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An Introduction to Mixing in a Stably Stratified
Fluid

Chantal Staquet

Laboratoire des Ecoulements Géophysiques et Industriels, BP 53, 38041 Grenoble cdx
9, France

Abstract. We provide an account of mixing in stably stratified fluids: we present
the basic concepts of mixing, recall how mixing is quantified and analyze mixing in
the stably stratified shear layer along these lines. We also discuss the importance of
mixing in the ocean and describe how it is modeled in this context, focusing upon the
commonest approaches.

1 Introduction

General circulation models of the ocean, which provide a numerical description
of the mean currents at oceanic basin scales, use resolution of a few km along the
horizontal and of tens-to-hundreds of meters along the vertical. It is therefore
necessary to model the motions below the grid scale, the so-called subgrid-scale
motions, at which kinetic energy is dissipated and mixing occurs. This modeling
is crucial because the dissipating processes contribute fundamentally to the large
scale dynamics of the ocean. Let us illustrate this important point through two
arguments, related to the thermohaline circulation.

The thermohaline circulation is a large scale convective motion formed by the
sinking at high latitude of cold water masses; these cold water masses spread
throughout the bottom of ocean basins and slowly upwell. This upwelling is due
to mixing processes: without deep mixing, the ocean would have turned, within a
few thousand years, into a stagnant pool of cold salty water extending to within
one meter from the surface. The thermocline, which separate the bottom waters
from the surface waters mixed by the wind, would have reduced to a very thin
layer. This yields the fundamental idea that the thermohaline circulation is not
driven by buoyancy effects but by the mechanical energy that mix the water
masses, namely wind and tidal energy (see [15] and [24] and references therein).

A global estimate of the turbulent diffusivity associated with mixing in the
ocean was proposed by Munk [23], by assuming a balance between the upwelling
water masses and the downgradient mixing of heat. Using the density profile
measured in the ocean below the thermocline and an estimate of the vertical
velocity of upwelling from the distribution of chemical tracers, Munk [23] ob-
tained a value for the turbulent diffusivity equal to k; ~ 10~*m?/s (that is,
one thousand times the molecular diffusivity). The method used by Munk was
subjected to many discussions (and some controversy) but «; is now considered
as the canonical value for the global diffusivity in the ocean.



As shown by Bryan [3] already in 1987, a constant diffusivity is certainly
too crude an approximation for the parameterization of mixing in general cir-
culation models. A refined parameterization is needed, namely a simple relation
between a turbulent diffusivity and a dynamical parameter characterizing the
large resolved scales of the model (the same need arises for the turbulent viscos-
ity). This is still an open problem: for instance, Beckmann [2] provides results of
three numerical simulations of the thermohaline circulation using general circu-
lation models differing by the representation of the bottom topography and the
modeling of the subgrid scales. Currents for depths greater than 500 m are plot-
ted in Fig. 1: strong discrepancies between these large scale currents are visible
from one model to the other, which illustrates their strong sensitivity to small
scale processes.

It is necessary at this stage to provide a definition of mixing. Mixing is the
destruction by molecular diffusion of density gradients generated by turbulence.
Some authors (such as Toole [37]) also include in this definition of mixing the
destruction of velocity gradients by viscosity. We shall rather keep the usual
terminology of kinetic energy dissipation for the latter process. In the ocean,
mixing takes place at scales of 1 mm to 1 m.

Mixing may also be referred to as vertical transport: because of the existence
of the restoring force of buoyancy along the vertical direction, no net vertical
transport can occur in a stably stratified fluid without mixing. By contrast, no
restoring force exists along the horizontal direction (ignoring the Coriolis force),
so that horizontal motions are not constrained. Horizontal transport thus leads
to characteristic length scales that are much larger than those associated with
vertical transport, because the former process is controlled by advective effects
while the latter results from dissipating processes. Finally, we point out that
mixing should be made distinct from stirring. Stirring results from the straining
by large scale motions, which increases density gradients without mixing. An
example of stirring is provided in Fig. 2.

This introduction mainly focused upon oceanic processes so that the active
scalar field, which is mixed, is the density. The concept of mixing also applies in
the atmosphere, by considering the potential temperature field in place of the
density field. However, all concepts presented in the present paper rely upon
the Boussinesq approximation so that they must be modified when compressible
effects become important (see [1]).

