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Stably stratified freely decaying homogeneous turbulence is investigated by means
of direct numerical simulations (DNS) and a two-point closure statistical model of
the EDQNM type; a careful comparison with laboratory experiments is also made.
Several aspects of anisotropy in the flow are studied, both at large and small scales.
DNS and EDQNM approaches give very similar results up to the finest indicators
of the flow, namely anisotropic spectra of velocity fields. Hence the statistical model
predicts the structure of the flow at all scales.

Large-scale anisotropy appears in the Reynolds stress components and in the
directional integral length scales. The well-known collapse of vertical turbulent
motion, which yields the organization of the flow into quasi-horizontal vertically
decorrelated vortex structures, is retrieved and quantified. Thus, the thickness of
the vortex structures is shown to be set by their Froude number being of order
one, in agreement with a previous dimensional analysis for an inviscid flow. Small-
scale anisotropy is quantified from the components of the velocity and temperature
gradients, whereby models for the dissipation rate of kinetic energy and available
potential energy are discussed. The mixing properties of the flow are also investigated:
the counter-gradient heat flux that exists at small scales appears to inhibit mixing
when diffusivity is low enough and the Cox number varies linearly with the parameter
ǫ/νN2.

All results agree very well with laboratory experiments on stably stratified grid
turbulence, though the initial condition of our computations is different from the
flow just behind the grid. This suggests a relative independence of decaying stably
stratified turbulence of initial conditions.

1. Introduction

A crucial question in homogeneous turbulence subjected to a buoyancy force (and,
more generally, to an anisotropic body force) is related to the dynamics of the smallest
scales: Are these scales anisotropic or not? On the ability to answer this question
depends the parameterization of these scales, an essential issue when, for instance,
climate numerical models are considered: Gargett, Osborn & Nasmyth (1984) and
Bryan (1987) first showed that predictions of such models are strongly sensitive to
slight changes in this parameterization. The dynamics of the smallest scales depend,
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of course, upon the Reynolds number of the flow (based upon the Taylor microscale
for instance) and upon the parameter measuring the importance, at that same scale, of
anisotropic effects relative to nonlinear ones; when buoyancy effects are considered,
this parameter is the Froude number Fr.

The undersea measurements of Gargett et al. (1984), in flows having very large
Reynolds but small Froude numbers, showed approximate local isotropy of streamwise
velocity gradients (the equivalent mesh Reynolds number is ≃4× 106, i.e. at least a
hundred times larger than that of typical grid turbulence experiments, while Fr varies
within the range [10−2, 5× 10−2]). On the other hand, laboratory experiments of
Thoroddsen & Van Atta (1992), whose flow parameters are those of the oceanic
thermocline, showed a strong anisotropy when strain rates were compared. The
subsequent experimental work of Thoroddsen & Van Atta (1996), on density gradients
and scalar dissipation in stably stratified turbulence, showed that these gradients also
present a strong anisotropy, and thus that scalar dissipation modelling should be
modified accordingly, with respect to the usual isotropic estimates. Models of kinetic
energy dissipation have been compared in respect of the anisotropy of velocity
gradients by e.g. Yamazaki & Osborn (1990, 1993a, b), using in situ measurements,
and by Thoroddsen & Van Atta (1992) and Fincham, Maxworthy & Spedding (1996),
using laboratory experiments. In the latter work, stably stratified grid turbulence is
studied experimentally using digitized particle image velocimetry and, during the
very late stage of the flow, the most important contribution to energy dissipation was
identified as coming from the vertical gradient of the horizontal velocity. In the case of
sheared stably stratified turbulence, Piccirillo & Van Atta (1997) obtained equivalent
results on small-scale anisotropy through measurements of velocity gradients, with
an additional effect of the gradient Richardson number; their results demonstrate
a significant role of shear in the small-scale structure of the experimental flow
however.

In most of these works, large-scale anisotropy is characterized by the ratio w/u

of vertical to horizontal r.m.s. velocity components. Values smaller than 1 indicate
the dominance of horizontal motion in these flows, and this was also found in
channel experiments by Yoon & Warhaft (1990) and Lienhard & Van Atta (1990).
Such a large-scale anisotropy has also been observed in numerical work, using direct
numerical simulations (DNS) of homogeneous stably stratified turbulence by Riley,
Metcalfe & Weissman (1981) and Metais & Herring (1989). The Reynolds number of
the simulated flows was relatively low however, due to the coarse numerical resolution.
These authors noted an organization of the flow into vertically decorrelated horizontal
layers, as a result of a collapse process of the vertical scales (e.g. Riley et al. 1981). This
collapsed state implies that the two horizontal components of the velocity contribute
most to the kinetic energy, but a strong variability of the velocity field remains in all
three directions of space. Such a flow organization was later confirmed and studied
by numerous authors. For instance, Fincham et al. (1996) proposed a simplified
way of connecting the vortex lines between vortices contained in adjacent layers. A
qualitatively similar structure may also explain the measurements obtained by Sidi
(1995) in the stratosphere. The mechanism underlying this flow organization has
been investigated theoretically by Godeferd & Cambon (1994) using the EDQNM2

statistical model (specified below). These authors analysed the triadic interactions
between the gravity waves and the horizontal non-propagating (vortex) mode and
found that the energy transfer that drains energy from the vertical to the horizontal
motion is mainly effected by interactions between three vortex modes. This result is
also reproduced by Caillol & Zeitlin (2000) using weak turbulence theory. Dimensional
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analysis has also been used to model the quasi-horizontal motions (Riley et al. 1981;
Lilly 1983; Billant & Chomaz 2001).

Our goal in the following is to study the anisotropy of the flow. By anisotropy, we
mean the change in the properties of the flow, whether statistics or deterministic, as a
function of the direction of the fluid motions. The flow being statistically axisymmetric
about the vertical direction, a feature stemming from the vertical direction of the
buoyancy force, only two directions of dependence for the one-point statistical
quantities presented will be retained: horizontal and vertical. High-resolution DNS are
analysed and an eddy-damped quasi-normal Markovian (EDQNM) type statistical
model is compared with the results of the simulations. The model was adapted by
Cambon (1989) to stably stratified and rotating turbulent flows and is referred to
as the EDQNM2 model in the following. Its predictions have been shown in Part 1
of this work (Staquet & Godeferd 1998) to be in excellent agreement with those
of the simulations, from comparisons of both large-scale and small-scale statistical
quantities for flows with different values of Reynolds and Froude numbers.

In the present paper, we shall provide a quantitative description of the large-scale
structure of stably stratified freely decaying turbulence, by investigating directional
integral length scales that help quantify the structure of the layering of the flow.
Our study also includes different indicators of small-scale anisotropy in physical and
spectral space, namely velocity and temperature gradients and the spectral distribution
of energy. A wave/vortex decomposition, based on the general decomposition of a
velocity field proposed by Craya (1958) and used by Herring (1974) and several other
authors (e.g. Riley et al. 1981; Herring & Metais 1989; Siegel & Domaradzki 1994)
will be extensively employed. The analysis of the anisotropy of the velocity gradients
will allow us to investigate different models proposed in the literature to compute
the dissipation rate of kinetic energy (see references above) and to infer a simpler
expression, valid for the present simulations, based upon two gradients only. As well,
a simple expression for the dissipation rate of potential energy will be proposed. We
shall also address the mixing properties of the flow.

The organization of the paper is as follows. Section 2 recalls the equations for stably
stratified homogeneous turbulent incompressible fluids, including a brief description
of the wave/vortex decomposition (details are given in Appendix A). The two-point
spectral equations are written in this framework, as a starting point for deriving the
EDQNM2 model (with comments in Appendix B). The DNS method and the initial
conditions are described in § 3. After characterizing anisotropy in § 4, we discuss results
on large-scale (§ 5) and small-scale anisotropy (§ 6). The analysis of mixing is reported
in § 7. The finest two-point statistical description of axisymmetric turbulence, namely
angular-dependent spectra, are given in § 8, and concluding remarks are collected
in § 9.

2. Equations for stably stratified homogeneous turbulence

2.1. Basic equations

We deal with stably stratified homogeneous and incompressible turbulence, and we
can describe the behaviour of the flow using the Navier–Stokes equations within the
Boussinesq approximation (Boussinesq 1901). The equations are written in terms of
the fluctuating temperature T (x, t) about a mean temperature of constant uniform
vertical gradient G, with G > 0 indicating a stabilizing effect of the stratification upon
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the fluid flow. The system of equations in physical space is
(

∂

∂t
+ uj

∂

∂xj

− ν∇2

)
ui +

∂p

∂xi

= T δi3,

(
∂

∂t
+ uj

∂

∂xj

− ν∇2

)
T = −N 2u3,

∂ui

∂xi

= 0,





(2.1)

where T has been scaled as an acceleration, using the factor βg, where β is the
thermal expansion coefficient and g the acceleration due to gravity; x (or subscript 1)
and y (subscript 2) are the horizontal directions, and z (subscript 3) is the vertical
one. The respective components of the fluctuating velocity will also be denoted u, v

and w. The last equation states the incompressibility of the fluctuating velocity field
u(x, t). The temperature diffusivity κ is here assumed to be equal to the kinematic
viscosity ν in the temperature equation, therefore yielding a unit Prandtl number. The
solution of the linearized system (2.1) is a combination of three eigenmodes, two of
which are internal gravity waves (due to the buoyancy force in the vertical momentum
equation). The corresponding linear time scale is 1/N , where N = (βGg)1/2 is the
Brunt–Väisälä frequency and TBV = 2π/N is the corresponding period. The temporal
frequencies associated with each of these two propagating modes are

ω± = ±N sin θ, (2.2)

where θ is the angle of the wavevector to the vertical. The third eigenmode represents
the part of the velocity with vertical vorticity, secular in the linear limit since it does
not interact with the two wave modes, and therefore corresponds to a zero time
frequency ω0 = 0.

Using the homogeneity hypothesis, all quantities are Fourier transformed, leading to
equations for the Fourier components û(k, t) of the fluctuating velocity u, and T̂ (k, t)
for the temperature T . The spectral space variable is the wavevector k. The continuity
equation in spectral space is k · û = 0, so that the velocity vector in spectral space
is orthogonal to the wavevector, and the pressure gradient term may be suppressed
from the equations. The remaining two equations for the Fourier coefficients become
(

∂

∂t
+ νk2

)
ûi(k)−Pi3(k, t)gβT̂ (k, t) = −iklPin(k)

∫

k+ p+q=0

ûn( p, t)ûl(q, t) d3 p,

(
∂

∂t
+ νk2

)
T̂ (k)−Gû3(k, t) = −ikl

∫

k+ p+q=0

ûl( p, t)T̂ (q, t) d3 p





(2.3)

where Pij = δij − kikj/k2 is the projector onto the plane orthogonal to k, and δij is
the Kronecker tensor. We also use i2 = −1. The relevant non-dimensional parameters
in these equations are the Reynolds number Re = UL/ν and the Froude number
Fr = U/NL, where U and L are estimates of velocity and length scales (to be specified
later).

2.2. Two-point spectral equations in the wave/vortex decomposition

In an attempt to identify the waves in the flow, and separate their dynamics
from that of the turbulent motion (see Riley & Lelong 2000 for a review),
we shall decompose the velocity field into the orthogonal frame of eigenmodes
mentioned above, with corresponding unit vectors ei , which is also referred to as the
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Craya–Herring frame. This may be stated equivalently in physical or spectral space as
detailed in Appendix A. In spectral space, the velocity field consists of an oscillating
mode φ̂2 related to the internal waves, and a vertical vortex mode φ̂1. In order to unify
the notation, the fluctuating temperature is rewritten as φ̂3 = (i/N )T̂ . This specific
scaling permits to obtain in a single way all the associated energies in the flow, by
integrating two-point correlations of the φ̂i: the vortex energy from φ̂1, the kinetic
wave energy from φ̂2, and the potential energy from φ̂3, as explained hereafter.

