and 
space. At a given position, this implies that the forcing term -U'W' dd� is positive, i .e.
the perturbation is forced, when dUo/ dZ is negative; but the forcing would be negative 
when dUo/ dZ becomes positive at that position, implying that the perturbation would 
give back the acquired energy. How is a non zero net forcing possible? The point is that 
the perturbation will not give its kinetic energy back if the correlation term U'W' is 
zero, or very small, during the half primary wave period where dU0jdZ is positive. This 
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will be the case if the perturbation energy is of potential form during this half-period. 
It follows that optimum energy forcing occurs when the perturbation energy is of kinetic 
form during the half-period when dUo/ dZ < 0 and of potential form during the other 
half-period when dU0/dZ > 0. 

Since dU0/dZ is of the form exp(IP0) ,  the energy of the perturbation should be of this 
form too. It follows that the velocity and density ields of the perturbation should behave 

as (U1, W1, '1) ' exp(I�0
) .  I n  other words, the instability must b e  of the parametric

type for optimal forcing to occur. 
What about the potential energy of the perturbation? It can be shown that its forcing 

term �2 p1W1 
d
d
�o 

is always positive. Since dR0 / dZ oscillates at the primary wave period,
this implies that the perturbation potential energy is forced twice per primary wave 
period: at the locations where dRo/dZ is maximum, where the vertical density gradient 
experienced by the perturbation is decreased, and at locations where dR0 / dZ is minimum, 
where the vertical density gradient experienced by the perturbation is increased. The 
former region is referred to as RSS (reduced static stability regions) and the latter as 
ISS (increased static stability regions) .  By contrast, as shown above, the kinetic energy 
is forced once, in regions where the primary wave shear dUo/ dZ is negative, and this is 
where vorticity bands are visible in Figure 14. Due to the continuous conversion of kinetic 
energy into potential energy, it can be shown that potential energy is converted into 
kinetic energy in a ISS region, the reverse occuring in a RSS region. As a consequence, 
the perturbation potential energy always increases in RSS regions. 

A summary of the spatial occurence of these forcing mechanisms is displayed in Figure 
13b. 

As mentionned above, the perturbation growth is controlled by a few parametrically 
resonant triads, which may be assumed to be independent as they grow. Hence, the 
energetics of the perturbation may be reduced to that of a single resonant triad and 
approximate expressions of the perturbation energy and of energy transfer terms between 
the primary wave and the perturbation may be computed from this assumption. It can 
be shown in particular that the phase average over 2r of the kinetic energy transfer term 

( 1 1 
dUo

) . ( 
1 

1 1 
dRo

) . ( ) -U W 
dZ 

to the potentml energy transfer term 
N2 p W 

dZ 1s equal to cos fh -80 ,
that is, � 0.91 for run Rl . Hence, potential energy is transferred at a higher rate than 
kinetic energy in an unstable primary wave of small amplitude. This is actually a very 
general result in stratiied turbulence, where it is found that potential energy transfer 
toward small scales is higher than kinetic energy transfers. The analogy can be pursued 
in the present case since parametric instability excites small scale waves. Two arguments 
can be provided to account for this behaviour : the incompressibility constraint, which 
applies to the velocity but not to the density ield (Lesieur, 1997) and the subset of 
two-dimensional interactions which prevent kinetic energy from being transferred toward 
small scales (Holloway and Ramsden, 1988) . 

What does happen as the perturbation ampliies? The ampliying perturbation 
vorticity ield in dUo/ dz < 0 regions may become unstable to a (large scale) Kelvin­
Helmholtz instability. On the other hand, the perturbation potential energy continuously 
increases in RSS regions, eventually leading to unstable luid layers; hence, a (small-scale) 
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buoyancy-induced instability may also occur there. However, the unstable luid layers 
are stabilized by the shear of the primary wave so that, in a two-dimensional computa­
tion, a Kelvin-Helmhotz instability eventually occurs. In a three-dimensional medium 
by contrast, the buoyancy-induced instability can develop in the plane perpendicular 
to the primary wave propagation plane because there is no shear there. Hence, in a 
three-dimensional fluid, both instabilities compete. Koudella and Staquet (2005) showed
that the buoyancy-induced instability grows faster than the Kelvin-Helmholtz instabil­
ity, unless viscous efects are strong enough, thereby conirming earlier heuristic analysis 
(Munk, 1981) . It follows that an unstable primary wave of small steepness eventually
breaks down through a three-dimensional buoyancy-induced instability (if viscous efects 
are low enough). 

4.3 Stability of a primary wave of inite steepness 

Theoretical results. When the primary wave steepness is smaller than 1 but not 
ininitesimal, the use of a linear stability analysis against two-dimensional perturbations 
allows one to go beyond the resonant interaction theory. The early analyses neglected 
Coriolis efects. Drazin (1977) and Mied (1976) independently considered the case of
a perfect luid while Klostermeyer (1983) extended their results to the case of a real
luid. The fundamental conclusion of this two-dimensional analysis is that a primary 
wave is always unstable, whatever the associated Richardson number (that is whatever
the intensity of stratiication N relative to the wave-induced shear) . The instability is
again of the parametric type in the case of small scale perturbation. In the limit of a 
vanishing primary wave steepness, Drazin (1977) showed that the results of the linear
stability analysis coincide with those of the resonant interaction theory. 

By contrast, when the primary wave amplitude is so strong that isopycnals are over­
turned (s > 1) , the analysis must be conducted in a three-dimensional framework. A
linear stability analysis of this basic state to two- and three-dimensional perturbations 
was conducted by Klostermeyer (1991) ; only one orientation of the primary wave vec­
tor and of the plane of the three-dimensional perturbation was considered (this plane
was perpendicular to the primary wave propagation plane (k, g)). Klostermeyer (1991) 
found that the most ampliied perturbation is three-dimensional and grows at small scale 
through a parametric instability mechanism. This pioneering work was complemented by 
Lombard and Riley (1996) and Sonmor and Klaassen (1996) . Largest growth rates were
found for perturbations at an angle oblique to the primary wave propagation plane but, 
as Lombard and Riley (1996) irst realized, the features of the three-dimensional instabil­
ity (wave number and amplitude) strongly depend upon the primary wave propagation
angle (see their Figure 6 ) . 

Numerical results. These results are illustrated by three computations, referred to 
as runs R2, R3 and R4 (Koudella, 1999) . The irst one (run R2) is analogous to run
R1 above, except that the initial primary wave now evolves in three dimensions and is 
perturbed by a three-dimensional noise of small amplitude (Figure 15a) . Such a small
steepness wave is unstable to parametric instability in its propagation plane implying 
that the low remains two-dimensional during the instability growth (Figure 15b) . The
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secondary resonant waves amplify most in RSS regions, as we showed it above. This leads 
to overturned isopycnals (s is locally greater than 1) , which are unstable. A buoyancy­
induced instability develops in the plane perpendicular to the propagation plane of the 
primary wave and the low becomes three-dimensional (Figure 15c) .  Like the parametric 
instability, the buoyancy-induced instability ampliies arbitrary small scale waves so that 
the viscosity provides the scale selection mechanism. In Figure 15c, a wavelength equal 
to := 1/7 of the domain size along the y-direction is visible. Because the instability has 
already reached a nonlinear stage in this frame, pairs of counter-rotating vortices (one 
pair per wavelength) are actually visible in the Figure. These small energetic scales are 
eventually dissipated by viscosity and the low relaminarizes, because the primary wave 
is not forced. 