The outline of the paper is the following. In the next section we present the
basic concepts of mixing along with their modeling in the ocean. We provide
an example of mixing analysis in section 3, by considering three-dimensional
numerical simulations of the stably stratified shear layer (most results presented
in this section stem from [32] and [33]. We also briefly address the question of
parameterization of mixing resulting from shear instability, both in the numerical
simulations and in large scale oceanic models. Conclusions are drawn in the final
section.
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Fig.1. (a) Time-mean bottom layer circulation in the subpolar North Atlantic from
the 1/3 degree DYNAMO-SPEM general circulation model. (b) Same as (a), for the
DYNAMO-MICOM general circulation model. (c) Same as (a), for the DYNAMO-
MOM general circulation model (from [2]).

2 Basic concepts of mixing

2.1 Background and available potential energy

Energy is required to mix a stably stratified fluid. Even if we consider a fluid at
rest, made of two layers of different density, the denser one being at the bottom,
the interface mixes through molecular effects : the density gradient smooths,
the source of energy being the internal energy of the fluid. The diffusion of



Fig. 2. The large scale vortex that develops from the Kelvin-Helmholtz instability
induces a strain field which results in a thin layer of strong density gradient outside
the vortex. The wrapping of dense and light fluid as the vortex forms creates intertwined
thin layers of different density, thus yielding strong density gradients within the vortex.
The large scale motion associated with the vortex mainly stirs the fluid and hardly
mixes it (from [33]).

density at the interface occurs through a diapycnal flux of mass ( i.e. across
the constant density surfaces, or isopycnals). This is expressed by the standard
diffusion equation:

ap(, a _
3;' + $¢lam =0. (1)

pb(2) is the density profile of the fluid and
blam(2) = —x dpy/dz (2)

is the local diapycnal mass flux. This flux results in an increase of the center of
mass of the fluid so that the potential energy of the fluid E, (usually defined per
unit volume) increases as well. The expression for E is

Ey== _/V po(z)gzdV, (3)

where V is the volume of the fluid, assumed in the following to be contained in a
fixed parallelepipedic rigid box, bounded by a surface S. The evolution equation
for E, is easily inferred from Eq. (1):

d
T = amy 4
with kg ;
Bam = 2 2p = g /V bamdV > 0. (5)



& is the molecular diffusivity for density changes, g is the acceleration of gravity,
H is the height of the fluid volume and Ap = py(0) — ps(H) is the (positive)
density difference between the bottom and the top of the container. &,,, is the
rate of production of the potential energy of the fluid at rest. Equivalently, $i,m
is the conversion of internal energy into potential energy. We shall refer to this
rate as the laminar mixing rate for simplicity.

In a moving fluid, mixing still occurs through a local diapycnal diffusive flux
of mass, which we refer to as ¢4. The advective flux of mass gpu only distorts the
isopycnals without changing their value. In order to access the diffusive mass flux
&4, let us do a thought experiment: we assume that the fluid relaxes instanta-
neously toward a rest state through an adiabatic redistribution of density. Each
fluid element is thus brought back to its equilibrium position without changing
its density. This transformation amounts to stretching out each isopycnal hor-
izontally; it yields a stable density profile (denoted p, again), whose potential
energy (Ej;) is the minimum potential energy of the fluid at that time. These
concepts have been introduced by Lorenz [22]. Hence, the above situation of a
fluid at rest is recovered instantaneously through the adiabatic transformation
so that the same equations should hold formally: the changes in p, are only due
to the diapycnal mass flux ¢4

%+ 2 gu=o0. (6)
This result has been demonstrated rigorously by Winters & D’Asaro [39]. The
expression for ¢, is: )
v
su(e) =I5 (7)

where <> denotes an average along an isopycnal and p refers to the total
density field. The equation for the background potential energy is analogous to
Eq. (4)

dE, i a

el $q + beuj;'} + Fb30Y;, (8)
up to diffusive (Fb‘::‘fr{f) and advective (Fb3? ) mass fluxes across the bounding
surface S (exact expressions of the latter fluxes are provided in [38]). As before,
&, is the volume averaged value of ¢, times g:

2u=g5 [ aav ©)

and is the rate of production of the background potential energy. Hereafter,
we simply refer to &, as the mixing rate. When the fluid is at rest, |Vp| =
—dpy/dz and P4 reduces to Siom. In general 4 > Py (> 0), expressing the
well-known fact that turbulent motions (more precisely: density fluctuations)
increase mixing. Note that density fluctuations refer here to deviations about
the background density field pp.