The spectrum V̂ij of second-order correlations of the fluctuating velocity–
temperature v̂ = φ̂iei is defined by 〈v̂i( p, t)v̂j (k, t)〉 = V̂ij (k, t)δ(k + p), where
〈 〉 denotes an ensemble average. (As a result of the well-known closure problem
in the hierarchy of spectral correlation equations, its dynamical equation also
contains the spectrum V̂ij l of third-order correlations 〈v̂i(k, t)v̂j ( p, t)v̂l(q, t)〉 =
V̂ij l(k, t)δ(k + p + q).) The components of V̂ij are obtained in the Craya–Herring
frame by a double dot product with each of the ei unit vectors, yielding the following
Hermitian matrix:

1
2
eu
i V̂ije

v
j =




Φ1 0 0
0 Φ2 Ψ ∗

0 Ψ Φ3


 . (2.4)

From the definition of the Craya–Herring modes, Φ1 is interpretted as the spectrum
of kinetic energy contained in the horizontal vortical motion in the flow, Φ2 as that of
the kinetic energy for the wave motion, and Φ3 the spectrum of the potential energy
associated with the waves. Ψ = 〈φ̂2∗φ̂3〉/2 is the velocity/temperature correlation
spectrum, whose integration in the vertical direction leads to the vertical heat flux:

1
2
〈u3T 〉 = −N

∫
ΨR(k) sin θkd

3k. (2.5)

The subscript R stands for real part. Note how the one-point quantity (2.5) is obtained
by means of an integration of ΨR over wavevector space. Other one-point statistical
quantities (such as the total energies) are computed in an equivalent manner, so
that the functional θk-dependence of the spectra plays a major role in the integration,
whence a need to investigate thoroughly both the |k| and θk dependence of the spectra.

The system of exact equations for these spectra stems from the spectral
equations (2.3) (equation (A 4) being an intermediate step) and from definition (2.4)
and is expressed as

(
∂

∂t
+ 2νk2

)
Φ1(k, t) = T 1(k, t), (2.6)

(
∂

∂t
+ 2νk2

)
Φ2(k, t) + N sin θkΨR(k, t) = T 2(k, t), (2.7)

(
∂

∂t
+ 2νk2

)
Φ3(k, t)−N sin θkΨR(k, t) = T 3(k, t), (2.8)

(
∂

∂t
+ 2νk2

)
ΨR(k, t)− 2N sin θk[Φ2(k, t)−Φ3(k, t)] = T ΨR (k, t), (2.9)

(
∂

∂t
+ 2νk2

)
ΨI (k, t) = T ΨI (k, t). (2.10)
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These equations may be written in tensorial form as†(
∂

∂t
+ 2νk2

)
Q(k, t) + Λ(k, t)Q(k, t) = T(k, t) (2.11)

where Q = (Φ1, Φ2, Φ3, ΨR), T = (T 1, T 2, T 3, T ΨR ) and the four-dimensional tensor
Λij = N sin θk[(δi4 − δi3)δ4j + 2(δ3j − δ2j )δi4], thus indicating a direct linear coupling
between Φ2 and Φ3 through the heat flux ΨR , proportional to the internal wave
frequency N sin θk . The transfer terms T are obtained in the same way as Q by
projecting the nonlinear terms in the V̂ij equation onto the Craya–Herring frame.

Equations (2.11) can be rewritten so as to separate the energy in the vortex part Φ1

and the total energy in the waves Φ2 +Φ3, from the oscillating quantity Φ2−Φ3 +iΨR ,
as follows: (

∂

∂t
+ 2νk2

)
Φ1 = T 1, (2.12)

(
∂

∂t
+ 2νk2

)
(Φ2 + Φ3) = T 2 + T 3, (2.13)

(
∂

∂t
+ 2νk2 − 2iN sin θk

)
(Φ2 −Φ3 + iΨR) = T 2 − T 3 + iT ΨR . (2.14)

This formulation parallels that in the covariance spectra of the velocity–temperature
field written in the frame of normal modes of the linear operator, and is the one
used in the EQDNM2 model. The EQDNM2 model is the closure of the hierarchy
of moments appearing in the nonlinear transfer terms T i . One must keep in mind
the fact that our model, although it bears the same name as the classical isotropic
EDQNM one, has been totally redesigned so as to be able to treat the anisotropy
at the level of two-point correlations in the spectral formulation. Its main features
are briefly discussed in Appendix B, and the reader can refer to Part 1 for a more
complete description.

Numerical resolution of the system of modelled equations (2.12)–(2.14) is achieved
using an Euler advancement scheme with constant time step. The energy spectra
coefficients are solved for wavevectors that lie over a numerical grid in spectral
space, with spherical-coordinate discretization: 19 polar angles are chosen between
[0,π/2] (accounting for the mirror symmetry with respect to the kz = 0 plane), and
wavenumbers k are logarithmically spread starting from kmin = 1/n, such that 1 6

k/kmin 6 128, using a domain side of 2πn.

3. Direct numerical simulations

3.1. Numerical method

A numerical pseudo-spectral collocation method expressed in Fourier space is used
to solve the system of equations (2.1), as has now become classical in fluid mechanics
(e.g. Rogallo 1981; Vincent & Meneguzzi 1991). Prior to solution, the system of
equations is rewritten using the vector identity

(u · ∇) u = ω × u +
∇|u2|

2
,

where ω = ∇ × u is the vorticity. The boundary conditions are periodic in the three

† Equation (2.10) is decoupled from the others provided ΨI = 0 initially, which is the case in the
following.
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Duration of Side of
RUN Resolution run (from t0) ν N numerical domain Frt Reλ ǫ/νN 2

A 2563 3TBV 1/400 π 2π 0.38 58 31
B 2563 6TBV 1/400 π/2 2π 0.76 58 124

R0 2563 24 1/300 0 4π – 45 –
R1 2563 6TBV 1/300 π/2 4π 0.88 45 98
R2 2563 6TBV 1/300 π 4π 0.44 45 24.5

r2 1283 6TBV 1/150 π 4π 0.45 32 14
r3 1283 3TBV 1/150 π 4π 0.45 32 14
r4 1283 3TBV 1/150 π/2 4π 0.45 32 56

Table 1. Sets of parameters for the different runs of direct numerical simulations and of
EDQNM2 computations. ν is the kinematic viscosity and N , the Brunt–Väisälä frequency.
t0 is the time at which N is set to a non-zero value in the pre-computation of isotropic
homogeneous turbulence. The last three columns provides the value at t = t0 of a turbulent
Froude number Frt , of the Reynolds number Reλ, and of the normalized dissipation rate of
kinetic energy ǫ. Frt and Reλ are defined in § 3.3.

directions, and the numerical domain is a cubic box of side 2π or 4π, depending on
the run (see table 1). The spatial derivatives are treated numerically in Fourier space
using the pseudo-spectral technique. The aliasing effect inherent in this technique
(e.g. Canuto et al. 1988) is avoided in spectral space by a spherical truncation of
the Fourier components of the fluctuating velocity field, using a 2/3 de-aliasing rule
at every time step. The time scheme is third-order Adams–Bashforth, and the viscous
term is integrated exactly using the new variable w(k) = u(k) exp(νk2t).

3.2. Spectra computation

In Part 1, we have presented isotropically accumulated spectra for the velocity–
temperature field v̂. These are computed by summing all correlation contributions
within a given spherical shell in Fourier space. The value of the kinetic energy
spectrum E(kn) at wavenumber kn is thus obtained as

E(kn) =
∑

|k|∈In

û
∗(k) · û(k),

where In indicates the spherical shell of width 1k around kn. An original contribution
of the present work is to present angular-dependent spectra, computed from DNS,
in order to compare their spectral anisotropy with that of the statistical model.
Such anisotropic spectra are suitable for quantifying accurately the anisotropy of the
flow. In the statistical model, the angular-dependent spectra are the unknowns in the
equations, so that their values are obtained at the nodes (kn,θm) of a discretized (k,θ)
grid, as the solution of the time-dependent model equations (2.6)–(2.10). Extracting
the same quantities from DNS fields requires a large number of grid points, in order
to obtain enough sampling for computing the spectra at each (kn,θm) grid point. We
shall not use as many discretized angles in DNS as in EDQNM2: we have found that
good enough sampling is obtained for no more than Nθ = 5 angular sectors, in a
2563 DNS, dividing evenly the [0, π/2] interval. The spectra are therefore computed
in the following way, e.g. for the kinetic energy:

E(kn, θm) =
π/2

21θ

[∫ θm+1θ/2

θm−1θ/2

cos θ dθ

]−1 ∑

|k|∈In

θk∈Jm

û
∗(k) · û(k), (3.1)
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where Jm is the part of the spherical shell In of angular width 1θ about the angle θm.
Spectra obtained in this way are dimensionally equivalent to those integrated over
spherical shells, so that this procedure allows one to compare the angular dependence
to the equivalent isotropic spectrum.

3.3. Initial conditions and parameters

Our initial conditions differ from those usually used in DNS, and from the flow
just behind the grid in experiments on grid turbulence with stable background
stratification. In the latter case, the initial potential energy is almost negligible
compared to the kinetic energy. Hence, the initial dynamics of the flow are essentially
driven by the linear effects of buoyancy, thus generating large oscillations in the fluid
motion. Here, rather, we set the initial condition such that Φ1(t0) = Φ2(t0) = Φ3(t0),
so that linear terms are exactly cancelled at t = t0, as shown by equation (2.9). This
initial condition implies that the potential energy is half the kinetic energy but 1.5
times the vertical kinetic energy at t = t0. This choice is justified in that it constitutes
the most severe test case for comparing the EDQNM2 model to the simulation.
Indeed, in that case, the early time evolution of turbulence is set by the nonlinear
terms, which contain the closure assumption in the EDQNM2 model. Therefore, if
a defect of the EDQNM2 model is to appear, it will be largest in that case, and
will not be hidden by other phenomena. In addition, in order to achieve initial
dynamics that are as physical as possible, the stratified runs are initialized with a
velocity field obtained from an isotropic pre-computation (assumed to correspond to
times smaller than t0), which allows triple correlations of the velocity field to reach
their fully developed state value. The temperature field at t0 is randomly distributed,
and the velocity/temperature correlations start to build up under the action of the
stratification effect which is imposed from this time on.

For comparison with laboratory experiments, we also performed two runs with
zero potential energy at t = t0 (referred to as runs r3 and r4 in table 1). We shall
see that, apart from an initial transient, the anisotropic state reached after a couple
of Brunt–Väisälä periods in the other runs is nearly the same as in the case of zero
initial potential energy. The same conclusion will therefore be drawn when comparing
with experimental results.

The parameters for the different simulations are shown in table 1. Frt and Reλ
respectively are a turbulent Froude number, and the Reynolds number based upon
the Taylor length scale λ:

Frt = Lb/L =
w/N

u3/ǫ
, Reλ =

uλ

ν
; (3.2)

u and w respectively denote the r.m.s. of the horizontal and vertical velocity
components; ǫ is the dissipation rate of total kinetic energy Ek; and λ =

√
10νEk/ǫ.

At the end of the computations, the Reynolds number has decreased to about 30;
the Froude number is equal to ≃0.15 after one Brunt–Väisälä period and ≃0.02 after
6 Brunt–Väisälä periods.