It is remarkable that the validity of the resonant interaction theory extends much 
beyond its theoretical domain of validity, as we shall show it. We present in Figure 16 
a run analogous to run R2 except that the initial primary wave steepness is twice larger 
(s = 0.724, run R3) .  An in run R2, the isopycnals locally amplify up to overturning while 
remaining two-dimensional: the primary wave becomes unstable through parametric 
instability during this stage (irst two frames of the Figure) .  The overturned isopycnals 
become unstable through a buoyancy-induced instability (third frame) .  Because the 
viscosity is twice higher in this run than in run R2, a larger wavelength is selected along 
the y-direction, equal to 1/3 of the domain size. The whole low eventually becomes 
turbulent and dissipates. 

Details of the formation of the buoyancy-induced instability in this run are presented 
in Figure 17 .  Snapshots of the density ield are displayed in a plane permendicular to 
the propagation plane of the primary wave. Three wavelengths are thus visible in the 
second frame (instead of := 7 for run R2) . The nonlinear development of the instability 
gives rise to coherent structures with a mushroom form (ifth frame) ,  which yield a pair 
of vortices of alternate sign. A zoom of the formation of the mushroom structures is 
displayed on the third row. 

The formation of mushroom structures as a result of a buoyancy-induced instability 
has also been observed in laboratory experiments. Figure 18a stems from the experi­
ment of Benielli and Sonmeria (1998), already referred to in Section 3.3: it displays a 
visualization in a plane perpendicular to the propagation plane of a large scale internal 
gravity wave excited through parametric instability; two mushroom structures are visi­
ble. Figure 18b stems from the laboratory experiment of a stably-stratified shear layer 
performed by Schowalter et a!. ( 1994) . 

The above results show that overturned isopycnals are spontaneously unstable to a 
three-dimensional buoyancy-induced instability. This is illustrated in Figure 19 through 
the temporal evolution of three isopycnal surfaces for an internal gravity wave of initial 
steepness larger than 1 (run R4) . In this case, the viscosity is 50% larger than in run 
R3 and two wavelengths only appear only the y-direction. As previously noted, the 
whole wave ield eventually breaks down through this instability. Such large amplitude 
internal gravity waves are encountered in the atmosphere, due to the rarefaction of air 
(lowering of density) as the wave propagates upward. Other mechanisms leading to a 
local ampliication of the wave are discussed in the next section. 
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(a) (b) 

(c) (d) 

Figure 15. Breaking of an internal gravity wave with s = 0.36 (resolution 2563) . Six 
constant density surfaces are plotted at successive times: (a) : t = 16.1 BVP, (b) : t = 38.2 
BVP, (c) : t = 42 BVP, (d) : t = 44 BVP. In frames (a) and (b) , a two-dimensional 
secondary instability develops, leading to local overturnings of the isopycnals; in frame 
(c) , a three-dimensional instability develops upon overturned isopycnals, and in (d) , local 
breaking occurs. BVP is the Brunt-Vaisila period 21rjN (from Koudella, 1999) . 

Inluence of Coriolis efects on the instability of a primary wave. When Coriolis 
efects are taken into account, the linear stability analysis of Dunkerton (1997) (see also 
references therein) and numerical experiments of Lelong and Dunkerton (1998) show 
that the instability mechanism depends upon the intrinsic frequency of the primary 
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wave. When 1 is close to f, the velocity ield induced by the wave is nearly steady
(relative to the perturbation growth rate) and nearly horizontal (with a sinusoidal vertical 
dependency) so that this velocity ield is close to a parallel steady shear low: it may thus 
bear a Kelvin-Helmholtz instability. Such an instability is found to occur whatever the 
primary wave amplitude. By contrast, when n is larger than j, the behaviour depends
upon the primary wave amplitude. Thus, resonant interactions occur for a vanishingly 
small amplitude (Miyazaki and Adachi, 1998) . When s has a inite value, even larger 
than 1, a shear instability prevails as long as 1 is not too large. When s > 1, this
instability is more and more modiied by convection as 1 increases and, in the limit of
no rotation efect (! » f), it becomes a three-dimensional convective instability .

• 4. :.4 .c. 7U 2J.  635 Y 

Figure 16. Breaking of an internal gravity wave with initial steepness twice larger than 
in Figure 15 (resolution 2563) .  Three isopycnals are displayed at successive times. First 
row, from left to right, in unit of the Brunt-VaisiJa period (BVP) 27r / N: t = 18.9, 20, 
21.25. Second row, from left to right: t = 21.7, 22.4, 23.6 (from Koudella, 1999) . 
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Figure 17. Vertical cross-sections of the density ield for the primary wave displayed 
in Figure 16, at successive times. The last two frames are a zoom of the buoyancy 
induced instability. Visualizations are made in the plane perpendicular to the primary 
wave propagation plane (from Koudella, 1999) .

5 Interaction of internal gravity waves with an ambient shear

low 

5 .1  Geophysical context 

In geophysical lows, internal gravity waves generally interact with an ambient shear 
low: for instance, the shear low is the wind in the atmosphere (Bretherton, 1966) or
a current in the ocean (Badulin et a!. ,  1990) .  The former case is very common : the
blowing of a wind over a mountain range generates lee waves which next interact with 
the wind. Recent research in the Sun has revealed that the diferential rotation that 
exists in this star creates a very strong shear at the basis of the convective zone, which 
must interact with the waves that are produced there (Talon et al. , 2002). How does this
shear low interact with the waves is unknown. An analogous interaction occurs when 
the waves encounter a temperature (or a density) front. Actually, when Corio lis efects
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Figure 18. Laboratory experiments in which a buoyancy-induced instability develops 
(see text for details) . Left frame: from Benielli and Sommeria ( 1998); right frame: from 
Schowalter et al. ( 1994) . 

come into play, such a front creates a vertical shear via the thermal wind balance so that 
the wave interact with both a density front and a shear. And when there is no ambient 
(large scale) shear or density front , as in the deep ocean, the wave field interacts with 
the shear low it induces. 

Why is the wave-vortex interaction an important geophysical problem? A very simple 
example is provided by lee waves. Since lee waves are produced by the wind, energy is 
extracted from the wind to generate these waves. As a result, the wind speed decreases 
over a mountain range because of this generation process, as if the mountain were exerting 
a drag force on the wind. This drag force has been introduced (as a subgrid-scale model) 
for the alpine range in the ECMWF3 weather forecast model, thereby improving the 
weather predictions for this region (Lott, 1995). Another example may be provided by 
the permeability of the polar vortex. The polar vortex forms over the pole in the winter 
hemisphere and is a quasi-two-dimensional stratospheric vortex. It extends from the 
bottom of the stratosphere (� 8 kms at the pole) up to an altitude of 70 kms or so, while 
its horizontal extent is of a few thousand kms. Such a quasi-two-dimensional vortex 
is known to be a barrier to transport: laboratory experiments by Heijst et al. ( 1991)  
for instance show that dye injected in  an isolated quasi-two-dimensional vortex remains 
capped inside the vortex and do not mix with the luid outside the vortex. Atmospheric 
measurements at mid-latitudes still led to the suspiscion that air possibly leaks outside 
the polar vortex and a mechanism was seeked for to explain this leakage. Mcintyre ( 1995) 
suggested that the interaction of inertia-gravity waves (which are internal gravity waves 
subjected to rotation) with the vortex edge could result in an irreversible transport of 
mass across the vortex edge. We finally report about a subtle mechanism of wave-vortex 
interactions in the ocean. Klein et al. (2003) showed that meso-scale eddies (which are 

3European Center for Meteorological Weather Forecast.
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Figure 19. Breaking of an internal gravity wave with overturned isopycnals at t = 0 
(s = 1 .086, resolution 2563). Three constant density surfaces are plotted at successive 
times. First row, from left to right, in unit of the Brunt-Viisili period (BVP) :  t = 9.7, 
10.6, 1 1 .5. Second row, from left to right : t = 1 1.8, 12.3, 14 . 1  (from Koudella, 1999). 

responsible for the transport of heat toward the poles) ,  through their efects on near­
inertial (0 � f) oscillations, can induce a spatially heterogeneous difusion that depends 
on the vorticity sign. In turn, the heterogeneous difusion breaks the cyclone-anticyclone 
symmetry on short time scales (compared to the difusive time scales) and favors the 
emergence of cyclonic structures. 