Lorenz’ concepts were first applied by Thorpe [35] for the case of one-dimen-
sional density profiles measured in a lake: the idea was to sort out the elementary



fluid volumes contributing to the fluid column by order of increasing density, so
as to get an estimate of the vertical length of turbulence. Indeed, the sorting
method only operates when the fluid has overturned, fluid volumes being left
at their position when the fluid is locally stable. Thorpe recorded the distance
each particle has to be displaced to reach its position in the stable profile and
defined a length scale from the root mean square value of the distances. This
length scale, now referred to as the Thorpe scale, is thus a measure of the vertical
extent of overturning events in the original density profile. It also provides an
estimate of the size of the turbulent eddies.

In a three-dimensional fluid volume, the use of an adiabatic transformation
to analyse mixing has been performed only recently, starting with the work [38];
references are provided in the next section. The practical method to compute
the stable density profile p, is described in this section as well; we also show that
po(2) is distinct in general from a mean (horizontally averaged) density profile.

The adiabatic transformation that leads to p, releases the energy associated
with the density fluctuations. This energy is the available potential energy, in-
troduced by Lorenz [22] also:

E,=E, - E, (10)

where E, is the potential energy per unit volume of the fluid before the trans-
formation is applied. (Closed expressions for E, are provided by Holliday &
Mclntyre [14]). The minimum potential energy state can also be characterized
by E, =0.

The evolution equation for E, is simply derived from that for E, and E,.
We recall the evolution equation for the total potential energy per unit volume
(see f.i. [38])

d 1 di

—E,=g— dV + Fp*®, 4 &1pm + Fphis, 11
dt P ngW + psu'rf+ L + psurf ( )
the first term on the right-hand-side is the volume averaged buoyancy flux, the
second term is the advective mass flux through the boundaries, ®;,,, is the
laminar mixing rate and the last term is the mass flux across the boundaries due
to molecular effects. Using (8), (10) and (11), one gets the evolution equation
for E,:

%Ea =2 /V gpwdV — (B4 — $am) + (FoLLS = FOLL) + (Fpiity — FOl)-

(12)
This equation shows that the dissipation rate of E, within the fluid volume,
@4 — D1am, is the source for turbulent fluid mixing. The study of mixing thus
amounts to decomposing the total potential energy E, into a reversible part
E,, available for mixing, and an irreversible part Ej, which increases through

mixing.



2.2 Quantification of mixing: diapycnal diffusivity and mixing
efficiency

The rate of change of the background potential energy E;, per se does not provide
any usable information on mixing. dE; /dt needs to be related to another quantity
to provide some quantitative information. Equation (12) for E, shows that the
mixing rate due to density fluctuations, #;—$;,,,, should rather be used in place
of &5 when mixing resulting from the flow dynamics is to be studied. $4 — P1om
is referred to as the turbulent mixing rate hereafter.

One common measure of mixing is provided by a flux Richardson number,
Rfy, which relates the rate of production of potential energy due to turbulent
mixing within the fluid volume @4 — P14 to the rate of energy input to the fluid

M:

¢d - ¢la.m,
When the fluid is not forced, the total sink of energy within the fluid volume
is used in place of M. The energy is lost through mixing and through kinetic
energy dissipation € so that, in this case, the flux Richardson number within the
fluid volume is expressed as:

Rfolforced = (13)

&4 — éla'm

Rfy = ~—m—m——————.
fo (¢d —¢1am) +e€

(14)
The changes of energy from the beginning of the flow evolution may also be used
in place of the instantaneous rates of change, leading to the definition of a global
flux Richardson number :

AE,

AE, + AE,” (15)

Rfy|giobat =
The interest in the latter definition is that it leads to a smoother evolution of the
flux Richardson number and accounts for the boundary mass fluxes. Ej, is the
volume averaged kinetic energy. Note that either definition of the flux Richardson
yields a value comprised between 0 and 1. A very small value (AE, € AE})
implies that very weak mixing occurs while a value close to 1 (AE; € AE,)
implies that mixing is very efficient. In the latter case indeed, much more energy
is lost into mixing than into heat. In the literature, the important concept of
mixing efficiency is rather defined by the quantity v, = 1/(Rf, 1 —1), instead
of Rfy itself.