4. Overall flow dynamics and anisotropy characterization

4.1. Overall flow dynamics

The analysis of the energetics of the flow reported in Part 1 has allowed us to extract
several key features of the flow. We shall summarize these features here, in order to
help understand how anisotropy develops at large and small scales.
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One of the well-known effects of the restoring vertical buoyancy force upon an
incompressible turbulent fluid is to reduce the kinetic energy of turbulence in the
vertical direction. Indeed, potential energy is transferred toward small scales more
efficiently than kinetic energy (Ramsden & Holloway 1992; Lesieur 1990; Part 1),
while the small Froude number of the largest scales ensures a continuous (reversible)
conversion of vertical kinetic energy into potential energy. In our calculations, these
properties yield that the flow dynamics during the first half-Brunt–Väisälä period is
controlled by the initial condition: because a large amount of potential energy is
present initially, the higher transfer rate of potential energy toward small scales leads
to a 30% decrease of the vertical kinetic energy, relative to the decrease that would
occur if the flow were non-stratified, to make up for the large-scale potential energy
loss. The vertical kinetic energy next decays like its isotropic counterpart, but at a
lower level, to 1.5TBV . The flow is marked by a second event at this time, consisting
of all scales of motions, up to the smallest, being influenced by buoyancy effects. This
means that the Osmidov scale Lo = (ǫ/N3)1/2, at which buoyancy and inertial effects
balance, reaches the Kolmogorov scale η = (ν3/ǫ)1/4, at which dissipative and inertial
effects balance. It can indeed be inferred from figure 13(a) of Part 1 that ǫ/νN2,
which is equal to (Lo/η)4/3, reaches a value of 1 at 1.5TBV . This result is consistent
with the smallest ratio of Lo/η being equal to 2 in the laboratory experiments of
Lienhard & Van Atta (1990) and the smallest scales following isotropic dynamics
during the whole duration of the experiment (note that the time at which ǫ/νN2 = 1
strongly depends upon the Reynolds number of the flow, as found by Huq &
Stretch 1995). In our numerical simulations, the heat flux is found to collapse at
1.5TBV as well. Note that ‘collapse’ does not mean ‘vanish’; the volume-averaged
heat flux is dominated by the largest scales of the flow and is therefore oscillating
about zero. What we mean by collapse is a sudden decrease in amplitude, by a
factor 10 or so, relative to its maximum value, occurring at about 1.5TBV . This
suggests that the smallest dynamical scales become dominated by the buoyancy
force from this time on because they are fed with insufficient energy by the largest
scales.

The fact that the buoyancy force dominates the small-scale dynamics from 1.5TBV

implies that the Froude number of these scales is of order 1 at that time. This
also explains why statistical quantities associated with small-scale motion, such as
the vertical kinetic energy (figure 11 of Part 1) and the dissipation rate of kinetic
energy (figure 13) display a similarity law from 1.5TBV , when plotted as a function of
(t − t0)/TBV to account for cumulative effects of buoyancy, and when normalized by
their instantaneous isotropic counterparts to account for cumulative effects of viscous
dissipation.

The horizontal velocity component normalized by its instantaneous isotropic
counterpart (figure 12 of Part 1) behaves quasi-independently of N and of the viscosity
when plotted as function of (t − t0)TBV , up to 1.5TBV . More precisely, this quantity
remains close to 1 up to ≃0.7TBV , meaning that the horizontal velocity component
decays isotropically and thus remains unaffected by the increased loss (compared to
the isotropic case) of vertical kinetic energy during that stage. (The latter result was
also observed by Lienhard & Van Atta 1990 in their wind tunnel experiments.) The
normalized r.m.s. horizontal velocity next starts to increase, meaning that a reduction
of energy transfer to the small scales, with respect to the isotropic case, has been
initiated due to buoyancy effects. From 1.5TBV , the curves start to separate, depending
on the values of N and of the viscosity, but still continue to increase. This signals
that large-scale quasi-horizontal motions have emerged from turbulence.
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4.2. Anisotropy characterization

We will refer to ‘directional’ anisotropy as the dependence of the spectra on the
orientation of the wavevector, i.e. the variation when k is rotated from the vertical
direction (pole) to the horizontal one (equator), its modulus being kept constant.
On the other hand, for a given wavevector, the difference between φ̂1 and φ̂2 is
the ‘polarization’ anisotropy. When k is vertical, statistical axisymmetry amounts to
Φ1(k) = Φ2(k). This formalism has been extensively used by e.g. Cambon, Mansour
& Godeferd (1997), in the case of rotating homogeneous turbulence, by introducing
a directional anisotropy tensor and a polarization anisotropy tensor. We also note
that Reynolds & Kassinos (1994) define tensorial quantities which can be computed
in physical space, namely the dimensionality structure tensor, and the circulicity one.
Both formalisms are equivalent when describing the flow anisotropy at a higher level
than the one-point statistical one.

Though useful in many instances of anisotropic flows, these quantities can be more
specifically used in the stably stratified case, as an accurate characterization of the
‘collapse’ of the turbulent flow to a two-component three-dimensional state.

5. Large-scale anisotropy

5.1. Velocity components

The ratio u/w is displayed in figure 1(a) for DNS computations, and in figure 1(b)
for the corresponding EDQNM2 results. In DNS, u is the average of the two r.m.s.
components u1 and u2 (the fluid motion being statistically symmetric about the
vertical axis).

Figure 1(a) shows that the ratio is larger than 1 for all t > t0. Thus, the anisotropy
at large scales develops from the very beginning of the runs. As just explained,
this behaviour is accounted for (during the first Brunt–Väisälä period) by the
loss of vertical kinetic energy being stronger than the isotropic loss, because of
potential energy conversion, while u remains nearly unaffected by buoyancy effects.
The striking feature of the figure is the independence from N and ν up to 1.5 Brunt–
Väisälä periods. The existence of this unique dependence can be accounted for by
noting that

u

w
=

u

uN=0

wN=0

w

uN=0

wN=0
, (5.1)

where uN=0 and wN=0 denote the r.m.s. values of the horizontal and vertical com-
ponents in the corresponding isotropic flow. In the isotropic flow, uN=0/wN=0 remains
close to ≃1 over time, since both velocity components decay at the same rate and
are equal at the initial time. Also, we noted in § 4.1 that u/uN=0 and w/wN=0 behave
independently of N and ν when plotted as a function of (t − t0)/TBV up to 1.5TBV .

From 1.5TBV , u and w become associated with entirely different anisotropic motion:
u mostly comes from large-scale quasi-horizontal motions while w mostly belongs to
the three-dimensional internal wave part. If the former motions were two-dimensional,
u would be conserved (except for viscous effects), while w must decrease because of
nonlinear transfers toward small scales; u actually decays, but less than w (see Part 1)
so that the ratio u/w increases. The lowest-viscosity runs A and B behave differently
from 1.5TBV . The ratio u/w remains nearly constant, which implies that u and w

decay at the same rate. The lower viscosity of these runs and a possible confinement
effect of the largest scales may account for this behaviour. The EDQNM2 model does
not reproduce this difference however (figure 1b): u/w eventually reaches a value of
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Figure 1. Ratio u/w of the horizontal and the vertical r.m.s. values of the velocity components.
(a) DNS and (b) EDQNM2 results for: , run R2; · · ·, run R1; , run A; ,
run B; , run r2.

1.45 for the lowest-viscosity calculations and of 1.5 for the other runs. This means
that at the end of the computations, the flow contains more than twice the kinetic
energy in each of the horizontal directions than in the vertical one.

The change in the growth of u/w at about 1.5TBV is reproduced by the EDQNM2
model, but is not as clearly as in DNS. Assuming the independence of the ratio



126 F. S. Godeferd and C. Staquet

u/w from the five values of the Brunt–Väisälä frequency and of the viscosity is not
an artefact of the model, but a physical behaviour due to the statistical nature of
the model; this is an interesting result for deriving universal one-point modelling
at the level of the Reynolds stress tensor in stably stratified turbulence. This result
deserves further investigation through the use of a broader range of values of N

and ν. Finally, the main difference with DNS results lies in the prediction of larger
oscillations of u/w (as also observed in § 5.2 for some length scales). The latter result,
which appeared in Part 1 to be the major defect of the EDQNM2 model for the
present flow configuration, is due to an insufficient decorrelation between the vertical
velocity and the temperature fluctuation.

Results from experiments on thermally stably stratified grid turbulence are in good
agreement with the asymptotic value u/w≃ 1.5. At the far end of their turbulent
channel, Lienhard & Van Atta (1990) obtain a ratio that ranges between 1.56
and 1.72, and Yoon & Warhaft (1990) find slightly smaller values between 1.3
and 1.45, and with peaks up to 1.65. It is important to note that, in experiments,
u/w settles to its maximal value in less than one Brunt–Väisälä period, whereas
it takes more than two Brunt–Väisälä periods in our numerical results before
reaching the value of 1.5. The reason lies in the specific initial conditions we have
chosen, as recalled in § 4.1. Indeed, while the horizontal velocity component behaves
identically in the present DNS and EDQNM2 calculations and in the experiments of
Lienhard & Van Atta (1990), the vertical velocity component behaves differently.
In the laboratory experiments, the absence of potential energy just behind the
grid yields a maximum decrease of the vertical velocity to a value which is 60%
lower than the value w would have if the flow were unstratified. For the present
initial condition where the reservoir of potential energy is greater than that of
vertical kinetic energy, we have shown that a maximum decrease of the vertical
kinetic energy of 30% of its isotropic value is still observed. It follows that the
vertical kinetic energy decays less during the first Brunt–Väisälä period than in the
laboratory experiments. It is remarkable that the same final value is still reached
at the end of our computations. In the numerical simulations with initially zero
potential energy (runs r3 and r4, not plotted), u/w reaches slightly higher values
than for the non-zero case, as in the experiments (1.75 and 1.78 for N = π and π/2
respectively).

We may combine this result with the fact that the ratio of vertical kinetic energy
to potential energy is equal to 4/9, according to Part 1. This yields that 42% of the
total energy of the flow is in the vortex part, against 33% at the initial time, while the
remainder consists of wave motion. We also deduce that 72% of the horizontal kinetic
energy is contributed by the vortex part, a result already found in Part 1. A useful
implication for the next section is that the total kinetic energy is mainly contributed
by its horizontal component, in a proportion of 82%. This energetic partition of the
flow into wave and vortex parts very likely corresponds to some equilibrium state
(possibly depending upon the initial conditions). Since the buoyancy force starts to
influence all scales of motion from 1.5TBV , a model of linear interaction for the wave
and vortex modes may be able to describe the flow dynamics from this time on.
Following Hanazaki & Hunt (1996) and vanHaren, Staquet & Cambon (1996), it
would therefore be useful to apply rapid distortion theory (RDT) to the flow, using
as initial conditions the spectra of the velocity and temperature fields at 1.5TBV . RDT
is, however, irrelevant for describing the initial stage (t − t0 < 1.5TBV ) since, starting
with our initial conditions at t = t0, it would predict that u/w remains equal to 1 at
all times.



Statistical modelling and DNS of stably stratified turbulence. Part 2 127

z

z

x x  + dx

x

z + dz

u
3

u
1

L
11
3

L
11
1

Figure 2. Integral length scales Lk
ii in the vertical (k = 3) and horizontal (k = 1) directions are

defined using two-point correlations, respectively with vertical dz or horizontal dx separation.
Correlations of either the vertical velocity component u3 or the horizontal one u1 are used.
The resulting length scales may be used to characterize the size of turbulent structures of the
flow, as schematically shown.