5.2  Ray theory 

In the following, we focus upon the interaction in an ininite medium of internal 
gravity waves with an ambient large scale horizontal shear low J, and, when rotation is
present, with a density front as well. 

We consider a monochromatic wave of intrinsic frequency 0 and wave vector k (or 
a wave packet with main intrinsic frequency and wave vector n and k) . The intrinsic
frequency is the frequency measured in a frame of reference attached to the ambient low. 
The simplest, and main, efect of the interaction on the internal wave is the change of 
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the intrinsic wave frequency through the Doppler efect: 

wo = fl + k.U, (5. 1) 

w0 being the frequency of the source that emits the waves. This source is supposed to be
ixed in the frame of reference relative to which 0 is measured. , changes as the wave 
propagates in the changing velocity ield, and may approach its lower or upper bound. In 
this case, further propagation is no longer possible and, in the linear limit, the wave may 
either be trapped or relected. Two academic situations are usually considered. Within 
an atmospheric context, the mean low is a horizontal wind with a vertical shear U(z)ix ;  
within an oceanic context, the mean low is a horizontal current with a horizontal shear 
U(y)ix .  

The change in . as the wave packet propagates into the current i s  most easily pre­
dicted within the WKB approximation (see Olbers, 1981 ,  for a very clear presentation of
this approximation) . This approximation relies upon the assumption that the properties
of the luid medium that afect the wave propagation (U and N, in the present case) 
vary slowly in time and space relative to the wave intrinsic frequency and wavelength 
respectively. Hence, the medium may be assumed to be uniform and steady over a length 
scale of order \k \-1 and over a time of order n-1 .  Under this assumption, the evolution
of the wave vector is known along a ray (deined as dx / dt = c9 + U) and is driven by the
gradients of the ambient velocity and buoyancy ields. In this paper, we shall consider 
that the luid medium is steady ( i .e. oUfot = 0, oN jot = 0). In this case, the absolute
frequency is constant along a ray: dw0jdt = 0, where djdt = ojot + (c9 + U).1 denotes
the material derivative following a ray. The equations governing the refraction of the 
wave vector along a ray, known as the ray equations, are: 

dk; _ o. oN k oUjt - -oN OX; - j OX; '
that is, in the present case, with U = (U(y, z) , O , O) and N(y, z) 

dkx
0 -

dt 
dky o. oN k oUdt - oN oy - X oy '
dkz o. oN k oU 
dt - oNu - x oz · 

As for the relative frequency, it changes along a ray according to the equation 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

where c9; is the component of the group velocity along the direction of inhomogeneity 
X;. 

Changes of the wave amplitude are inferred from the conservation of wave action.
For any slowly varying background, the action A = E j., where E is the wave energy,
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Figure 20. Sketch of a wave packet approaching a critical level z = zc, within the WKB
approximation. Two rays are shown in the vertical (x, z) plane, with g + U(z)fx being
the absolute group velocity. The intrinsic frequency of the wave packet, w0 - U(zc)kx , 
from the Doppler relation, vanishes at the critical level. 

satisies the conservation equation (Bretherton, 1968) :

aA -t +  7. [(c9 + U)A] = 0. (5.7) 

Equation (5.7) implies that the action contained in a small volume oV moving with the 
absolute group velocity is conserved, that is 

d(AoV) = 0 
dt 

. (5.8) 

The form of the WKB theory we use is the approximation of geometrical optics but, for 
simplicity, the terminology WKB approximation will be employed hereafter.

5.3 Horizontal mean low with a vertical shear U(z)ix 

This situation was irst investigated without rotation efect, when a wave packet 
propagates upwards in a vertical shear low such that its intrinsic frequency decreases. 
If there exists an altitude at which n vanishes, the wave cannot propagate beyond this
altitude, known s the critical level. Hence the critical level acts as a wave ilter. This 
level is also deined as the altitude at which the component of the phase velocity of the 
wave along the wind direction equals the wind velocity (Figure 20) . 

The irst theoretical approach to this problem was performed by Bretherton (1966), 
who considered the Boussinesq equations in a non-rotating frame, linearized about a basic 
state deined by the wind and a linear stratiication, under the WKB approximation. 
Note that this approximation implies that the Richardson number (Ri = N2/ (dU/dz)2)  
is  much larger than 1 everywhere (Olbers, 1981). For a wave packet approaching the
critical level, Bretherton (1966) showed that the vertical component of the group velocity 
Cgz decreases as j2 , where J is the distance of the wave packet to the critical level, while 
kz increases as J- 1 . From the dispersion relation (3.5) , n � 0 (since kx and ky are
constant) . Even if these results are correct as the critical level is approched, the WKB
approximation diverges in the immediate vicinity of that level. The theory predicts 
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that this level is reached in an ininite time (so that there should be no transmitted
component) and that the wave-induced energy increases without bound, as 7-1 . 

Relaxing the WKB approximation, but still considering the linearized equations of 
motions and assuming that the Richardson number is everywhere greater than 0.25, 
Booker and Bretherton (1967) showed that, for a monochromatic wave, momentum is 
actually transferred from the wave to the mean low at the critical level, except for a weak 
transmitted component whose energy is the incident wave energy reduced by the factor 
exp[-2r(Ric - 1/4)112] ,  where Ric is the value of the Richardson number at the critical
level. The transfer of momentum to the mean low is manifested as a discontinuity in the 
vertical lux of wave-induced horizontal momentum pu'w'(z) at the critical level (where
the bar denotes an average over a horizontal wavelength) ; this lux is otherwise constant
with altitude in the absence of critical level (Eliassen and Palm, 1961 ) . No component
is relected in this linear limit. 

For a high enough wave amplitude, the incoming wave-induced energy is higher than 
that absorbed by the shear low and, consequently, the energy density increases in the 
neighbourhood of the trapping level. Breaking eventually occurs, thereby partly dissi­
pating the accumulated energy (since momentum is conserved however, momentum will
be locally deposited by the breaking waves) . This process is well-known to occur in the
atmosphere. However, as noted by Mcintyre (2000), there is a subtle efect which implies 
that, unless viscous efects are too strong, the linear theory always fails after some time: 
as the wave approaches the critical level, its intrinsic phase velocity decreases faster than 
the wave-induced velocity along the wind direction does because of absorption so that 
their ratio, which is one measure of the wave steepness, increases. Hence, breaking may 
occur as well. 