Mixing is also most commonly characterized by a turbulent diffusivity K.
When the scale of the background density gradient is much larger that the
overturning scale (as measured by the Thorpe scale for instance), the turbulent
flux is assumed to depend linearly on the gradient

bale) = ~Ky() 2, (16)

the coefficient defining the turbulent diffusivity. The definition ensures that
Ky(z) is positive at any time and for any value of z. When the background



density gradient is linear, a volume averaged turbulent diffusivity can be defined

1 _ . %4
V/VK,,(z)dV—K, r— 17)

One important issue is the dependency of the turbulent diffusivity K; upon
the molecular diffusivity k. When.fluid motions are strictly horizontal, K, = k.
When fluid motions displace the isopycnals but remain laminar, as for internal
gravity waves of low amplitude, K}, is proportional to k. When fluid motions are
turbulent, a prediction may be conjectured when x — 0, the Prandtl number
being set to a constant value, from analogy with ordinary turbulence. In the
latter case, when v — 0, the dissipation rate of kinetic energy remains finite and
v-independant. The analogy suggeststhat, as K — 0, the mixing rate $,; remains
finite and k-independent, and so is the volume averaged value of Kj, from Eq.
(17). When the flow is not laminar and & is not small, no theory exists, to our
knowledge, and one should rely upon (numerical or laboratory) experiments to
compute K.

2.3 Characterization of mixing in geophysical fluids: traditional
approach

Mixing has been investigated for several decades in the ocean. As we discuss it
in the present subsection, the major difficulty in such studies is the computa-
tion of the turbulent mixing rate ($4 — $iam) so that models have always been
used to estimate it. Hence, the exact computation of the mixing rate from the
background density profile described above is a novel approach of mixing.

In oceanic models, the turbulent mixing rate is usually estimated from the
average value of the advective flux of density:

Qd - ¢lam = gp’w,’ (18)

the average being a temporal, a spatial or an ensemble one; it is denoted by
an overbar in the following (thus p’ = p — 9, w' = w — @, etc). The idea of
taking the averaged advective density flux to estimate the turbulent mixing rate
is that the average filters out the oscillations of the advective flux and yields the
residual contribution of diffusive processes. Unlike in the atmosphere, the direct
measurement of p'w’ has been attempted only rarely in oceanography. The main
reason is that, in addition to the smallness of this residual contribution, most
instruments profile vertically in the ocean and therefore cannot measure vertical
velocities (see, e.g., [11] and [37] for a review). Therefore the oceanic turbulent
mixing rate is usually inferred from microstructure measurements (at scales of
about 1 m) through statistical models. In this approach, the turbulent diffusivity
is defined by

__pw__ e
K=—%/a ="~ (19)

where N? = —(g/po)dp/dz is the Brunt-Viisili frequency.



A now classical statistical model was proposed by Osborn & Cox [26]. It
relates the turbulent mixing rate to the dissipation rate of the variance of the
density fluctuations. Assuming that the mean density gradient is about constant
over the integral scale of the turbulence and that a statistically stationary regime
has been reached, the equation for the variance of the density fluctuations reduces
to:

— dp _
Ny —_ l2.
pw' == = K |V (20)

This equation states that the production of fluctuating density variance by the
action of the turbulent vertical flux of density p'w’ on the mean gradient dp/dz
is balanced by the dissipation rate of this variance « |Vo/|2. Using definition (19)
for the turbulent diffusivity, Eq. (20) yields the expression:
. IV p/|2

This relation was originally established by Osborn & Cox [26] for the variance of
the temperature fluctuations. It can be expressed in terms of the density field,
as done here, when the Boussinesq approximation is valid.

The same approach was used by Osborn [25] when the turbulence is sustained
by a mean shear flow U(z). Under the same assumption of a statistically steady
state, the equation for the velocity variance is (written per unit mass):

u'w’ au =—e-Z P (22)

As above, this equation states that the production of turbulent kinetic energy
per unit mass by the action of the Reynolds stress ww' onto the mean velocity
gradient dU /dz is balanced in the mean by the sinks of turbulent kinetic energy;
these are the dissipation rate of kinetic energy € and and the turbulent mixing
rate per unit mass g/pop’w’ (which increases the potential energy resulting from
mixing). Introducing a flux Richardson number:

Ly’
Rf =22 (23)
—_ww e
dz
Eq. (22) can be rewritten in a simplified way:
_ R
Lo = (24)
Po 1- Rf

Using the definition of the mixing efficiency v = i—%, the turbulent mixing
rate (per unit mass) becomes related to the dissipation rate of kinetic energy
(instead of the dissipation rate of fluctuating density variance):

lp’w’ = ~e. (25)

Po



The turbulent diffusivity within this model is thus defined by, using (19) and

(25)