5.2. Integral length scales

5.2.1. Definitions

Large-scale structures in a stably stratified flow have lengths of different magnitude
in the horizontal and vertical direction, because of the restoring effect of the buoyancy
force. This has been known for a long time (e.g. Lin & Pao 1979) and our purpose
here is to quantify the organization of the flow into layers by computing integral
length scales related to correlations of velocity components with horizontal and
vertical separation. These length scales are obtained in physical space by integrating
the two-point longitudinal and transverse correlation functions (Batchelor 1953) (first
equality below) or from spectra in Fourier space (second equality):

Ll
ij =

1

uiuj

∫ ∞

0

〈ui(x)uj (x + dxl)〉 dxl =
π

uiuj

∫ ∫

kl=0

〈ûiuj 〉(k, t) d2k, (5.2)

where dxl represents the separation distance in the lth direction. In homogeneous
turbulence, an ergodic assumption permits computation of the ensemble average 〈 〉
by a spatial average over the computational domain. A physical interpretation of
these scales is provided in figure 2.

Projected onto the Craya–Herring frame of reference, the spectral integral in (5.2)
yields for instance

L1
11 =

4π

u2
1

∫ ∫
Φ1(k) d3k.

In the following, we shall use axisymmetry to investigate only the Ll
ii with (i, l) ∈

{1, 3}2. Of major importance are those related to horizontal components of the
velocity, these contributing most to the kinetic energy, as shown in the previous
section.

In freely decaying isotropic turbulence, these length scales behave identically in
all three directions and longitudinal correlations (i = l in the above definition),
are exactly twice the transverse ones (i 6= l) (Batchelor 1953). They increase in
time with a dependence that can be derived from dimensional arguments (see for
instance Lesieur 1990, p. 195), of the form t r . The exponent r depends upon the
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behaviour of the kinetic energy spectrum at the lowest wavenumber (k → 0); in our
case, E(k) ≃ k4 as k → 0, and isotropic EDQNM theory yields r = 0.31. For two-
dimensional turbulence, by contrast, Batchelor’s theory predicts a linear evolution in
time (r = 1) but laboratory and numerical experiments yield a value much closer to
the three-dimensional exponent, namely r ≃ 0.4 (see e.g. Sommeria 2002).

5.2.2. Results

Figure 3 displays the time evolution of the horizontal and vertical correlation length
scales of horizontal velocity, L1

11 and L3
11 respectively. Results for the statistical model

and for DNS are shown for the five stratified runs. In figure 4, these length scales
are normalized by the time-dependent corresponding isotropic lengths. Because u is
mainly contributed by the vortex motion (more than 80%), L1

11 characterizes the
horizontal scale of this motion.

The time evolution of the integral length scales results from the decay of turbulence.
Figure 3 thus shows that the correlation length L1

11 increases with time, because energy
is being dissipated at small scales. This signals that the horizontal scale of the vortex
motion increases with time. Two regimes can be distinguished, a transition occurring
again at about 1.5TBV . Before that time, the growth occurs at a higher rate than the
isotropic rate: figure 4 indeed shows that the normalized length scale increases from
a value of 1 from the initial time. Such behaviour was also found in the laboratory
experiments of Yoon & Warhaft (1990, see their figure 7a), which were run for 0.6
Brunt–Väisälä periods at most. This result is surprising because, in our simulations,
u decays like its isotropic counterpart up to 0.7TBV . This implies that the horizontal
kinetic energy spectrum decays as in the isotropic case but is shifted faster toward the
larger scales; consequently, the energy level of the small scales should be higher in
the stratified case than in the isotropic one. One way to account for this assertion is
to recall that a counter-gradient heat flux (that transfers potential energy into kinetic
energy) exists at small scales, due to the stronger transfer rate of potential energy to
small scales (Part 1). Figure 3 also shows that L1

11 grows faster as N decreases. This
behaviour was also observed in the laboratory experiments of Yoon & Warhaft (1990)
(except for the largest value of N where the isotropic growth rate was recovered). The
growth of the correlation length scales slows down from 1.5TBV (see figure 3), which
indicates a change in the largest-scale dynamics. Figure 4 shows that the longitudinal
correlation scale evolves approximately as in three-dimensional isotropic turbulence
because the ratio of scales is nearly constant (run R1) or slightly decays (run R2).
However, because the growth rate in two-dimensional turbulence is very close to that
in three dimensions, no clear conclusion about the large-scale flow dynamics can be
inferred from this scale behaviour.

By contrast, the correlation along the vertical direction L3
11 remains nearly constant

from the initial time (except for the highest-viscosity run r2, in which L3
11 grows by

a factor 1.5 over the run, and for run B, where L3
11 first rises to twice its initial

value before slowly decaying). The initial value of L3
11 coincides with the value of the

Taylor microscale (but the latter scale grows by a factor 3 over the run duration).
Figure 3 shows that, from t − t0 ≃ 1.5TBV , the temporal evolution follows that of
isotropic turbulence, with half the level, but the dynamics at this scale is not that of
three-dimensional turbulence, as explained below.

As sketched in figure 2, L3
11 provides an estimate of the thickness of the vorticity

layers that develop in the flow. Three basic processes control this thickness: viscous
effects, since L3

11 ranges between ≃15 and a few Kolmogorov length scales between
the beginning and the end of the computations; buoyancy effects, which dominate
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Figure 3. Integral length scales for the horizontal velocity component. (a) DNS and
(b) EDQNM2 results for: , run R2; · · ·, run R1; , run A; , run
B; , run r2. The top curves represent the growth of L1

11 (correlation length in the
horizontal plane), and the bottom curves show the evolution of L3

11 (vertical correlation).

at all scales of motion from (t − t0)/TBV ≃ 1.5; and a straining motion due to the
horizontal shear induced by the quasi-horizontal vortex motions. The time scales of
these three effects are respectively (L3

11)
2/ν, N−1 and L3

11/U ; we shall again use U = u

as the scale of the horizontal velocity. We found that the two latter time scales are of
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Figure 4. Ratio of the integral length scales Li
11(N ) for the horizontal velocity component, in

the stratified case, divided by the same quantity Li
11(N = 0) obtained from the corresponding

isotropic calculation. On each of the three of curves are shown the time evolution of: top
curves: L1∗

11 = L1
11(N )/L1

11(N = 0); bottom curves: L3∗
11 = L3

11(N )/L3
11(N = 0); middle curves:

the average value (L1∗
11 + L3∗

11)/2. The different sets correspond to: , run R2; · · ·, run R1.
(a) DNS computations; (b) EDQNM2 results.
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Figure 5. Froude number associated with the vorticity layers. DNS results : , run R2;
· · ·, run R1; , run A; , run B.

the same order and ten times smaller, in the mean, than the viscous time scale. This
implies that the thickness of the layers is set by L3

11/u ≃ N−1. This relation amounts
to writing that the Froude number Fr = u/NL3

11 associated with L3
11 is of order 1,

consistently with our previous analysis (see § 4.1). In order to check this conjecture,
we plot Fr as a function of (t − t0)/TBV in figure 5 for the four runs R1, R2, A and
B: all curves decay to a nearly constant value close to 0.5. The same behaviour is
found for run r2 (not plotted for clarity) except that, from 2TBV , Fr starts decaying
at a constant rate from the 0.6 value. Hence, L3

11 = 2u/N provides an estimate of
the layer thickness for small enough viscosity. We note that this estimate matches
the prediction of a dimensional analysis for inviscid fluid conducted by Billant &
Chomaz (2001). We point out that these arguments are valid from 1.5TBV only and,
therefore, cannot account for the constant value of L3

11 from the beginning of the run.
The simulations with zero initial potential energy (not shown) display the same

behaviour as run r2, in which the viscosity ν has the same value. For instance, L3
11

grows by 50% or so from its initial value to reach 0.32.
As shown on figure 3(b) for EDQNM2 results, the statistical model predicts the

L3
11 growth inhibition as well. Also, the relative position of the curves for L1

11 among
the different runs is nearly the same as in DNS. Only the final value of L1

11 at
t/TBV = 6 is found to be 15% smaller than in DNS. We note that the EDQNM2

model does not reproduce the oscillatory behaviour displayed by the curves computed
from DNS. Because correlation lengths in the statistical model are computed from
the vortex-mode kinetic energy Φ1, this means that no interaction exists at the largest
scales between this mode and the wave mode in the model.

The evolution of the vertical longitudinal correlation length L3
33 is plotted in figure 6.

Since the contribution of the wave field to the w velocity component increases as time
elapses, the longitudinal correlation is expected to oscillate, more so in the vertical
direction. One can still discuss the evolution of this quantity on average, i.e. for the
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Figure 6. Integral length scale for the vertical velocity component, with vertical separation,
L3

33. (a) DNS and (b) EDQNM2 results for: , run R2; · · ·, run R1; , run A;
, run B; , run r2.

mean value about which it oscillates. This mean value grows in time, unlike L3
11,

meaning that a stronger vertical correlation is present in the vertical fluid motion
than in the horizontal motion. The growth rate of L3

33 is however three times smaller
than that of the longitudinal streamwise correlation L1

11. It seems to reach a constant
value, equal to about 0.7, as time elapses.
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The same mean value is predicted by the EDQNM2 model (figure 6b). However,
the amplitude of the oscillations is overestimated by the model, the discrepancy being
larger when N is lower, for reasons discussed in the previous section. The vertical
correlation of w oscillates at nearly twice the Brunt–Väisälä frequency, meaning that
w, which is mainly contributed by the wave field, oscillates at a frequency close N

(since L3
33 is defined by a quadratic quantity). Hence, the waves propagate their energy

vertically in the turbulent flow. A comparable result was observed by Hanazaki &
Hunt (1996) using linear RDT theory.

These observations give the picture of the flow as superimposed quasi-horizontal
layers with a strong vertical variability and subjected to wave deformation.

The normalized length scales Ll∗
ii = Ll

ii(N )/Ll
ii(N = 0) are shown on figure 4. We

should add to the previous comments on this figure that almost no dependence of the
Ll∗

ii is found on N in the EDQNM2 model, unlike DNS. We also note that half the
sum of L1∗

11 and L3∗
11 (middle curves on figure 4) remains very close to unity: this may

be put in terms of a statistical volume conservation principle, such that the structures
in the flow are incompressibly squeezed by stratification.

6. Small-scale anisotropy

6.1. Definitions

Of importance in stably stratified turbulence is the estimate of the dissipation rate of
kinetic energy. This quantity is defined as ǫ = 2νsij sij where sij = (∂ui/∂xj +∂uj/∂xi)/2
is the fluctuating rate of strain (Batchelor 1953); ǫ can be computed from experimental
data but, for technical reasons, it usually contains only part of the velocity gradients
present in the flow. In isotropic turbulence, only one velocity derivative is needed

for obtaining the exact ǫ, e.g. ǫ = 15ν(∂u/∂x)2; ǫ can also be expressed using the

isotropic relation (∂u/∂x)2 =(∂v/∂x)2/2 between longitudinal and transverse gradients
(Townsend 1976). However, in stably stratified turbulence, anisotropy that may arise
at small scales implies that several gradients, if not all, should be used in order
to estimate the dissipation. In axisymmetric flows only two directions need to be
considered, namely horizontal and vertical.

Velocity gradients are easily computed in spectral space in DNS, of which we will
only retain ∂u/∂x, ∂w/∂x, ∂u/∂z, ∂w/∂z; ∂u/∂y will also be retained for comparison

with ∂u/∂x. We shall compare their r.m.s. values ((∂ui/∂xj )2)
1/2 with those obtained

by the statistical model. In EDQNM2 r.m.s. gradients are computed from energy
density spectra, as follows.