This situation was studied in detail through several experimental works (f.i. Koop,
1981; Koop and McGee, 1986) and is exempliied in Figure 21a for a weak amplitude wave 
and in Figure 21b for a large amplitude wave. Koop and McGee (1986) found that when 
breaking occurs, it does so through a two-dimensional Kelvin-Helmholtz instability when 
no critical level exists and through a three-dimensional buoyancy-induced instability 
when there is a critical level. The former behaviour can be explained as follows: as 
the waves propagate in the shear low, the intrinsic frequency decreases so that wave­
induced motions are close to horizontal, slow and of small steepness; such motions are 
therefore prone to Kelvin-Helmholtz instability. The latter behaviour is consistent with 
the general analysis of Lelong and Dunkerton ( 1998) , who show that a gravity wave of 
low frequency and high steepness breaks through a buoyancy-induced instability. In 
numerical experiments, the breaking problem was irst addressed in a two-dimensional 
vertical plane. The idea was that, as kz -+ 0, a strong wave-induced vertical shear 
develops (which actually dominates the mean low shear) , so that destabilisation should
occur via a Kelvin-Helmholtz instability. The two-dimensional simulations realized by 
Winters and D 'Asaro ( 1989) actually revealed an unexpected behaviour once the strong 
wave shear has built up, consisting of a long regime of overturned isopycnals without 
breaking. This led Winters and Riley (1992) to design a model for a gravity wave packet in 
the neighbourhood of the critical level, as a basic state for a linear stability analysis. They 
found that the most unstable modes are both of the Kelvin-Helmholtz type ( occuring
in the propagation plane of the wave packet) and of the convective type ( occuring in a
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(a) (b) 

Figure 21 .  Laboratory experiment of an internal gravity wave interacting with a vertical 
shear low. Both the shear low and the wave ield are created by a moving topography. 
(a) The wave amplitude is small enough for complete absorption of the wave ield by the 
shear low to occur; (b) for a larger wave amplitude, the wave breaks below the critical 
level (from Koop and McGee, 1986). 

plane perpendicular to it) . Three-dimensional numerical simulations (Fritts et al. ,  1994; 
Winters and D'Asaro, 1994) later conirmed that the dominant instability is a three­
dimensional convective instability, which the two-dimensional simulations were unable to 
reproduce. Only Winters and D'Asaro (1994) studied the inluence of the breaking of a 
wave packet upon the luid medium, for Ri = 25 and for three values of the wave packet 
initial amplitude. The main result is as follows: the energy carried by the wave packet is 
irst (in time) transferred to the mean low, the more so when the initial wave amplitude 
is smaller, in agreement with linear theory. A relected component is next produced, 
whose energy content grows with the initial wave amplitude (no component seems to be 
transmitted, whatever the amplitude) .  Consequently, as noted by Winters and D'Asaro 
(1994), very little energy is left for luid mixing and for potential vorticity changes. 

The work of Booker and Bretherton (1967) was extended to rotating lows by Jones 
(1967) and by Wurtele et al. (1996) . Using a linearized approach, Jones (1967) showed 
that, in addition to the classical critical level (characterized by 0 = 0), two additional
singular levels exist, corresponding to 0 = ±j. His paper contains another important 
result: in a rotating luid, the vertical lux of wave-induced horizontal momentum is no 
longer conserved (away from the critical level) . It should be replaced by the vertical lux 
of wave-induced angular momentum for this conservation property to hold again (away 
from the singular levels) .  Wurtele et al. (1996) further showed that the wave becomes 
evanescent in the neighbourhood of the critical level (since the wave can only propagate 
for 02 > j2) so that the only efective singular levels are those where 02 = j2 . Wurtele
et al. (1996) also investigated numerically the situation of a time developing wave, being 
emitted from a source at t = 0. In this case, the singularity develops in time as well :
at early times, the propagating wave crosses the 0 = f (for instance) level and decays 
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in the evanescent region. As time elapses and the wave reaches a steady state ( i. e. its 
amplitude becomes constant) , the singularity develops but non linear efects develop as
well. As a result, the wave breaks in the neighbourhood of the singular level and a 
relected component is emitted; the wave would be absorbed at the singular level in a 
linear regime. These results are thus analogous to those found by Booker and Bretherton 
(1967) at a critical level in a non rotating luid. Wurtele et al. (1996) also showed that 
the behaviour is notably diferent for a continuous spectrum of frequencies (such as a
lee wave generated by a low over an arbitrary topography) , in which case no singular
behaviour is encountered. 

In the discussion above, the monochromatic wave propagates in the shear low so that 
its intrinsic frequency decreases. When the wave propagates in a shear low so that its 
intrinsic frequency increases, it relects onto the horizontal plane where 1 = N, in the
linear limit. Jones (1968) showed that overrelection occurs when the local Richardson 
number is smaller than 0.25 somewhere, that is, the shear low is potentially unstable; 
the wave extracts energy from that low when relecting. When nonlinear efects come 
into play (due to the high initial amplitude of the wave for instance) and the background
shear low is stable, Sutherland (2001) showed that a horizontally periodic wave packet 
permanently deposits momentum to the mean low at altitudes close to and below the 
relecting level; when the wave packet is horizontally compact, a substantial part of the 
inite amplitude wave packet energy may be transmitted. 

5.4 Horizontal mean low with a horizontal shear U(y)ix 

Theoretical results. The behaviour of an internal gravity wave packet in a hori­
zontally sheared current U (y )ix was studied thirty years ago within an oceanographic 
context , using the linear theory in the WKB approximation (Ivanov and Morozov, 1974;
Olbers, 1981; Basovich and Tsimring, 1984; Badulin et al. ,  1985; Badulin and Shrira, 
1 993) . Coriolis efects are ignored in all studies except in Olbers' work. When the wave 
packet enters into the current and propagates against it so that its intrinsic frequency 
increases (Eq. (5.6) with x; = y) ,  it cannot propagate beyond the position Yt at which
1 = N. The mean low being barotropic, this position actually is a vertical plane if N is 
constant; this plane is hereafter referred to as the trapping plane (Figure 22) .

Since the properties of the medium in which the wave propagates vary only with 
y, kx and kz remain unchanged (as well as w0 as already noted, because the medium
is steady) . From the linear dispersion relation (3.5) , one easily infers that ky goes to
ininity as 1 -+ N. More precisely, it can be shown from WKB theory that ky ' y-112
as t -+ 0, where t refers again to the distance of the wave packet to the trapping plane; 
moreover, Cgy ' y312 and c9x , Cgz -+ 0 as well (Staquet and Huerre, 2002) . The latter
property implies that the wave packet slows down in the neighbourhood of the trapping 
plane so that its energy density locally increases (in other words, the wave-induced energy
accumulates in the neighbourhood of this plane) . However, the WKB theory also predicts
that this energy tends to ininity (E ' y-312) and that the trapping plane is reached in 
an ininite time. As in the critical level situation, the two latter results are unphysical and 
stem from the failure of the WKB theory in the immediate vicinity of the trapping plane. 
Olbers (1981) actually noted that, if E '  y-1', the asymptotic behaviour of the wave is 
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Figure 22. Sketch of a wave packet approaching a trapping plane, within the WKB ap­
proximation, and propagating against the current (k.U  = kx .U < 0) .  Two rays are shown 
in the horizontal (x, y) plane, with Cgh + U(y)ix being the component of the absolute
group velocity in that plane. The intrinsic frequency of the wave packet, w0 - U(yt)kx ,  
from the Doppler relation, i s  equal to  the Brunt-Viisili frequency at the trapping plane 
(adapted from Staquet and Huerre, 2002) .

regular or singular depending upon whether L < 1 or L : 1 .  In the former case, the wave 
reaches the plane in a inite time, and this plane is for instance a relexion plane. In the 
latter case, the wave reaches the plane in an ininite time; very strong gradients of the 
wave-induced Reynolds stress form in the close neighbourhood of the plane, which yield 
momentum exchange with the mean low. Information upon the actual wave behaviour 
when L : 1 can be obtained by solving the linearized equations of motions. Ivanov and
Morozov (1974) thus found that the total wave-induced energy may indeed increase, as 
opposed to the critical level situation studied by Booker and Bretherton ( 1967) .  In this 
situation, momentum is transferred from the shear low to the wave, so that the potential 
for wave breaking exists. The three-dimensional numerical study of Staquet and Huerre 
(2002 ) ,  whereof a summary is provided below, shows that an inertia-gravity wave packet 
may indeed break in the neighbourhood of a trapping plane. 