" € _ Rf €
1-R¢N 2’

From a practical point of view, € is measured from a single component, assuming
isotropy (the validity of this assumption has been addressed in [40] and [36]).
A constant value of 0.2 for v is generally adopted. This value has been inferred
from a conjecture by Osborn [25] (stemming from observations) that Rf < 0.15.
Because the maximum value for Rf is not firmly established, an empirical value
for 7y equal to 0.2 is used. As pointed out by Caldwell & Moum [4], v is not con-
stant: values comprised between 0.05 and 0.48 have indeed been computed from
microstructure measurements in the ocean (assuming K ;’ = K:,), which seem to
depend upon the instability that creates the turbulence. In the atmosphere,
displays the same variability about the 0.2 value.

KP:NE

(26)

3 Mixing in a stably stratified shear layer

In section 2, we introduced basic concepts of mixing along with two estimators of
mixing (the flux Richardson number and the turbulent diapycnal diffusivity). We
now illustrate these theoretical points and consider for this purpose the stably
stratified shear layer. Most of the results presented in this section stem from [32]
and [33].

3.1 The stably stratified shear layer: a brief introduction

The shear layer is the simplest case of a inhomogeneous shear flow. It is formed
by two layers of fluids having different densities and horizontal velocities. The
interface between the layers, which thickens by molecular diffusion, enlarges most
efficiently if the interface is unstable. A necessary condition for instability is the
Richardson number

in EA ___—dﬁ/dz
: po (dU/dz)"

to have a value smaller than 0.25 somewhere in the fluid (see e.g. [10]). The
overbar in Eq. (27) refers to a horizontal average. If this condition is met, the
Kelvin-Helmholtz instability develops in the vertical plane of the shear flow.
It is therefore a two-dimensional instability. As the amplitude of the perturba-
tion grows, nonlinear effects gain importance and makes the instability saturate
while the flow vorticity organizes into quasi-horizontal vortices (with axis par-
allel to the mean shear). The vortices are most unstable to a (two-dimensional
again) subharmonic instability which makes them pair (see e.g. [8] and, for a re-
view, [13]). Secondary three-dimensional instabilities may also occur, at smaller
scales than the two-dimensional instabilities. Further detail about the three-
dimensional instabilities in a stably stratified shear layer may be found in, e.g.,
(28], [16] or [5].

(27)

10
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Fig. 3. Initial density profile (a) and velocity profile (b) of the runs. §; is half the
(so-called) vorticity thickness, U and Ap/\/I_’r respectively are half the velocity and
density difference across the horizontal boundaries; Pr is the Prandtl number, equal
here to 0.7 (from [32]).

3.2 Mathematical model and numerical method

To investigate the shear layer dynamics and resulting mixing properties, we solve
the three-dimensional Boussinesq equations:

ou 1 _,

5t +(uV)u=-VP+Jp+ Ez-v u (28)
dp 1

Fri (u.V)p = PrRev p (29)
Vau =0. (30)

u = (u,v,w) denotes the velocity field with u, v and w being respectively the
streamwise, spanwise and vertical components; P and p are the dynamical pres-
sure deviation and the density deviation about a hydrostatic balanced state of
reference density po; v is the kinematic viscosity.

The initial velocity and density fields, U;(z) and p;(2) respectively, are of the
error function type, the thickness of the density profile being VPr larger than
that of the velocity profile (Fig. 3). A two-dimensional perturbation is superim-
posed upon U; to destabilize the flow (the Kelvin-Helmholtz instability is thus
able to grow). Three-dimensional perturbations are also added to create three-
dimensional motions. The boundary conditions are periodic along the streamwise
(z) and spanwise (y) directions and of free slip type along the vertical (z).

The Boussinesq equations (28-30) are written in non dimensional form. We
take half the thickness of the initial velocity profile as a length scale, which we
denote as §;, half the velocity difference across the flow as a velocity scale (U)
and half the density difference across the flow times v/ Pr, as a density scale

11



(ApVPr/2). The time unit is §;/U. This scaling sets three parameters J, Re
and Pr, which control the flow dynamics. They are defined by:

iAp\/Prﬂ Re:g;i

I =T 2 U

Pr=v/k. (31)
A pseudo-spectral method is used to solve the Boussinesq equations: the equa-
tions are solved in Fourier space except for the nonlinear terms, which are com-
puted in physical space; aliasing errors are removed by a truncation scheme;
symmetry conditions are imposed along the z-direction so that the fields can
be expanded in cosine or sine series along this direction. A third-order Adams-
Bashforth scheme is used to advance the equations in time.