From equation (2.4), the spectral components of the two-point velocity correlation
tensor are obtained by projection of the Φi , i = 1, 2, onto the fixed frame of reference:

V̂ ij = Φ1

(
e1
i e

1
j

)
+ Φ2

(
e2
i e

2
j

)
, (i, j ) ∈ {1, 2}2. (6.1)

Moreover, the spectra of the velocity gradients are related to V̂, since ∂ûi/∂xj =

kj ûi , by (∂ui/∂xj )(∂ui/∂xj )
̂

= (kj )
2V̂ ii (no summation on i and j ). Therefore, using

definition (A 2), we obtain

(
∂u

∂x

)2

=
1

2

[∫ ∞

0

∫
π/2

0

k2 sin2 θk(Φ1 + cos2 θk Φ2) dθk dk

]
, (6.2)
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(
∂u

∂z

)2

=
1

2

[∫ ∞

0

∫
π/2

0

k2 cos2 θk(Φ1 + cos2 θk Φ2) dθk dk

]
, (6.3)

(
∂w

∂x

)2

=
1

2

[∫ ∞

0

∫
π/2

0

k2 sin4 θk Φ2 dθk dk

]
, (6.4)

(
∂w

∂z

)2

=

[∫ ∞

0

∫
π/2

0

k2 cos2 θk sin2 θk Φ2 dθk dk

]
. (6.5)

Note that Φ1 + cos2 θk Φ2 is twice the horizontal kinetic energy spectrum, and
sin2 θk Φ2 twice the vertical kinetic energy spectrum. As expected, the horizontal
vortex mode spectrum Φ1 only contributes to horizontal motion, but the waves
contribute to the vertical motion as well. The sum of the above four terms multiplied
by 2ν equals ǫ.

6.2. Results

Using the previous definitions, the different velocity gradients obtained from DNS
and EDQNM2 are plotted on figures 7 and 8, for runs R1 and R2. The behaviour of
the resulting dissipation rate of kinetic energy ǫ was commented on in Part 1.

Since r.m.s. values are plotted in figures 7 and 8 and the initial flow is isotropic,
∂u/∂x and ∂w/∂z differ by a factor

√
2 from ∂u/∂y, ∂u/∂z and ∂w/∂x. The figures

show that the strongest departure from isotropy occurs in ∂u/∂z, from 0.1TBV for
N = π and from 0.3TBV for N = π/2. The longitudinal gradient ∂w/∂z departs from
isotropy from this time on as well. Another striking feature is that ∂u/∂y remains
nearly equal to ∂w/∂x at all times, their level being matched by ∂w/∂z up to 2TBV .
We also note that the weakest gradient ∂u/∂x decays from this time on at the same
rate as these three gradients, the difference amounting to a factor of 1.2. Finally, the
dominance of the transverse gradient ∂u/∂z over the other gradients increases as time
elapses. It follows that, from t ≃ 1.5TBV , one may write

1.2 ∂u/∂x ≃ ∂u/∂y ≃ ∂w/∂x ≃ ∂w/∂z < ∂u/∂z. (6.6)

Part of these relations can be easily accounted for. As time elapses, the horizontal
kinetic energy becomes dominated by the vortex motion, which involves quasi-
horizontal large-scale structures. Thus ∂u/∂x should remain weak after these
structures have emerged from the initial turbulent state, that is, from t − t0 ≃ 1.5TBV .
Also, the reduction of the length scale in the vertical direction by stratification implies
that vertical gradients should dominate. In order to account for the dominance of
∂u/∂z over ∂w/∂z, let us estimate their order of magnitude: ∂u/∂z ∼ u/L3

11 while
∂w/∂z ∼ w/L3

33; thus (∂u/∂z)/(∂w/∂z) ∼ (u/w)/(L3
11/L

3
33). But u/w > 1 (from

figure 1) while L3
11/L

3
33 < 1 (from figures 3a and 6a), so that the vertical gradient

of u dominates that of w (by a factor 2 or so according to figure 7). The overall
dominance of ∂u/∂z confirms the organization of the flow into quasi-horizontal layers
whose relative motion results in this horizontal shear. A visualization of a constant
surface ∂u/∂z at 6 Brunt–Väisälä periods, displayed in figure 9, demonstrates this
organization. That ∂u/∂z should dominate the velocity gradients in a stably stratified
fluid, and therefore control the dissipation rate of kinetic energy, was first realized
by Lilly (1983), using the wave–vortex decomposition of Riley et al. (1981). This
conjecture has been given a quantitative basis by Fincham et al. (1996), who found
that the shear associated with the flow layering accounts for 90% of the kinetic energy
dissipation. This result will be further discussed in the next section.
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Figure 7. Root-mean-square values of the velocity gradients ∂ui/∂xj , for run R1, given (a) by
DNS, (b) by the EDQNM2 model. , ∂u/∂x; · · ·, ∂w/∂x; , ∂u/∂y; , ∂u/∂z;

, ∂w/∂z. (∂u/∂y is not plotted for the EDQNM2 model because it is equal to ≃∂w/∂x
due to axisymmetry).

We have already noticed that the frequency of the waves is close to N: assuming
this global property also holds locally, this means that the fluid particles oscillate in
a direction close to the vertical, thus inducing a horizontal shear ∂w/∂x (or ∂w/∂y).
According to relations (6.6), this shear is rather strong because it is of the same order
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Figure 8. Root-mean-square values of the velocity gradients ∂ui/∂xj , for run R2, given
(a) by DNS, (b) by the EDQNM2 model. See figure 7 for the meaning of the line types.

as the vertical vorticity of the flow, ≃∂u/∂y, but still smaller than that resulting from
the vertical variability of the vortex motion, ∂u/∂z. Finally, relations (6.6) indicate
that the flow is nearly isotropic in the horizontal plane although only one realization
is considered: again, isotropy would imply ∂u/∂x to be smaller by a factor

√
2 than

∂u/∂y whereas this factor is equal to 1.2 instead.
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Figure 9. Surface of ∂u2/∂z equal to 25% of its maximum value in the computational box,
for run R1 at (t − t0)/TBV = 6.

We observe on figures 7(b) and 8(b) that the EDQNM2 predicted values for the
gradients are in good agreement with the DNS results. The evolution of the largest
gradient, ∂u/∂z, is very close to that of DNS, with almost the same value at 6TBV .
The smallest gradient ∂u/∂x is slightly overestimated by the statistical model at this
time. The closing together of ∂w/∂x and ∂w/∂z is also observed in figures 7(b)
and 8(b), but occurs a little later than in the numerical simulations. The vertical
gradient displays unwanted oscillations whose origin is the same as that resulting in
the overly large oscillations observed in § 5.2 for L3

33. The EDQNM2 model, despite
its statistical nature, can therefore reproduce much of the mechanisms that lead to
the localized organization of the flow. This overall good agreement with DNS should
be underlined, especially with respect to ∂u/∂z, indicating a good prediction of the
layering of the flow by the model.

As in Thoroddsen & Van Atta (1992), we plot in figure 10 the evolution of the
ratio R = (∂w/∂x)2/(∂u/∂x)2 as a function of (t − t0)/TBV . This ratio is a measure
of the anisotropy between horizontal gradients of vertical and horizontal velocity.
Starting from 2, as expected in isotropic turbulence, it decreases to an average value
of ≃1.5 – that is, 1.22 according to relations (6.6) – at 6TBV . The curves for runs R1
and R2, computed by DNS or predicted by the statistical model collapse on a single
curve after the first Brunt–Väisälä period or so, apart from stronger oscillations in
the EDQNM2 model. This is consistent with the results of Thoroddsen & Van Atta
(1992), which collapse on a single curve when plotted as a function of t/TBV from
0.5TBV . In these laboratory experiments, R also seems to tend toward an asymptotic
value for the highest value of N , but this value is half ours, being equal to ≃0.7.
This discrepancy may be due to the difference in initial condition: results for the zero
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Figure 10. Ratio (∂w/∂x)2/(∂u/∂x)2. Run R2: , DNS; , EDQNM2 model.
Run R1: , DNS; , EDQNM2 model.

initial potential energy runs (not displayed) show that (i) the two curves collapse from
the beginning of the run, and (ii) they decrease steadily and reach a value close to 1.2
at 3TBV . It should be noted that Thoroddsen & Van Atta (1992) also compared their
experimental results with those of Riley et al. (1981) (which agree with ours), up to
1.25 TBV .

Finally, the asymptotic value of R in our DNS allows us to infer an estimate
of the scale of the waves in the x-direction. We characterize this scale by the
transverse correlation length scale of w, L1

33. As above, R∼ (w/u)/(L1
11/L

1
33) so that

the asymptotic value R≃ 1.5 yields L1
33 ≃ 1.8L1

11. This simple argument, if accurate
enough, would yield that the horizontal scale of the waves is smaller by at most only
a factor 2 than that of the vortex motions.

6.3. Dissipation models

Modelling the dissipation rate of kinetic energy is of crucial importance in
oceanography because most models for small-scale mixing rely upon ǫ. The
appropriateness of the isotropic formula for calculating ǫ in the thermocline has
been addressed by Yamazaki & Osborn (1990, 1993a, b) using in situ measurements.
These authors report that, according to the measurements of Gargett et al. (1984),
the isotropic formula can be used when ǫ/νN2 is larger than 200. In the thermocline
however, ǫ/νN2 is lower than 200, meaning that stratification effects should be
accounted for. This led Yamazaki & Osborn (1990, 1993a, b) to express ǫ using the
theory of axisymmetric turbulence about the vertical direction. Following Batchelor
(1946), this expression is

ǫA = ν

(
6

(
∂u

∂y

)2

− 5

(
∂w

∂z

)2

+ 2

(
∂w

∂x

)2

+ 2

(
∂u

∂z

)2
)

. (6.7)
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The data in the thermocline were obtained from a submarine so that only two cross-
stream gradients were available, ∂w/∂x and ∂v/∂x. Approximations for ǫA were thus
made, yielding an upper and a lower bound for this rate:

ǫl
A = ν

(
11

2

(
∂v

∂x

)2

+ 2

(
∂w

∂x

)2
)

, ǫu
A = ν

(
8

(
∂v

∂x

)2

− 1

2

(
∂w

∂x

)2
)

. (6.8)

Both approximations were found to compare reasonably well with the isotropic
formulae, the maximum error being 40%. This led Yamazaki & Osborn (1990,
1993a, b) to conclude that isotropic formulae work well in the thermocline even
if the flow is not isotropic, given the uncertainty in the current oceanographic
technique.

A semi-isotropic expression for ǫ had been proposed by Stillinger, Helland & Van
Atta (1983), based upon two velocity gradients measured in a salt-stratified water
tunnel:

ǫS = ν

(
10

(
∂u

∂x

)2

+
5

2

(
∂w

∂x

)2
)

. (6.9)

Thoroddsen & Van Atta (1992) applied the three approximations (6.8)–(6.9) to their
experimental data and found a large discrepancy between their predictions, namely
ǫl
A ≃ ǫu

A = ǫS/2 = ǫiso/2.5 (ǫiso is the isotropic expression for ǫ based upon one
gradient only). The reason is very probably the explicit absence of the horizontal
shear (∂u/∂z)2 in these approximations. Indeed, in the laboratory experiments of
Itsweire, Helland & Van Atta (1986), expression (6.9) allowed the turbulence energy
equation to be closed within an error of 5% but a strong internal wave field was
detected, unlike most wind tunnel experiments.

The first laboratory experiments where the vertical gradient of a horizontal velocity
component was measured were those of Fincham et al. (1996), at high Reynolds
number; ǫ was found to be very well predicted by considering only the horizontal
shear since the approximation

ǫ∞ = 2ν(∂u/∂z)2 (6.10)

accounted for 90% of the decay rate of the kinetic energy for t/TBV larger than ≃7.
The internal wave field appeared to be very weak in these experiments.

In the following, we examine the validity of these different approximations for
our numerical data, for (t − t0)/TBV larger than 2. Relations (6.6) between the
velocity gradients will thus be used. The ratio of the actual (numerically computed)
dissipation rate to the isotropic one was found in Part 1 to increase linearly with time
for t/TBV > 1.5, from 0.7 to 1.5, so that an isotropic formula cannot be accurately
used in the present case.