When the wave propagates along the current such that its intrinsic frequency de­
creases, ky decreases as well. If ky decays down to zero, n reaches a minimum value
Omin, obtained by setting ky to 0 in the dispersion relation. The behaviour of the wave 
as 0 --+ Om in may be guessed by using WKB theory. Note that the theory becomes 
less and less valid as the plane gets closer since the wavelength along the y-direction 
increases. Assuming that the theory remains valid, ky v y112 ' Cgy v y112 and E v y-1/2
as y --+ 0. Here, according to Olbers' (1981) argument , L = 1/2 so that the 0 = Omin 
plane is a relexion plane for the wave. 

Oilers et al. (2003) solved numerically the equation for the amplitude of a hydrostatic 
internal gravity wave emitted away from the shear low and propagating toward it. The 
wave behaviour (transmitted, relected, over-relected) depends upon the stability of the
shear low. When the latter low is inertially stable, the wave is always relected, with a 
possible transmitted component. When the shear low is inertially unstable by contrast, 
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over-relection is possible, with a relection coeicient up to 3.25 (for the case considered 
in the paper) . One may wonder whether a high enough relexion coeicient would not 
lead to the instability of the relected wave. Note the analogy between this behaviour 
and that found by Jones ( 1968) for an unstable vertical shear low. 

Numerical results. The behaviour of a wave packet in a rotating, constant-N medium 
propagating into a barotropic shear low U(y)ix has been investigated numerically by 
Staquet and Huerre (2002) .  The shear low consists of a horizontal shear layer (with a 
tanh proile) while the wave packet is a plane wave whose amplitude is modulated by a 
gaussian function along the y-direction. The parameters of the wave ( its wave vector) , 
of the shear low (its maximum amplitude) and of the medium (the Brunt-ViisaJi and 
Coriolis frequencies) are chosen so that ( i) the wave intrinsic frequency increases as the 
wave propagates in the shear low and (ii) a trapping plane exists. 

The wave behaviour is illustrated in Figure 23 for a cyclonic shear low (that is, 
the vorticity of the shear low is of the same sign as the Corio lis frequency) . Constant 
contours of the density ield are displayed at successive times in a vertical (y, z) plane. At 
t = 0 (Figure 23a) , the wave packet is hardly visible due to its small steepness (s = 0.26) .  
Because the horizontal shear low does not displace the isopycnals, it is not visible either. 
Since N is constant , the trapping plane is a vertical plane and its intersection with 
the (y, z) plane is marked with a vertical line in the Figure. The wave packet exhibits 
two major changes as it propagates toward the shear low: the isopycnals steepen and 
the wave amplitude increases. The former efect is accounted for by noting that, as ky 
increases, the incompressibility condition reduces to kyuy + kzUz � 0. Hence, the vector 
(ky , kz) is perpendicular to the phase lines in the (y, z) plane. Since ky _, +o while kz 
remains constant, the phase lines steepen. The second efect results from the trapping of 
the wave. The local increase of the wave amplitude makes the wave packet break (Figure 
23e) and small-scale motions are produced. The latter motions are quickly dissipated 
however because the primary wave packet is not forced. As well, the shear low is hardly 
modiied by the momentum deposit that occurs during wave breaking. 

The stage of the low that follows breaking dramatically changes when the shear 
low is anticyclonic (Figure 24) . Indeed, in this situation, the shear low is subjected 
to an inertial instability, through which small-scale motions are most ampliied. The 
point is that the small-scale motions resulting from wave breaking act as a perturbation 
to the shear low, which triggers the instability. The medium is therefore considerably 
modiied by the breaking of the wave in this situation, because it initiates the inertial 
instability of the (very energetic) shear low. The latter instability results in momentum 
and mass transport: the shear of the background low is weakened and a passive scalar 
is transported across the trapping plane, namely across the shear low. 

5.5 Horizontal mean low with both a horizontal and a vertical shear 

What does happen if a wave packet in a stably-stratiied rotating medium interacts 
with a (thermal wind) balanced shear low U(y, z) involving both a horizontal and a 
vertical shear? As discussed above, the situation is not simple. For instance, when the 
intrinsic frequency 2 increases and approaches N, the wave packet should be relected
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Figure 23. Interaction of a wave packet (conined along the y-direction only) with a
barotropic cyclonic shear layer. Constant contours of the density ield are displayed at 
successive times, expressed in Brunt-Viisili periods; (a) t = 0, (b) t = 1 .9, (c) t = 3 .8 ,
(d) t = 4.6 ,  (e) t = 5.6, (f) t = 11 .4. The vertical line in frame (a) marks the trapping
plane. 
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Figure 24. Interaction of a wave packet (conined along the y-direction only) with a 
barotropic anticyclonic shear layer. Constant contours of the density ield are displayed 
at successive times, expressed in Brunt-VaisaJa periods (a) t = 0, (b) t = 1.9, (c) t = 3.8, 
(d) t = 4.6, (e) t = 4.8,  (f) t = 9.4. The vertical line in frame (a) marks the trapping 
plane (from Staquet and Huerre, 2002 ) .  
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by the vertical shear aU I az but trapped by the horizontal shear aU I ay. Also, since the 
shear low satisies the thermal wind balance, a buoyancy ield B(y, z) exists as well such 

au aB 
· 

that f- = - - .
az ay 

We have investigated this situation in a simple context, when a wave packet conined 
both in the y and z directions interacts with a horizontal shear layer with a sinusoidal 
vertical dependency (Edwards and Staquet, 2005) .  We chose the parameters such that 
l increases because of the horizontal shear of the background low. We irst explored
the parameter range by solving the ray equations and performed three-dimensional di­
rect numerical simulations (DNS) to investigate the inluence of nonlinear efects on the 
behaviour of the wave packet . 

A general behaviour is observed in the WKB theory, which is illustrated in Figure 25. 
The ray trajectories are displayed in frame (a) and the intrinsic frequency l is plotted
versus time in frame (b) . In frame (a) , the wave packet at initial time is represented 
by a set of twenty rays aligned along two perpendicular segments. The l = N surface,
plotted with a thick dashed line, displays two important locations when the interaction 
with the wave packet is considered: (i) where the local radius of curvature is minimum, 
corresponding to a maximum value of aU I ay (location 1 )  and where the local radius of 
curvature is maximum, corresponding to a minimum value of aUiay (location 2 ) .  In 
the former case, the l = N surface is nearly vertical and is a trapping surface; in the
latter case, the surface is nearly horizontal and is relecting. All rays propagate toward 
the l = N surface and reach it, either in the neighbourhood of location 1 or of location
2. In the former case (location 1 ) ,  the rays are trapped at the surface and propagate
along it downward, with a nearly vertical group velocity, toward location 2 .  Note that 
the group velocity has strongly decreased when location 1 is reached. All rays sooner or 
later reach location 2 and relect there. The rays then propagate in the interior of the 
shear low within a wave guide made by the l = N surface. rame (a) also displays grey
points, at which the steepness of the wave packet exceeds 1 .  This suggests that breaking 
may occur there, resulting in irreversible mass and momentum transport. Note however 
that WKB theory is no longer valid at the trapping plane (and at a relecting surface) 
and that, most importantly as we shall see, molecular efects have been ignored in this 
analysis. 