We have performed several runs in which J ranges from 0.04 to 0.16 and Pr
has a value of 0.7 or 1.4. The resolution is (N, N, N.) = (128,128,257) and the
domain size is (A, A, 2)), where A is the most amplified wavelength predicted by
linear theory (X is nearly independent upon J, as long as J < 1/4 [12]). Hence,
only one Kelvin-Helmholtz vortex can develop in the numerical domain. The
Reynolds number Re =~ 300. The approximate value for Re stems from the fact
that a uniform but time varying viscosity is used. Indeed, in order not to have
the flow dominated by both stratification and viscous effects at the end of the
runs, the viscosity is allowed to vary in time according to the constraint that
the Kolmogoroff scale n = (°/¢)!/4 remains equal to the grid size at any time.
Computing € (the dissipation rate of kinetic energy) at each time step provides
the value of v at that time. In practice, v smoothly decreases by a factor 3 from
its initial value (equal to 1/300) up to the time € has reached a maximum value
(the flow has become strongly turbulent) and eventually reaches a value lower
than »(0) at the end of the run (equal to 1/500).

An example of the flow development is displayed in Fig. 4. At t = 34 (Fig.
4a), the Kelvin-Helmholtz instability has grown and saturated: it is manifested
as one Kelvin-Helmholtz vortex, already distorted by the growth of the three-
dimensional perturbation. The vortex is located in between sheets, which are the
usual braids reinforced by the baroclinic torque (see [7], [30]). The saturation of
the Kelvin-Helmholtz instability is followed by the growth of a three-dimensional
secondary instability. Fig. 4b displays the total vorticity field at the time the
dissipation rate of kinetic energy € is maximum: the three-dimensional instability
has led to small scale structures, whose dominant vorticity component lies along
the streamwise direction. This instability is thus of the Rayleigh-Taylor type,
having occurred when heavy fluid lies over light fluid ([16]). The end of the run
is visualized in Fig. 4c: the central part of the shear layer is relaminarizing and
the turbulent activity, while decaying, is expulsed further outward of the central
region.

In the following, the Kelvin-Helmholtz vortex will be referred to as a large
scale structure, as opposed to the smallscale three-dimensional structures. These
adjectives may be quantified by the Reynolds number associated with each struc-
ture: Re ~ 800 in the former case and Re ~ 25 in the latter.

12
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Fig. 4. Temporal evolution of a three-dimensional shear layer simulation with J =
0.125, Re ~ 1/300 and Pr = 1.4. A surface equal to 0.5 mgx(|w,,| + |wy| + |w:[), where
|wi| is the i-component of the vorticity and D the fluid domain, is shown at successive
times: (a) t = 34. (b) t = 108. (c) t = 227, at the end of simulation; only 3/4 of the
numerical domain along the vertical direction is shown for clarity. The time unit is
8:/U (6; and U are defined in section 3.2) (from [32]).

3.3 Analysis of mixing

The mixing properties of a stably stratified shear layer have been studied by
a few authors. To our knowledge, the only laboratory experiments are those of
Thorpe [34] and Koop & Browand [17]. All the other works are numerical ([29],
(9], [31], [32], [6]). The method derived by Winters et al. [38] is used in the two

13



latter papers only (we still note that background density profiles are computed
in [29]).
e Computational method of the background density profile

The method to compute the background density profile p, from the three-
dimensional density field is as follows. The fluid domain is partitioned into el-
ementary volumes of side equal to the grid size. Each elementary volume rep-
resents one fluid particle. These fluid particles are next sorted according to the
value of their density. Two equivalent methods can be used to construct the
stable density profile. In the first method ([38], [32]), the profile is constructed
by filling the successive horizontal planes with the ordered particles, the bottom
plane being filled with the heaviest particles. The value of the density slightly
varies from particle to particle in a given plane (by a few percents at most in
our computations) so that the value of the background density at each plane is
computed by a horizontal average. In the second method ([6]), each particle is
stretched horizontally so as to fill successively each horizontal plane; no horizon-
tal average is therefore required. In numerical computations however, the density
field needs to be interpolated if combined with other quantities, to match the
vertical resolution.