We first consider the approximations proposed by Yamazaki & Osborn (1990,
1993a, b) and Stillinger et al. (1983). Interestingly, the upper and lower bounds of
the former approximations yield the same expression ǫu

A = ǫl
A = 7.5ν(∂u/∂y)2, while

the latter approximation yields ǫS ≃ 9.5ν(∂u/∂y)2. For our data, the expression for
ǫS leads to a 50% underestimation of the dissipation at the end of the computations
so that the Yamazaki & Osborn expression will not yield a satisfactory prediction
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Figure 11. Dissipation rate of kinetic energy ǫ ( ), along with the approximations ǫA

(· · ·) (axisymmetric expression), ǫ̃A ( ) (axisymmetric expression using relations (6.6) and
ǫ∞ ( ) (defined by (6.10)). DNS results for: (a) run R1, (b) run R2. EDQNM model:
(c) run R1, (d) run R2.

either. Using relation (6.6) again, ǫA becomes

ǫ̃A = ν

(
3

(
∂u

∂y

)2

+ 2

(
∂u

∂z

)2
)

. (6.11)

Since the ratio of the two gradients in (6.11) decreases as time elapses, it is useful
also to consider the approximation ǫ∞ used by Fincham et al. (1996). Figure 11 thus
displays the actual dissipation rate ǫ along with the approximations ǫA, ǫ̃A and ǫ∞.
For runs R1 and R2, ǫ̃A provides a very good prediction of ǫA for (t − t0)/TBV > 2,
as expected, and accounts for 87% of ǫ. (The prediction is obviously better for the
EDQNM2 model, because of exact axisymmetry in the model.) At the end of the
DNS, ǫ∞ accounts for only 60% of ǫ, possibly because the internal wave field is not
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scale as ∼ t−2 after one Brunt–Väisälä period.

weak in our computations. For the EDQNM2 model, ǫ∞/ǫ is equal to 55% at 6TBV

of run R1 as well as at the end of run R2.

6.4. Scalar dissipation

Let χ be the dissipation rate of half the variance of the fluctuating temperature T 2/2;
χ is thus defined as

χ = κ

[(
∂T

∂x

)2

+

(
∂T

∂y

)2

+

(
∂T

∂z

)2
]
. (6.12)

When the fluid is uniformly stratified, the quantity T 2/(2N2) is a good approximation
for the available potential energy (Holliday & McIntyre 1981). Thus, χ/N2 is the
dissipation rate of available potential energy.

The quantity χ/N2 is plotted in figure 12 for DNS and for the EDQNM2 model. In
the model, horizontal and vertical temperature gradients have been computed from
axisymmetric spectra in the EDQNM2 model as:

∂T

∂x

2

=
∂T

∂y

2

=
1

2

∫
k2 sin2 θkΦ3 d3k,

∂T

∂z

2

=

∫
k2 cos2 θkΦ3 d3k.

Figure 12 shows that the EDQNM2 model follows quite closely the power law found
in the numerical simulations, to better than 1%, with an exponent of decay close to
2. Only very small oscillations are present in the EDQNM2 predictions.

For the purpose of the mixing study reported in the next section, we compare the
quantity χ/N2 for the four high-resolution DNS (R1, R2, A and B), also displayed in
figure 12. Two striking features are apparent: (i) the transition at 1.5TBV , from which
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small scales become affected by buoyancy force, is clearly visible in run B and, to a
lesser extent, in run A as well (note that run B corresponds to the most turbulent flow
that we simulated, because it has the lowest viscosity and Brunt–Väisälä frequency);
(ii) χ/N2 in runs A and B decays from this time on and eventually becomes lower
than in runs R2 and R1 respectively. This behaviour should be attributed to the
counter-gradient heat flux that exists at small scales, which leads to a re-stratification
of the flow.

The time evolution of the r.m.s. values of the horizontal and vertical gradients of
T is plotted in figure 13, as computed from DNS and the EDQNM2 model, for run
R2 (a) and for run R1 (b). The figure again shows that axisymmetry is satisfied well
in DNS. The temperature gradients in the horizontal and vertical directions start to
separate at the very early stage of the evolution, at about (t − t0)/TBV ≃ 0.2. Thus,
anisotropy appears to develop in the temperature gradients nearly as fast as for the
velocity components. The stronger transfer of potential energy toward small scales
(which makes the vertical kinetic energy decrease and creates small-scale temperature
fluctuations at the same time) occurs again. We still note that the decay rate is slower
at the beginning of the computation for the strongest stratified run (figure 13a),
than for run R1 for which N = π/2 (figure 13b). Nonlinear effects are active during
this earlier stage as just mentioned, which accounts for the decay process, but the
inhibiting effect of stratification already has an influence on these gradients, which
accounts for the smaller decay of run R2. The gradients in the vertical direction
next decay slower than horizontal ones, signalling that the temperature field, like
the kinematic field, develops a layered structure with vertical variability. Note that
the gradients recover the same decay rate in both runs, unlike their early evolution,
indicating that the small-scale dynamics eventually becomes influenced by buoyancy
effects.

Results for the EDQNM2 model are also displayed on figure 13. With respect to
the separation of the vertical and horizontal gradients, the model is in very good
agreement with DNS results. The value of ∂T /∂z at t/TBV = 6 is exactly the same,
although a small difference is observed at the beginning of the decay in the strongly
stratified case. The faster decrease of the derivative ∂T /∂x is predicted well by the
statistical model, despite a small difference, at the end of the computation, with the
DNS value. We note that ∂T /∂x oscillates noticeably, as a result of wave activity.

The anisotropy of the small temperature scales can be quantified by the ratio (e.g.
Thoroddsen & Van Atta 1996)

R′ = (∂T /∂z)2/(∂T /∂x)2. (6.13)

R′ is plotted as a function of (t − t0)/TBV in figure 14, for DNS runs only: R1 and
R2, as well as the zero initial potential energy runs r3 and r4. R′ starts from the
isotropic value of 1 (for runs r3 and r4, both gradients vanish at t = t0 so that
R′ is undefined). The striking feature is that all curves behave similarly, apart from
stronger oscillations for r3 and r4. The figure shows that about 2.5 Brunt–Väisälä
periods are needed for anisotropy of the temperature gradients to fully develop. A
constant value of about 3 is eventually reached for runs R1 and R2 and it is very
likely that this same value would be reached in runs r3 and r4.

The ratio R′ was also inferred from experimental measurements by Thoroddsen &
Van Atta (1996). R′ was found to increase as well, from the value of about 1 close
to the grid and to attain a value of order 2.2 (for the highest value of N) after 1.2
Brunt–Väisälä periods, a time limit imposed by the length of the tunnel. This is in
agreement with our DNS results, whatever the initial condition. The structure of the
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Figure 13. Root-mean-square values of the temperature derivatives in the horizontal and
vertical directions, non-dimensionalized by their value at t = t0, given by the simulation and
the model: (a) run R2; (b) run R1. , horizontal x DNS derivative; · · ·, horizontal y
DNS derivative; , horizontal EDQNM derivative; , vertical DNS derivative;

, vertical EDQNM2 derivative.

temperature field therefore might relax toward the same state independently of the
initial conditions. It is noteworthy that we were able to draw the same conclusion for
the ratio u/w. (The asymptotic value may however depend upon the Prandtl number.)

The existence of such an asymptotic value for the dissipation rate of the temperature
variance implies that a simple expression, based upon knowledge of one gradient
only, can be derived. Indeed, axisymmetry yields (∂T /∂x)2 = (∂T /∂y)2 to a good
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approximation and, from figure 14, (∂T /∂x)2 = α (∂T /∂z)2, with α ≃ 1/3 for run R2
and α ≃ 1/2.8 for run R1 and for the EDQNM2 model. It follows that χ may be
expressed as

χ̃ = (2α + 1)κ (∂T /∂z)2, (6.14)

for t/TBV > 2.

7. Mixing

7.1. Vertical turbulent diffusivity and Cox number

The estimation of mixing in a stably stratified fluid has profound geophysical
implications. For instance, the mixing processes are parameterized through a
vertical eddy diffusivity in large-scale oceanic circulation models, and the long-
term predictions of these models have been shown to be very sensitive to this
parameterization (as mentioned in the Introduction).

In a stably stratified fluid, mixing is driven by the large energetic scales of the flow
but eventually results from molecular diffusion. Mixing processes therefore involve
the smallest dynamical scales, through temperature gradients. The restoring action
of the buoyancy force implies that vertical transport in a stably stratified fluid can
only occur through mixing. Fluid particles would return to their equilibrium position
in a perfect fluid. Mixing is thus most often quantified through a vertical (actually
diapycnal) turbulent diffusivity defined as

vertical turbulent diffusivity (z) =
turbulent diffusive flux of temperature

mean temperature gradient
, (7.1)

where the numerator and denominator represent horizontally averaged quantities.
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Figure 15. Cox number computed from DNS; , R2; · · ·, run R1; d, run A; s, run B.
(The data are sparse for runs A and B, which are therefore indicated with symbols only.)

A common difficulty in mixing studies is to estimate the turbulent diffusive flux
of temperature, or its vertical average, and several models have been proposed for
this purpose (see e.g. Toole 1998 for a review). In the present case of uniformly
stratified fluid in the Boussinesq approximation, its vertical average can be very well
approximated by χ/N2, while the mean temperature gradient remains very close at all
times to the linear gradient N2 (we recall that T is scaled like an acceleration). Hence,
χ/N2 also represents the rate of change of potential energy due to turbulent mixing
processes. The vertically averaged turbulent vertical diffusivity is therefore defined as

Kd =
χ

N4
, (7.2)

which is the well-known Osborn–Cox model (Osborn & Cox 1972). A generalization
of this definition to non-homogeneous stably stratified fluids has been derived by
Winters et al. (1995), using the concept of minimal potential energy developed by
Lorenz (1955) and Thorpe (1977).

The vertical diffusivity Kd normalized by the molecular diffusivity κ defines the
Cox number:

Cox ≡ Kd

κ
=

χ

κN4
.

Normalization by κ gives the departure from molecular diffusion due to nonlinear
and buoyancy effects.

The Cox number is plotted as a function of (t − t0)/TBV in figure 15 up to one
Brunt–Väisälä period, for runs R1, R2, A and B. The data collapse on a single
curve from (t − t0)/TBV ≃ 0.6, signalling that vertical transport becomes controlled
by the accumulated effect of buoyancy from this time on. Such a unique dependence
on t/TBV was also found by Yoon & Warhaft (1990) (from t/TBV ≃ 0.35) and by
Lienhard & Van Atta (1990) (from t/TBV ≃ 0.2).
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Figure 16. Time evolution of the mixing efficiency γ . DNS results for: , run R2;
· · ·, run R1; , run A; , run B.

Figure 15 shows that the Cox number reaches a very small value at one Brunt–
Väisälä period, when vertical diffusivity becomes close to molecular diffusivity,
differing by less than 10%. Hence, the flow is only weakly turbulent from this
time on but, Kd being an integrated value, local turbulent mixing may still occur
intermittently.

7.2. Mixing efficiency

The efficiency with which mixing occurs is quantified by the amount of potential
energy (per unit time, for instance) resulting from turbulent mixing processes divided
by the amount of energy (per unit time as well) brought to the fluid. In the absence
of external forcing, the dissipation rate of kinetic energy is used in place of the input
rate of energy. The mixing efficiency is then defined as

γ =
χ/N2

ǫ
. (7.3)

The mixing efficiency is often quantified by a flux Richardson number Rf = γ /(1+γ )
in place of γ .