DNS results are displayed in Figure 26 through constant contours of the luctuating 
buoyancy ield b' . It should be stressed that the steepness of the wave packet is twice 
smaller than in the baroclinic cases and that the varying horizontal shear (aU I ay) is 
not larger. Hence, the wave-shear interaction (which scales like s2 aU I ay) is smaller by a 
factor 4 at least. The interaction between the shear low and the wave packet is therefore 
weak and one may consider that the buoyancy luctuations displayed in Figure 26 solely 
belong to the wave ield. The DNS behaviour is close to the WKB prediction up to 
the time the wave packet reaches the trapping surface at location 2 (at t :' 176 :' 28 
BVP) .  This is attested in frame b) where the intrinsic frequency predicted by WKB 
theory and the numerical simulation are compared. Molecular efects deeply change the 
subsequent wave packet behaviour in the DNS, for two reasons. First, ky increases as the 
packet approches the trapping surface, implying that small scales along the y-direction 
are produced. These small scales are of course very sensitive to molecular efects. The 
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Figure 25.  WKB predictions. (a) Trajectories of rays at t = 127.3 BVP (Brunt-Vaisala period)
in a vertical (y, z) plane. The rays start from the initial wave packet location. The thick dashed
line marks the intersection of the 1 = N trapping surface with the (y, z) plane and dotted lines
represent contours of the shear low velocity U (y, z) . Light grey circles are plotted at each time
the steepness along a given ray exceeds the value of 1. (b) Temporal evolution of the intrinsic 
frequency n of the wave packet normalized by the Coriolis frequency f. Dashed line: WKB
prediction for a central ray; solid line: DNS result at the packet centre; dotted line: N / f (upper
bound of 0/N) . Results are compared over the duration of the DNS (t=240, that is 38.2 BVP)
(from Edwards and Staquet, 2005) .  

second reason, connected to the irst, is  that the packet slows down as it  approaches the 
trapping plane, which makes it also prone to molecular efects. As a consequence, the 
nearly steady, small-scale packet is dissipated locally and does not penetrate into the 
wave guide. 

The general conclusion that can be drawn from this study is that a single wave packet 
is unlikely to modify its environment. In geophysical lows however, waves are most often 
generated by a permanent source (like the interaction of the tide with the topography 
in the ocean) or, at least, are emitted during a long time with respect to their intrinsic 
period. Since, in our study, the wave packet slows down as it approches the trapping 
surface, a continuous emission of such packets would result in their superposition in 
the neighbourhood of the relecting surface, and possibly in breaking. Higher resolution 
simulations should also be conducted to reduce the inluence of molecular efects on the 
wave packet behaviour. 

6 Interaction of internal gravity waves with a boundary

6.1 Focusing by wall relexion 

In this section, we show that internal gravity waves can locally amplify by a simple 
geometrical efect irst discovered by Phillips ( 1966), which may result in breaking and 
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Figure 26. DNS results. Constant contours of the luctuating buoyancy ield b' are plotted in
a vertical (y, z) plane at successive times (in unit of Brunt-Vaisala period) : (a) t=O; (b) t=8.9,
(c) t=13.4, (d) t=28. In frame (a) , dotted lines represent contours of the shear low velocity
U(y, z) .  The surface D = N is displayed with a solid line on all frames (from Edwards and
Staquet, 2005) .

turbulence. Coriolis efects are ignored in this paragraph. 
When an internal gravity wave relects onto a sloping boundary, the frequency is con­

served upon relection, as for any relecting wave in a steady medium. The dispersion 
relation (3.5) thus implies a peculiar property (Phillips, 1966) : the angle that the wave 
vector makes with the horizontal is preserved as well upon relexion4 . This geometrical 
property implies that a ray tube (made of curves everywhere tangent to the group ve­
locity) relecting on a sloping boundary may be focused (see Figure 27) . Since the lux 
of energy across the tube section is preserved during relexion, the energy lux increases 
after relexion. A particularly interesting situation occurs when the angle that the inci-

4The Snell-Descartes law valid for non dispersive waves is recovered only when the slope is 
horizontal or vertical. 
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Figure 27. Relexion of an internal wave on a sloping wall near the critical angle. The 
angle ) of propagation with respect to the vertical is conserved, so the relexion angle 
Er is much smaller than the incidence angle Ei , resulting in wave focusing (from Staquet 
and Sommeria, 2002) . 

dent ray makes with the horizontal is equal to the angle of the slope (" critical angle" ) .  In 
this case, the linear theory predicts a relected wave of ininite amplitude, ininitesimal 
wavelength and zero group velocity. The Reynolds number is actually conserved after re­
lexion (the wavelength decreasing in inverse proportion to the wave-induced velocity) so 
that, if the incident Reynolds number is large, turbulent efects are expected to occur in 
the relected ray tube. This situation has been investigated theoretically using a weakly 
nonlinear approach (Dauxois and Young, 1999; Tabaei et al. , 2005) , experimentally (Ivey 
et al. ,  2000; McPhee-Shaw and Kunze, 2002; Peacock and Weidman, 2005) and with nu­
merical simulations (Slinn and Riley, 1998; Zikanov and Slinn, 2001 ) .  Dauxois and Young 
(1999) predicted the generation of a harmonic component, which was recently conirmed 
by the laboratory experiment of Peacock and Weidman (2005) , and the formation of an 
array of counter-rotating vortices along the wall. Slinn and Riley (1998) showed that a 
strongly turbulent boundary layer can form along the wall with eicient mixing property 
and, according to the laboratory experiment of McPhee-Shaw and Kunze (2002) , this 
results in irreversible mass transport along the isopycnals and therefore away from the 
boundary, in so-called nepheloid layers (Figure 28) (see Staquet and Sommeria, 2002, for 
further discussion) .  

In a closed domain in which one wall (at least) is inclined to the vertical, the solu­
tions of the linear equation are not longer regular solutions (seiches) but have a fractal 
structure. In this situation, the incident ray tubes focus at each relexion on the slop­
ing wall. It has been shown by Maas and Lam (1995) that the focused tubes actually 
converge toward an " attractor" , namely toward a localized region in space (Figure 29a) . 
A laboratory experiment has been performed to check the validity of these theoretical 
ideas (Maas et al. ,  1997) : the occurence of the attractor is clearly visible in Figure 29b. 
The occurence of turbulence and mixing along the attractor is still an open question. 

44



Figure 28.  Laboratory experiments of  an internal gravity wave relecting on an inclined 
wall. Fluoresceine dye at the wall is transported along isopycnals, away from the wall, 
as a result of the breaking of the wave (from McPhee-Shaw and Kunze, 2002) .

6.2 The internal tide 

The internal tide is the ield of internal gravity waves generated in the ocean by the 
interaction of the barotropic tide (the common tide) with the bathymetry. Munk and
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Figure 29. (a) Sketch of the attractor: the successive relexions of an internal wave
in a closed domain with one inclined wall converge toward a limited region, referred to 
as an attractor. (b) Laboratory experiment of the attractor in a tank stably-stratiied
with salted water. Horizontal lines of dye have been introduced at initial time, whose 
subsequent motions attest of the internal wave formation. To make the attractor more 
visible, the image of the low at initial time has been substracted to that at a time where 
the attractor has formed. The localized presence of dye lines attest of localized luid 
motions (from Maas et al. ,  1997) .
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Wunsch (1998) suggested that the breaking and mixing of the internal tide could fun­
damentally contribute to the global thermal equilibrium of the ocean: the cold bottom 
water masses in the thermohaline circulation indeed raise toward the surface through mix­
ing; and mixing in the abyssal ocean, away from the boundaries, mostly occurs through 
internal wave breaking. Several questions therefore stem from this argument : what is 
the rate of conversion from the barotropic tide into the baroclinic tide? How and where 
does the internal tide lose energy? In particular, where does breaking occur? Since the 
conversion of energy is largest at continental slopes, we considered the generation of the 
internal tide at a continental slope. 