e Horizontally averaged and background density profiles

The horizontally averaged and background density profiles, 5(z) and py(2)
respectively, are plotted in Fig. 5 at the same key times as in Fig. 4, but for
a different run (see caption). Figure 5a shows that p,(z) is stable, consistently
with its definition, and remains close to the initial density profile. By contrast,
P(2) is not monotonic and strongly differs from p,(2). This indicates that (i) the
large scale Kelvin-Helmholtz vortex hardly mixes the fluid (because py =~ p;); (ii)
a horizontal average does not remove reversible effects (because 7 # py). Hence,
the use of the horizontally averaged density profile is not a good approximation
to the background density profile. In Fig. 5b, the two profiles are displayed when
ubiquitous small scale three-dimensional motions have developed. The striking
feature of the figure is the broadening of the sorted density profile: this reveals
the dominant contribution to fluid mixing by the three-dimensional small scale
structures. The horizontally averaged density profile displays the same trend but
it fluctuates about the background profile and its gradient changes sign. Only at
the end of the run (Fig. 5c), when the flow starts to relaminarize in its central
part and turbulence decays in its outer part, do both profiles coincide. They
have nearly become linear and strongly depart from the initial profile.

e Turbulent mizing rate

The temporal evolution of the turbulent mixing rate $4 — @1, offers a syn-
thetic view of the respective contribution to mixing by the Kelvin-Helmholtz
vortex and the three-dimensional structures. Fig. 6 thus shows that $4 — &,
displays a relative maximum at ¢ = 35, when the Kelvin-Helmholtz instability
saturates; ¥4 — Do further increases when three-dimensional instabilities de-
velop and, at the time turbulence is the strongest (t ~ 85), reaches an absolute
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Fig. 5. Horizontally averaged p(z) (dashed line) and background ps(z) (full line) den-
sity profiles. In (a) and (c), the initial density profile is plotted for comparison (dotted
line). (a) t=28 (when the Kelvin-Helmholtz vortex has developed); (b) t=108 (when
three-dimensional small scale structures have formed); (c) t=227 (end of simulation).
The parameters of this run are J = 0.04, Pr = 0.7, Re =~ 300 (from Staquet [32]).

maximum which is nearly three times higher than the relative maximum (note
that ,/S;.m ~ 20 when these maxima are reached).
o Mizing efficiency

The previous results demonstrate that mixing is promoted by small scale
three-dimensional structures, and not by a large scale Kelvin-Helmholtz vortex.
But what about the efficiency of mixing? To address this important point, and
in order to interpret it properly, we first present in Fig. 7 the dissipation rate of
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Fig. 8. Turbulent diapycnal flux &4 — Do, versus time for the same run as in Fig. 5.

kinetic energy e for the same run as before. The behavior of € is not surprising: it
remains close to its initial value when the Kelvin-Helmholtz instability grows and
saturates, because this instability, and the associated Kelvin-Helmholtz vortex,
are two-dimensional. As is well-known (e.g. [20]), the material conservation of
vorticity in a two-dimensional flow prevents energy from being transferred toward
small scales, where dissipation is acting. By contrast, Fig. 7 shows that the
growth of a three-dimensional instability, and its nonlinear manifestation as small
scale structures, makes € strongly increase, up to a value equal to nearly 20 times
its initial value.

» 50 100 150 20 250
t

Fig. 7. Dissipation rate of the turbulent kinetic energy, €, versus time for the same run
as in Fig. 5.
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The behavior of the mixing efficiency or, equivalently, of the flux Richardson
number R f, can be immediately inferred from Figs. 6 and 7. Figure 8, where Rf,
is displayed versus time, thus shows that the efficiency of mixing is high (close
to 0.7) during the initial two-dimensional stage of the flow and moderate (close
to 0.3) when three-dimensional secondary structures have developed. In other
words, the large scale Kelvin-Helmholtz vortex contributes weakly to mixing, but
in an efficient manner (because nearly no energy is dissipated) while the three-
dimensional structures are responsible for the mixing of the fluid, but much
less efficiently (because they occur at scales close to dissipative scales). Hence,
the Kelvin-Helmholtz vortex mainly stirs the fluid while the three-dimensional
structures effectively mix it.