DNS results for runs R1 and R2 are compared to those for the lowest-diffusivity
runs A and B in figure 16. (Note that diffusivity, not viscosity, matters in the study
of mixing.) Two regimes should be distinguished. Up to ∼2.8TBV , the four curves
behave identically, except for the very beginning of the runs, with γ staying close to
0.55. Note that an intermediate regime may also be distinguished for runs R1 and
R2: γ remains constant up to 1.5TBV , then starts to decrease slowly. The high value
of γ indicates that the flow is turbulent with widespread overturnings. The same
constant value of 0.55 is found in DNS of a strongly stably stratified shear layer
when three-dimensional small-scale secondary instabilities develop (Staquet 2000). A
diffusivity-dependent behaviour can be observed for γ from t ∼ 2.8TBV : in runs R1
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Figure 17. Time evolution of: (a) the mixing efficiency γ ; (b) the flux Richardson number
Rf . DNS results for run R2 ( ), and for run R1 ( ). EDQNM results for run R2
(· · ·), and for run R1 ( ).

and R2, γ remains at a high level, though slowly decaying, and reaches 0.45 at 6TBV .
In the lowest-viscosity runs A and B by contrast, γ continuously decreases, down
to ∼0.2 at 9TBV . The re-laminarization process that occurs at small scales accounts
for this behaviour. We have checked that ǫ has very similar values for runs A and
R2 on the one hand, and B and R1 on the other hand while, as seen on figure 12,
χ/N2 is lower when ν is lower, at given N . The interpretation of runs R1 and R2 is
clear: molecular diffusion makes a strong contribution to mixing, thus masking the
re-laminarization process and this results in the high value for γ .

The mixing efficiency and flux Richardson number are plotted in figure 17 for
runs R1 and R2, in order to compare the EDQNM2 predictions with the DNS
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Figure 18. Cox number versus ǫ/νN2 for DNS results. , run R2; · · ·, run R1;
, run A; , run B.

results. The EDQNM2 model under-estimates by at most 15% the mean value of
γ found by DNS (except at the beginning of the computations). These predictions
become quite satisfactory from 3 Brunt–Väisälä periods. When the bounded quantity
Rf is considered, the EDQNM2 predictions agree with those of the DNS from the
beginning of the runs.

In § 6, we have shown that, from (t − t0)/TBV ≃ 2, the dissipation rate of kinetic
energy ǫ is approximated well by its axisymmetric expression using two gradients
only, ǫ̃A. We also found that, from (t − t0)/TBV ≃ 2, the dissipation rate of half the
fluctuating temperature variance χ is approximated well by (6.14). It follows that a
simple expression for the mixing efficiency can be proposed, which is based upon
three gradients only:

γ = (2α + 1)
κ

N2

(∂T /∂z)2

ǫ̃A

. (7.4)

Finally, it is useful at this stage to investigate how the Cox number varies as
a function of ǫ/νN2, which is a measure of turbulence intensity (e.g. Lienhard
& Van Atta 1990; Barry et al. 2001). Results are plotted for runs R1, R2, A
and B in figure 18. The four curves collapse remarkably well on a single curve
of Cox = 0.5 ǫ/νN2. This dependence can be easily accounted for once γ is
known, since Cox/(ǫ/νN2) = Pr (χ/N2)/ǫ = Pr γ ; the values Pr = 1 and γ ≃ 0.5
yield the observed law for the Cox number. Such a linear dependence matches
the experimental finding of Barry et al. (2001) for ǫ/νN2 smaller than 300, and
the results of Bouruet-Aubertot et al. (2001) for breaking gravity waves of small
amplitude.
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Figure 19. Anisotropic total energy spectra at t − t0 = 6TBV : (a) run R2; (b) run R1. Spectra
on the left are DNS data, while the spectra on the right are EDQNM2 data, shifted two
decades to the right. The more energetic spectra (top curves) correspond to wavevectors close
to the polar direction, and the bottom spectra for the equatorial orientation of wavevectors.
There are a total of five orientations in between for DNS, and seven for EDQNM2.

8. Spectra

8.1. Directivity

Figures 19 and 20 show the dependence of the energy spectra upon θk . DNS spectra
are computed from equation (3.1). The DNS discretization accounts for the lack of
sampling at the smallest wavevectors for some orientations, where no grid point lies
within the integration domain. The statistical model is free of this problem, since
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Figure 20. Anisotropic vortex energy spectra at t − t0 = 6TBV : (a) run R2; (b) run R1. For
details refer to the caption of figure 19.

it gives direct access to angular-dependent energy density spectra, shown on the
same figures, on mesh points adapted to the spectral energy distribution (that is, the
discretization is refined towards small wavevectors).

In isotropic homogeneous turbulence, spectra at all θk coincide. By contrast, in
the present stratified flow, only the largest scales, that feed the turbulent cascade, are
mainly isotropic (figures 19 and 20). The largest anisotropy is in the intermediate
subrange for both the vortex and the wave mode spectra. Also, the smaller θk , the
more energetic the spectrum. Hence, as expected, energy concentrates in horizontal
motion, with the exhibited θk-distribution.
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The figures also show that energy levels are higher for N = π than for N = π/2
at all wavenumbers and for all angles, due to the stronger inhibition of energy
transfers in the former case than in the latter. This remark holds for both the total
energy spectra and the vortex kinetic energy spectra. It was shown in Part 1 that
the overall prediction for the level of the θk-integrated spectra by the EDQNM2

model matches DNS results. The present analysis permits one to refine this result:
directional anisotropy is qualitatively reproduced well by the model, the agreement
being even quantitative for run R1 (figure 19). In run R2 (figure 20) DNS shows
significantly larger directional anisotropy, a trend not reproduced by EDQNM2. For
this last run, the kinetic energy spectrum is strongly dependent on the orientation of
the wavevector, down to the smallest scales in the flow, thereby constituting evidence
of strong anisotropy in the dissipative range, with a two-decade gap between the
polar and the equatorial spectra. The vortex kinetic energy spectrum itself is only
slightly less anisotropic in the smallest scales. The EDQNM2 model predicts some
directional dependence of the dissipative range of the spectra, but it seems to be due
to local transfers only. Anisotropy transferred by non-local triadic interactions, down
to the smallest dissipative range, probably needs improved modelling in EDQNM2.
In this respect, the work by Yeung, Brasseur & Wang (1995) may shed light, for they
have proposed an extensive analysis, relating both spectral and physical space, of
the long-range triadic interactions and their role on the isotropization of the small
scales.

8.2. Remark on polarization anisotropy of the spectra

Polarization anisotropy refers to the possible difference between φ̂1 and φ̂2 at given k,
thus indicating predominance of either the vortex or wave components of the velocity.
Polarization anisotropy becomes of much less importance when directional anisotropy
is strong, such that energy accumulates in vertical wavevectors, since axisymmetry
imposes Φ1 = Φ2. At long times or for very small Froude numbers, polarization will
be negligible. On the other hand, for turbulence subjected to solid-body rotation,
Cambon et al. (1997) have shown that energy accumulates at horizontal wavevectors,
where no such axisymmetry constraint holds. In that case quantifying polarization is
important for describing the columnar structuring of the flow. In the stratified case,
a detailed description of polarisation anisotropy may eventually be of importance for
the improved modelling of the initial stages of decay of stably stratified turbulence.

9. Discussion and conclusion

We have investigated stably stratified freely decaying turbulence, both from the
point of view of direct numerical simulations and that of two-point statistical
modelling. Following the first part of this work reported in Part 1, regarding the
evolution of energetics, we have focused in the present work on investigating the
detailed anisotropy appearing in the flow.

Our simulations have been performed using large initial potential energy conditions,
at variance with grid-turbulence laboratory experiments. This initial condition,
designed to validate the statistical model, appears to yield results comparable to those
stemming from DNS with zero initial potential energy (and to laboratory experiments
as well). Large-scale anisotropy was characterized by the ratio of r.m.s. fluctuating
velocity components u/w. This indicator saturates at a value close to 1.5, in agreement
with experimental values. The corresponding flow is therefore twice as energetic in the
horizontal directions as in the vertical one. Information on the structure of the flow is
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provided by transverse and longitudinal correlation length scales. These length scales
show that the flow is organized into layers that are vertically decorrelated, resulting
in the well-known ‘pancake-shaped’ large-scale vortices. Indeed, the action of stable
stratification inhibits almost completely the growth of the vertical length scales, as
expected, while horizontal length scales continue to grow. The growth rate of the
latter scales is close to the isotropic three-dimensional growth rate and, therefore, to
the two-dimensional rate as well so that no conclusion about the flow dynamics can
be inferred from this scale behaviour. By contrast, simple scaling arguments show
that the vertical scale is set by the shear induced by the quasi-horizontal vortices
and by buoyancy. We checked that the Froude number thus defined indeed remains
of order one throughout the flow evolution, from the time the smallest scales feel
buoyancy. This result matches the theoretical predictions of Billant & Chomaz (2001)
for an inviscid fluid.

These processes accompany the concentration of energy towards vertical
wavevectors in the two-point statistical spectra, demonstrating the duality between
the physical space concept of ‘collapse-layering’ and the spectral space one, of
‘directional dependence’. We also note that vertical correlation lengths of vertical
velocity components oscillate with large amplitudes, an indication of the strong
dynamical response of the flow under the action of internal gravity waves.

The predictions of the statistical model for large-scale anisotropy are in agreement
with DNS results, starting from the u/w ratio, where the difference with DNS is
small, up to its perfect ability to predict the damping of the vertical length scales
while retaining the growth of the horizontal one. The only trifling defect, expected
from our previous work on the heat flux though, lies in too large an amplitude of
oscillation predicted by EDQNM2, a feature that we also find here in the vertical
correlation length for the vertical velocity component. Improvement has to be sought
in a modified treatment for the phase of the oscillating quantity Φ2 −Φ3 + IΨR (see
(2.14)).

The small-scale anisotropy has been characterized in physical space through a
detailed examination of the velocity gradients. The statistical model predictions are
in good agreement with DNS results, in all stages of the decay, from the initially
highly turbulent to the final weak turbulent stage. The velocity gradients generate
kinetic energy dissipation rate and we have compared several approximations for
the dissipation rate of kinetic energy. We found that an isotropic formulation is not
valid in our simulations, implying that knowledge of one of the velocity gradients
in the flow does not allow one to access the dissipation rate through an isotropic
approximation. The use of vertical gradients of the horizontal velocity component
leads to an over-estimation of the dissipation, while horizontal gradients of this same
component under-estimate it. As long as the axisymmetry of the flow is satisfied, a
combination of these two gradients is enough to obtain a better model for dissipation.

With the help of the accurate characterization of small-scale anisotropy in the
computed stably stratified turbulence, we have analysed the mixing properties of
the flow. The mixing efficiency remains of order 0.5 for two Brunt–Väisälä periods
or so and the subsequent behaviour depends on the diffusivity: if it is too high,
the diffusivity provides a strong contribution to the mixing efficiency, which remains
close to the 0.5 value; if small, mixing becomes controlled by the major process
at small scales, which is re-laminarization. The mixing efficiency steadily decreases
in this case. Using three gradients of temperature and velocity only, we propose a
simple expression for mixing efficiency, which may be useful for experimentalists.
In agreement with laboratory experiments, we find that the Cox number displays a
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unique dependence after 0.6 Brunt–Väisälä period, when plotted as a function of time
normalized by this period, and behaves linearly with the parameter ǫ/νN2.