The numerical modelling of this problem is not simple because the internal tide dy­
namics are nonlinear, non-hydrostatic, three-dimensional and a bathymetry is involved. 
Moreover, a continental slope typically extends from a depth of about 200m down to the 
abyssal plain, at 4000m. We are currently studying this problem with the code developed 
by John Marshall at MIT (Marshall et al. ,  1997) with the investigation of breaking and 
mixing as the main objective. 

Figure 30a displays the internal tide velocity ield for a linear hydrostatic computation 
performed by Gerkema (2002) .  This simpler context allows one to focus on the generation 
and propagation of the internal tide. The Brunt-VaisaUi frequency is constant in this 
situation and equal to 2 w-3 rad/s, the Coriolis frequency is that of mid-latitudes (lo-4 
rad/s) and the topography has a simple shape. Figure 30a has two remarkable features: 
the internal tide is generated at the shelf break and manifests itself as a single ray 
relecting at the bottom and at the surface. Simple qualitative arguments can be provided 
to account for these features. Because the tide must jump over the slope, its velocity 
ield acquires a vertical velocity over the slope which is largest on top of the slope. Let us 
consider a frame of reference attached to the barotropic tide. In this frame the topography 
has an oscillatory motion at the tidal frequency. This is analogous to the motion of an 
oscillating body in a stably-stratiied medium already discussed. An internal gravity 
wave ield is thus generated in the region of largest vertical velocity (if the oscillating 
frequency is comprised between the local values of N and f) ,  whose energy propagates 
along a cross with angle set by the dispersion relation. In the present case, only parts of 
the cross can form because the body (the topography) is not spatially bounded, which 
propagate toward the abyssal plain and toward the shelf. 

The inclusion of nonlinear non-hydrostatic efects strongly modify this regular pattern 
(Figure 30b ) .  As discussed by Gerkema et al. (2005), an internal wave beam in an ininite 
medium is a solution of the fully nonlinear Boussinesq equations (see also Tabaei and 
Akylas, 2003) .  Hence, nonlinear efects are expected to occur where the beam meets 
a boundary. Figure 30b shows indeed that small-scale structures are observed in the 
generation region and where the beam meets the abyssal plain. One can explain the 
former observation by noticing that the beam is tangent to the slope in the generation 
region and is therefore aligned with the barotropic low, so that forcing by the latter 
low is optimum. In the relexion region, higher harmonics are generated as a result of 
the superposition of the incident and relected beams. As discussed in Section 6 . 1 ,  the 
generation of a second harmonic, predicted theoretically by Dauxois and Young ( 1999) , 
has been observed in a laboratory experiment of Peacock and Weidman (2005) as a result 
of the relexion of an internal gravity beam onto a sloping boundary. No higher harmonics 
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(a) (b )  
Figure 30.  (a)  Horizontal velocity ield at 10  tidal periods, using a linear hydrostatic nu­
merical code (from Ger kema, 2002) .  (b) Same as (a) , using the nonlinear non-hydrostatic 
MIT code. 

are observed however in the experiment, as opposed to the present simulation, because 
the internal wave beam is not forced. 

It follows that higher frequencies are generated once the beam relects, and this is 
attested by frequency spectra of the kinetic and potential energy (Figure 3 1 ) .  The slope 
spectrum is close to -2 and is made of quasi-linear waves, suggesting that the spectra 
may be of the Garrett-Munk type (see next Section) .  

A practical application of this study is that two well-distinct regions appear to be 
turbulent, as further discussed in Gerkema et al. (2005) , so that any parameterization of 
the internal tide may be seeked for independently in each region. Of course, this point 
should be complemented by simulations in a more realistic context. 

7 Statistical properties of "wave turbulence"

As we recall it in Section 3.3,  internal gravity waves transport the momentum and energy 
of their source, without any transport of matter as long as their dynamics are linear and 
non-dissipative (see, f.i . ,  Andrews et al. ,  1987) . The degree of nonlinearity depends upon 
the length scales involved and is quantiied by the wave steepness (deined in Section 
4 . 1 ) .  

In  the ocean, s « 1 for vertical wavelengths comprised between a few tens and 
a few hundreds of meters and the wave dynamics are weakly nonlinear5 (Garrett and 
Munk, 1979 ) .  Velocity and temperature spectra measured in the ocean at these scales 
remarkably display the same dependency on the vertical wavenumber and frequency 

5 At such scales, Coriolis efects are important and the Ross by number Ro = Au I kl / f should
actually be used in place of the Froude number. These large scales are characterized by 
Ro « 1. This implies that Fr « 1, since Fr = Ro(f /N) and f /N « 1 in geophysical luids.
The Froude number becomes the relevant parameter at smaller scales. 
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whatever the measurement location, as long as this location is far away from sources and 
sinks of the waves. These spectral features are very well accounted for by a semi-empirical 
model proposed by Garrett and Munk (1979) , based upon the assumption that the waves 
are linear and inluenced by the Coriolis force. The so-called Garrett-Munk spectrum 
depends separately upon kz and upon the wave intrinsic frequency n and scales as k-;2 
for high vertical wave numbers and as n-2 for high frequencies n. 

For vertical wavelengths between a few meters and a few tens of meters, the wave 
dynamics become nonlinear (Fr < 1) but the spectral features still display a univer­
sal dependency, which is distinct from the Garrett-Munk spectrum (Holloway, 1980) : 
remarkably, the kinetic and (available) potential energy spectra display the same law 
and level as a function of the vertical wave number kz , whatever the low conditions: 
E(k) ::: 0.2N2k;3• These nonlinear waves break when their Froude number becomes 
greater than 1. Breaking produces motions close to the dissipation scale, at which luid 
mixing occurs. It is important to realize that the waves irreversibly modiy their envi­
ronment when they break, through a transport of mass both along the vertical direction 
(i. e. through luid mixing6) and along the horizontal direction (as a mean low is induced 
through deposition of momentum) (Mcintyre and Norton, 1990) . 

The ubiquitous occurence of the latter spectrum is illustrated in Figure 32, through 
spectra of the available potential energy. In frame (a) , data collected from oceanic 
measurements of the vertical temperature gradient are displayed as a function of kz . 
Note that the spectrum is nearly lat for small kz (the exponent is 0.1), corresponding 
to the Garrett-Munk spectrum. Frame (b) displays very high resolution measurements 
of the horizontal luctuating velocity ield in the stratosphere. The spectrum is of the 

6Because of the existence of the restoring force of buoyancy along the vertical direction, no net
vertical transport of mass can occur in a stably stratiied luid without mixing. 
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Figure 31. requency kinetic and potential energy spectra of the internal tide ield (a) 
before relexion of the wave beam; (b) after relexion of the wave beam. The spectra are 
averaged over the vertical direction (from Gerkema et al. ,  2005) .  
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Kolmogorof type (v k-513) for a vertical wavelength smaller than :o 10m. In frame (c) ,
the spectrum stems from a laboratory experiment of mixing of a density interface by 
an oscillating grid (Hannoun and List, 1988) . For a certain parameter regime, internal
gravity waves develop at the interface and break. In frame (d) , the result from a two­
dimensional (in a vertical plane) direct numerical simulation of a large scale breaking
internal gravity wave in a constant N stratiied luid at rest is presented (Bouruet­
Aubertot et al. ,  1996) . The spectra are averaged over 14 Brunt-VaisaHi periods (BVP) 
around the breaking time (t :o 35 BVP) . An identical k;3 spectrum is obtained when
the computation is performed in three dimensions (Carnevale et al. ,  2001 ) . 