06
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& 03
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% s 0 w20 20
t

Fig. 8. Flux Richardson number Rf, averaged over seven runs differing by the value
of J (from 0.04 to 0.16) and Pr (equal to 0.7 or 1.4) (from [33]).

e A parameterization of miring: turbulent diffusivity versus Richardson number

As said in the Introduction, the parameterization of mixing consists of a func-
tional dependency of the diapycnal diffusivity K, (defined by Eq. (16)) upon a
dynamical parameter characterizing the largest scales; in a general circulation
model, the latter scales belong to the resolved scales. Such a functional depen-
dency may be seeked for in the numerical simulations of a stably stratified shear
layer we presented because the largest scale is a shear flow (that is, with no
horizontal scale) and is well separated from the scale of the three-dimensional
motions that mix the fluid. One may thus assume the former motion to be as-
sociated with a current that would lie among the resolved scales in an oceanic
circulation model while the latter motions are at subgrid scale.

The presence of a mean shear implies that a Richardson number should be
taken for the dynamical parameter. We make use of the monotonicity of the
background density profile p, to introduce a Richardson number that remains
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one-signed at any time:
dps/dz

(dU/dz)* (32)

Riy(2) = -J

The normalized diapycnal diffusivity K}(z)/« is plotted as a function of Ris(z)
in Fig. 9a, when the turbulence has started to decay (for ¢ > 196; no clear
dependency could be found before this time). Two parts may be distinguished
in Fig. 9a, where a log-log scale is used: for Ri; < 0.2, K(z)/k decays quasi-
linearly with Ris(z). This decaying behavior is expected: when Ri, decreases,
stratification effects weaken relative to nonlinear effects so that the flow becomes
more turbulent and mixing increases. This part of the curve is contributed by the
outer region of the shear layer, where turbulence remains. Figure 9a shows that
values of the turbulent diffusivity K, up to 200 times the molecular diffusivity
are found in this region. For Riy(z) > 0.2 by contrast, that is, in the central
relaminarizing part of the shear layer, no clear dependency is observed.

100,

_lsb(z)/tc
Kb(z)/x

o L i

K 500 1000 1500 2000 2500

10

1/Rib(z)2

(a) (b)
Fig. 9. Diapycnal diffusivity K,(z) (defined by Eq. (16)) normalized by the molecular
diffusivity x as a function of a gradient Richardson number Ri;(z) (defined by Eq.
(32)), for t > 196 (each curve corresponds to a different time). (a) Log-log scale; (b)
Lin-lin scale. For this run, J =0.125, Pr = 1 4.

The quasi-linear dependency of K,(z)/k with Ri,(2) displays a —2 slope.
This is confirmed in Fig. 9b, where Kj(2)/x is plotted versus 1/RiZ(z): the lin-
ear dependency is recovered but the slope varies in time. In the ocean, below the
upper mixed layer, several parameterizations are used depending upon the pro-
cess that creates the turbulence: shear instability, internal gravity wave breaking
and double diffusion (due to the simultaneous diffusion of heat and salt). For
the former process, a parameterization of the form K/Kmq, = [1 — (Ri/Rio)?]?
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is commonly used in large scale circulation models for 0 < Ri < Rig, with
Kmaz = 5 1073m?/s and Rip = 0.7. The high value of Rip stems from the
fact that the measurements of R: rarely fall as low as the theoretical value of
1/4. According to Large et al. [18] , this parameterization is supported by lim-
ited observations ([27]). Our numerical results suggest that this is a too sharp
dependency.

4 Conclusion

As discussed in this article, basic concepts of mixing have been known for a long
time (dating from Lorenz [22]) and are now properly formalized. The parame-
terization of mixing still remains a difficult problem. Parameterizing implies a
fundamental understanding between mixing and flow dynamics. The existence of
a link between mixing, which occurs at dissipative scales and the flow dynamics,
whose energy reservoir is at large scale, is not surprising: mixing is controlled
by these large scales, as is kinetic energy dissipation in (three-dimensional) or-
dinary turbulence. In the latter case, the problem is simplified by the fact that,
at high enough Reynolds number, the kinetic energy dissipation rate depends
only upon the rate of input of energy at large scale, and not upon the details of
forcing (assumed to be isotropic). This is not true when a stable stratification
exists: the memory of forcing is all the more important the higher the strat-
ification is. The details of forcing is most often associated with an instability
that triggers the (kinetic and potential) energy transfer toward small scale. To
derive the parameterization, the source of the instability (an unstable shear flow
for instance) should rather be considered. Computing a dynamical parameter
from the characteristics of this source may indeed lead to a more general behav-
ior than considering the instability itself, as is commonly done. This approach
would also provide a usable parameterization of mixing, because the source of
turbulence belongs to the resolved scales in large scale circulation models, while
the instability that leads to fluid mixing does not in general.
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