Regarding spectra of two-point velocity component correlations, good qualitative
agreement between EDQNM2 predictions and DNS results is obtained when angular-
dependent spectra are considered. These spectra have been shown to contain two types
of anisotropy, namely a directional dependence upon the orientation of the wavevector
to the vertical, and a polarization anisotropy that accounts for a difference between the
two Craya–Herring modes, that in turn translates, in stably stratified turbulence, into
different energy levels between the horizontal vortex motion and the wave motion.
The directivity of the spectra is very weak in the most energetic scales, the largest
ones, whereas it is largest in the intermediate subrange (though not as large as in
DNS), and decreasing in the viscous subrange. However, a noticeable directional
anisotropy is still present in the dissipative scales, down to the smallest. Consequently,
we expect that predictions from large-eddy simulations of stably stratified turbulence
should be improved by means of a non-isotropic formulation of the subgrid-scale
models. To our knowledge, spectral models for eddy viscosity are usually based on
estimates of the dissipation proportional to

√
E(kc)/kc (though more refined models

have been proposed, see Lesieur & Metais 1996 for a review). Looking at the spectra
presented in § 8.1, it is clear that angular-dependent spectra should be employed
in the estimation of the dissipation at corresponding angles. Moreover, polarization
anisotropy (§ 8.2), should be reflected by separate estimates for the vortex and wave
modes when their spectra behave differently at the small scales. Such considerations
can be important in predicting the dynamics of the atmospheric boundary layer for
instance by large-eddy simulations.

This work benefited from computer time allocated by IDRIS run by the French
CNRS. We also wish to thank Claude Cambon for many enlightening remarks and
Olivier Praud for useful discussions.

Appendix A. Spectral formalism in the frame of linear eigenmodes

A.1. Craya–Herring local frame of reference

Note first that the following decomposition of the velocity field presented in physical
space is slightly different from that in Part 1, in that it matches more closely the
Fourier space decomposition (see e.g. Cambon 2001 for comparison of various such
decompositions, including the poloidal/toroidal one by Thual 1992). For completeness,
we also introduce a horizontal mean flow in both physical and spectral space
decompositions, which was omitted in Part 1.

Let n represent the vertical upward unit vector, ∇h = (∂/∂x, ∂/∂y, 0) the gradient
operator in the horizontal plane and kh = (k1, k2) the projection of the wavevector
onto the horizontal plane. The velocity field can be split as, respectively in physical
and spectral space,

u = ∇× ψ n + ∇× ∇× ξ n + Um(z),

û = φ̂1 e1 + φ̂2 e2 + Û(kh = 0, k3 6= 0).

}
(A 1)

In physical space, two scalar functions are introduced, namely ψ and ξ . The first
term can be identified as the horizontal motion associated with the vertical vorticity
in the flow. The second term contains the vertical velocity of the flow. The third term
is a horizontal mean flow, which may have a vertical variability. In stably stratified
homogeneous turbulence, this mean flow results from the internal gravity wave field,
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either from the finite amplitude of the wave field – much like the Stokes drift for
surface waves – or from dissipative effects associated with the waves (e.g. McIntyre
& Norton 1990). Here the waves are generated by a turbulent field with randomly
distributed wavevectors, so that the resulting mean flow should locally vanish or,
at least, be of weak energy content compared to the total kinetic energy of the
flow. This property is expressed in the axisymmetry, i.e. the statistical isotropy about
the vertical axis assumed in – and inherent to – the statistical EDQNM2 model. It
should be noted that, in a direct numerical simulation, a mean flow may result from
geometrical confinement: if energy is injected at a scale close to the domain size,
inverse transfers of energy toward scales larger than the domain size will yield a
horizontal mean flow. As discussed in the first part of this work, the domain size has
been chosen large enough, with respect to the scale at which energy is injected, so
that the storage of energy resulting from this confinement effect remains insignificant
for the 6 Brunt–Väisälä periods over which the flow analysis is conducted.

It is important to stress that decomposition (A 1) is a mathematical one. It relates
exactly to separately identified physical items (namely waves and a horizontal vortex),
in the limit of zero Froude number only (that is, when the nonlinear time scale is
infinitely small relative to N−1), although the corresponding physical meaning is still
of great interest in the fully nonlinear context. In the very small Froude number
limit, the first term of the decomposition becomes a good approximation of the non-
propagating vortex part (also referred to as the vortical part, in the literature) and
the second term represents the velocity field of the internal waves. When this limit
is not reached, the first two terms of the decomposition are normally contributed by
a wave and a vortex part. Again, we shall see that the decomposition can actually
be given a physical meaning even if this limit is not reached, as soon as the Froude
number becomes smaller than one.

Equivalently, in spectral space, the decomposition becomes a geometrical one, and
the fluctuating velocity vector is split into three modes, which we denote φ̂1(k, t),

φ̂2(k, t) and Û (kh = 0, kz 6= 0). The first two modes are obtained by using the
components of the spectral fluctuating velocity in the Craya–Herring frame (Craya
1958; Herring 1974), which is local to the wavevector k. The corresponding unit
vectors are

e1(k) = (k × n)/|k × n| , e2(k) = (k × e1)/|k × e1| , e3(k) = k/|k|. (A 2)

The first one supports the non-propagating vortex mode of velocity fluctuations,
and the second one accounts for the wave part. Note that these vectors are not
defined when k is parallel to n, the associated motion being accounted for by the
horizontal mean flow. It is straightforward to show that the φ̂1 and φ̂2 components
are related to Fourier transforms of the scalar functions ψ and ξ by φ̂1 = I |kh| ψ̂

and φ̂2 = −|k| |kh| ξ̂ .
Because of statistical isotropy around the vertical axis implicitly assumed in this

description, two-point statistics for φ̂1 and φ̂2 do not depend upon the azimuthal
angle of k.

A.2. Formulation using the total energy variable

As a way of simplifying the algebra of the four-dimensional system of Boussinesq
equations, we have reduced the system in spectral space to a three-dimensional one
by using the divergenceless property of the velocity field. The algebra can be further
unified by re-writing the system of equations in terms of a vector variable v̂ that
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combines the fluctuating velocity components and the temperature; v̂ is such that its
density spectrum gives the total energy in the flow, as the sum of the kinetic and
potential energies:

v̂∗i v̂i/2 = û∗i ûi/2 + T̂ ∗T̂ /(2N2)

(Cambon 1989; Godeferd & Cambon 1994), by means of a dynamical scaling of
temperature by the factor βg/N . The new vector variable is therefore

v̂(k, t) = φ̂1(k, t)e1(k) + φ̂2(k, t)e2(k) + Û (kh = 0, k3 6= 0) + φ̂3(k, t)e3(k), (A 3)

where φ̂3 = (I/N )T̂ . The equation for v̂ simply becomes
[

∂

∂t
+ νk2

]
v̂(k, t) + L(k)v̂(k, t) =

∫

k+ p+q=0

(M(k, p, q)v̂(q, t)) v̂( p, t) d3 p, (A 4)

where the linear operator L contains the explicit effect of stratification, as a coupling
between the components of v̂, and the right-hand side accounts for the nonlinear
interaction with coefficients in the third-order tensor M, such that

Lij (k) = IN

[
Pi3(k)

kj

k
+ Pj3(k)

ki

k

]
,

Mipq(k, p, q) = −IklPlp( p)

[
Pin(k)Pnq(q) +

kiqq

kq

]
.





(A 5)

It is important to stress that equation (A 4) has the same shape as the classical
spectral Navier–Stokes equations for isotropic turbulence, so that the procedure of
constructing a statistical two-point model can be formally performed in the same
way, starting from (A 4), as for the classical isotropic case (see Part 1). Of course,
in the following, when deriving the EDQNM2 model, we must bear in mind that
one of the components of v̂ is related to temperature and not velocity, so that the
phenomenological arguments for the closure should be different.

Appendix B. The EDQNM2 model for stratified turbulence

As previously mentioned, equation (2.11) is an unclosed equation. Indeed, the energy
transfer terms T, that redistribute energy among wavevector space, and allow for net
energy exchange between wave kinetic, vortex kinetic and potential energies, are
expressed in terms of the fourth-order correlation spectra. These are usually modelled
as a function of the components of Q through a quasi-Gaussian hypothesis, allowing
one to transform (2.11) into an implicitly closed equation for the components of Q.
Several two-point statistical models have been used for solving the closure problem
and the EDQNM model, useful for its tractability, will be considered here. This model
has been developed by several authors in the past for isotropic turbulence (see e.g.
Orszag 1970). It is still the object of active development within an anisotropic context.
In the case of rotating (Cambon et al. 1997) as well as stratified flows, the specificity
of this so-called EDQNM2 model relies on its including the linear operator in the
triple correlations of velocity. We shall not describe again the general principles of
EDQNM modelling, nor the way it has been extended to the stably stratified case
to take into account the dynamics of internal gravity wave field, and its interaction
with the turbulent field. The reader can refer to Part 1 for a list of references and a
discussion of the merits of various two-dimensional and three-dimensional modelling
endeavours.
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We only focus here on two specific features of the anisotropic EDQNM model.
First, in the linear limit, the model provides exact solutions to the linearized Navier–
Stokes equations, and the triadic interaction timescale – to take into account the
wave or vortex nature of each of the modes in the triad – appears naturally in our
formulation, as a modification of the isotropic one

τkpq = ν(k2 + p2 + q2) + µ(k) + µ(p) + µ(q) (B 1)

to account for the dispersion relation of the waves (µ(k) is defined by equation (B 3)
below).

We use the Green’s function solution as an alternative way of writing the unsolved
system of equations, so that the linear operator Λ is implicitly solved. By this
procedure, the modelled nonlinear transfer term in equation (2.11), as an integral
over all possible triadic energy transfers, accounts directly for the time scale 1/ωε of
each mode of the triad involved (the ε can be one of 0, −1, 1). The frequencies are
ω
±1
k = ±N sin θk for a wave mode of wavevector k, and ω0

k = 0 for a vortex one.
Hence, τkpq is replaced, in the anisotropic model, by

τ εε′ε′′
kpq =

[
τ−1
kpq − IN(ε sin θk + ε′ sin θp + ε′′ sin θq)

]−1
. (B 2)

Note that the latter sum of three pulsations, when zero, removes all explicit effect
of N in the nonlinear time scale, a condition which is known as ‘resonance’. The
resonance condition is naturally satisfied for interactions between three vortex modes.
Therefore, when N becomes very large, only off-resonant triads (necessarily among
wave modes) act over a much smaller time scale. It follows that, in the EDQNM2

model, energy transfers are controlled either by vortex modes or by resonant triads
among waves (possibly involving one vortex mode, see Lelong & Riley 1991).

This triadic time scale arises naturally from the eigenmodes of the corresponding
linear system of equations, with no extra assumption other than that of the original
isotropic model. Thus this method is general enough to be applicable to a wide range
of external body forces, that come into play in the Navier–Stokes equations through
a linear term.

A second important parameter of the EDQNM model is an ad hoc inverse time
scale

µ(k) = 0.366

∫ k

0

p2E(p) dp (B 3)

introduced for taking into account the departure of the actual velocity distribution
from an exact Gaussian one. The multiplicative constant in (B 3) comes from the
tuning of the isotropic EDQNM model for recovering the Kolmogorov constant,
but has remained unchanged ever since the first time it was set (André & Lesieur
1977). Herring & Kraichnan (1971) and Orszag (1970) showed that 1/µ(k) can be
interpreted as a decorrelation time scale of a vortex structure of size k. The crux in
anisotropic EDQNM2 modelling is to choose this decorrelation time scale wisely. In
the present model, we have decided to keep the definition of µ unchanged with respect
to the isotropic model, though the physical argument underlying (B 3) is not directly
applicable to internal waves or to the scalar (temperature) field. We have nevertheless
demonstrated that this straightforward way provides an EDQNM2 model for stably
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stratified turbulence which agrees very well with DNS computations (reported in
Part 1).
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