8 Mixing by breaking internal gravity waves

The importance of mixing stems from the fact that small-scale processes, such as internal 
gravity waves, have an impact upon their environment only through irreversible processes, 
such as mixing. Hence, in large scale circulation models, these small-scale motions are 
usually represented through their mixing properties, via a turbulent difusivity. Internal 
gravity waves deposit momentum when they break so that this efect should also be taken 
into account through a (isopycnal) transport coeicient.

It is not possible to ignore mixing from these small scale motions. As we already 
stressed it, in the ocean for instance, the cold bottom water masses raise through mixing 
and it is very likely that the thermohaline circulation, with typical time scale of one 
thousand years, would stop without mixing, with typical time scale of one minute. As 
well, in the atmosphere, the climate dynamics strongly depend upon mixing processes, 
which arise in convective clouds (Bony et al. ,  1995) .

In this section, we only address basic concepts of mixing. A more extensive presenta­
tion along with measurements of mixing in a few laboratory and numerical experiments 
and in geophysical luids can be found in Staquet (2004) .

8.1  Basic concepts 

Motions in a stably-stratiied luid are associated with kinetic and available potential 
energy (APE) . The APE is partly reversibly converted into kinetic energy through the
buoyancy lux, and partly irreversibly converted into background potential energy (BPE) 
through mixing (Lorenz, 1955; Thorpe, 1977; Winters et al. ,  1995) . The BPE is the
potential energy of the background density ield Pb(z), namely the density ield that
would exist in the luid if it were brought to rest. The BPE is therefore the minimum 
potential energy of the luid. The physical mechanism to account for the irreversible 
conversion rom APE into BPE is simple: when luid motions occur, luid particles of 
diferent density are brought into contact and mix through molecular efects. This point 
can be discussed further. Mixing between two particles depends upon the time the 
particles are in contact. In other words, the Reynolds number of the luid motion that 
advects the particles comes into play: if luid particles are transported by large scale 
motions, with large Reynolds number, the difusive time will be large relative to the 
advective time and mixing hardly occurs (but stirring does) . By contrast, small scale
motions will lead to more mixing. These ideas are illustrated in Staquet (2000) for the
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Figure 32. Evidence of k;3 potential energy spectra Ep(k) in the presence of internal 
gravity wave breaking. a) Schematic spectra of vertical temperature gradients k; Ep ( k) 
in the oceanic thermocline (from Gregg, 1987) . b) Stratospheric temperature spectra 
measured from instrumented balloons, showing a k;3 range with a Kolmogorof k;5/3 
tail at high kz (provided by F. Dalaudier) .  c) Normalized internal wave spectra, computed 
from luoresceine concentration proiles in a laboratory experiment of mixing of a density 
interface by an oscillating grid. 6b is the buoyancy jump across the density interface, lo 
is an integral scale of turbulence and Rj is a Richardson number deined by ,b l0ju§,
with u0 being the rms of the horizontal velocity measured in a homogeneous luid at the 
same distance from the oscillating grid as the density interface (from Hannoun and List, 
1988) .  d) Two-dimensional direct numerical simulations of a large scale breaking internal 
gravity wave (ky is the vertical wavenumber) (from Bouruet-Aubertot et al. ,  1996) . 
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stably-stratiied shear layer. 

At the scale of the luid system, mixing is quantiied by the rate of change of the BPE. 
This rate of change is always positive, a consequence of the second law of thermodynam­
ics. This rate is also the dissipation rate of the APE and will be referred to as the mixing 
rate EAPE· The eiciency of mixing is characterized by the ratio of this rate of change 
to the amount of energy brought to the system per time unit . If a statistically steady 
state is reached, the amount of energy brought to the system per time unit is equal to 
the rate of energy dissipated per time unit in the system, namely EAPE + EKE ·  The 
eiciency of mixing is therefore 

EAPE 
and is referred to as the lux Richardson 

EAPE +EKE 
number in the oceanographic community (see Toole, 1998, for a discussion of mixing in 
the oceanographic context) . The crucial point is therefore to compute EAPE· 

8.2 How to compute the mixing rate EAPE? 

An exact expression for the APE is presented in Holliday and Mcintyre (1981) , in 
terms of an expansion that holds for general N(z). For constant N only the irst term of 
the expansion remains, giving APE = - !/ < p12 > , where < > denotes a volume

2up dz 
average and p(z) is the horizontally averaged density proile. Note that for a constant N, 
the scale of the vertical gradient of the density proile is theoretically ininite so that this 
case corresponds to the linear limit . From a practical point of view, this expression of the 
APE is also used when the displacement of the luid particles is small with respect to the 
scale of the vertical density gradient p / dz. In this case, from the linearized Boussinesq
equations, the dissipation rate of APE is simply - : p� dz 

< l7 p' l2 > .

This method cannot be used when the particle displacements are not small with 
respect to the scale of the density gradient (but the Boussinesq approximation still holds) . 
The stably-stratiied shear layer is one example. In this case, Winters et al. (1995) 
proposed an exact analytical expression for EAPE, based upon the background density 
proile. Hence, one has to compute this proile and two methods have been proposed for 
this purpose. The irst method was proposed by Thorpe (1977) and extended to two and 
three dimensions by Winters et al. (1995) . The background density proile is obtained by 
sorting adiabatically the density ield so as to get a stable proile (note that the energy 
released by the sorting process is the APE) . rom a practical point of view, one sorts 
the values of the density ield at each grid point so that a stable proile is reached; each 
plane of the numerical domain (supposed to be parallelepipedic) , starting from the lowest 
altitude, is then illed with the heaviest particles and the density is averaged over each 
plane to get a monotonic density proile. Tseng and Ferziger (2001) proposed another 
method to access the background density proile, which is more eicient numerically than 
the sorting method and relies upon the probability density function of the density ield. 

As said above, these theoretical approaches have been developed to compute the 
mixing eiciency. Mixing is also quantiied by a (diapycnal) turbulent difusivity Kp, 

dpb 
deined as EAPE/9 = -Kp z · In the linear limit, p ::: Pb for all times and one recovers
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< IVP' I 2 > 
the expression widely used in oceanography: Kp = -, 

(
5

/dz)2 .

9 Conclusion

We tried in these Notes to broadly describe the very rich dynamics of internal gravity 
waves. The very study of those waves started in the mid-sixties, when Ball (1964) realized 
that two surface waves could resonantly interact with an internal gravity wave. Much has 
been learned about these waves, especially from a theoretical point of view, although the 
dispersion relation of inertia-gravity waves has just been veriied experimentally (Peacock 
and Tabaei, 2005) . And much remains to be done when natural media are considered. 
The sources of internal gravity waves in the atmosphere, other than the wind blowing 
over orography, are still the subject of active research. For instance, convective clouds at 
low latitudes generate such waves, which may interact in turn with the clouds. As well, 
the analysis of atmospheric data (FASTEX campaign) revealed that energetic large-scale 
low-frequency waves, with velocity comprised between 8 and 10 m/s, are emitted by the 
tropospheric jet (Plougonven et al. ,  2003) .  The important role of internal gravity waves 
in mixing the abyssal water masses has been conjectured but not proved. And the role of 
these waves in the dynamics of the radiative zone of the Sun is totally unknown. From 
a modelling point of view, weakly nonlinear theories have been developed to account for 
the statistical properties of those waves (see Staquet and Sommeria, 2002) . But, from 
a practical point of view, no reliable parameterization of the waves exists, which would 
relate the transport coeicients they induce to the dynamical parameters of the large 
scale motions which create them. Such parameterizations are crucially needed in general 
circulation models of the atmosphere and the ocean. 
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