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PHYSICS OF FLUIDS VOLUME 14, NUMBER 6 JUNE 2002

On transport across a barotropic shear flow by breaking
inertia-gravity waves

C. Staquet® and G. Huerre
LEGI, B.P. 53, 38041 Grenoble Cedex 9, France

(Received 22 January 2001; accepted 14 March 2002; published 6 May 2002

We investigate the interaction of an inertia-gravity wave packet with a barotropic dynamical barrier,
by means of three-dimensional direct numerical simulations of the Boussinesq equations in a
rotating reference frame. A simple model is used for the barrier, namely a barotropic shear layer with
a horizontal shear. We show that the increase of the intrinsic frequ@nafythe wave packet by
Doppler shifting may result in the breaking of the wave packet, in the neighborhood of a trapping
plane where)=N (N is the Brunt—Vasda frequency of the fluid and is constant in the present
study). The breaking process triggers a turbulent diffusive transport of mass and momentum across
the barrier, with a turbulent Prandtl number of order 1.2802 American Institute of Physics.
[DOI: 10.1063/1.1476303

I. INTRODUCTION to the vertical propagation of internal gravity waves in a
horizontal wind with a vertical shear, a topic extensively
Dynamical barriers are ubiquitous large-scale features igtudied within an atmospheric contegstarting with the
geophysical flows. Fronts of temperature or the edges of volyork of Brethertorh and Booker and Brethertdhsee Baik
tices, such as meddies in the ocean or the polar vortex in the: al® for recent developmentThe main results of the latter
stratosphere, are examples of dynamical barriers. They aigorks are as follows. When an internal gravity wave propa-
characterized by a strong local gradient of temperatfoie  gates upwards along a vertically sheared horizontal wind
fronts) or of potential vorticity(for vortex edges These bar-  \yhose velocity increases with height, the wave may be

riers, as they are entitled, are supposedly impermeable t9,,564 near a level at which its horizontal phase speed

transport by quasi-two-dimensional turbulence but this iM+yp5iches the wind velocity. This is the so-called critical level.
permeability has recently been put into questi@mg.,

1 - ) - As the wave propagates toward that level, its intrinsic fre-
Mclintyre’) from observational evidence. The existence of

_aquencyQ (i.e., the frequency measured by an observer mov-

transport of material across a dynamical barrier is a crumailng with the wind decreases by Doppler shifting and reaches

Issue in geophysical fluid dyqamics because, for instance,. cg minimum value at this levdthis value is zero if the Cori-
the possible release of chemical reactants or pollutants origkis force is ignorel Hence, the wave cannot propagate fur-

nally trapped or isolated by th? barr!er. . ther up. Using the WKB approximation, Bretherfofirst
In the present paper, we investigate the possible trans- .

) . X . : showed that, for a wave packet, the vertical component of

port across a dynamical barrier by inertia-gravity waves, fol-

lowi . . the wave vector increases @s?, where is the distance of
owing a conjecture proposed by Mcintyraithin the con- h ket f th itical leveélocated atz=0)
text of the polar vortex. We shall make use of a very € wave packet from the critical levélocated atzn=

simplified model for the barrier and for the waves so that OUIalong the vertical direction and the vertical component of the

work must be considered as a study of the fundamentals OUP Velocity decreases ag’ [Fig. 1()]. However, the

the wave-barrier interaction, motivated by the geophysicalVKB approximation also predicts that thfrllgvave ing;Jced
as 7—

considerations discussed above. horizontal velocityu’ goes to infinity(u’ ~ 7
The simple model we consider consists in a barotropic@nd the critical level is never reachéthe time required to
current, that is, a vertically uniform horizontal flow with a reach that level scales likg™*). This unphysical behavior is
horizontal shear, toward which an inertia-gravity wavedue to the WKB approximation to becoming invalid at the
packet propagates, the fluid being uniformly stably stratifieceritical level. Using the linear Boussinesq approximation,
(the Brunt—Vasda frequencyN is therefore constantThe — Wwithout WKB approximation, Booker and Bretherfon
interaction of internal gravity waves with such a current hasshowed that the wave energy actually decays, being totally
been studied in the literature within an oceanic context, usin@bsorbed into the mean flofwhich is therefore accelerated
a linear analysfsand a Wentzel—Kramers—BrillouitWKB) at the critical level. Viscous and thermal dissipation are ne-
approximatiort~® Our study will thus rely on these theoret- glected in this approach. As pointed out by Mcinty?déhe
ical works. horizontal phase speed of the wave paaketiecays faster
These works display strong analogies with those relatethan the wave induced horizontal velocity ast— +« so
that, in spite of this absorption, the ratid/c, , which is one
aAuthor to whom correspondence should be addressed. Electronic mailnéasure of the wave steepness, increases. As a consequence,
chantal.staquet@hmg.inpg.fr the linear theory becomes invalid for large time and breaking
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FIG. 1. Interaction of an internal gravity wave of absolute frequengyand wave vectok with a horizontal rowafx with either a vertical shedg) or a
horizontal sheafb), in a stably stratified fluid with constant Brunt=i¢da frequencyN (f=0). The shear is taken constant for simplicity. (m, the

interaction process is two dimensional and occurs in the veriﬁ;g‘b (plane. A critical level is located at=z, at which the intrinsic frequency of the wave
Q) vanishes. As the critical layer is approacheg— 0, cq,— Uy, , k, remains constant whilk, increases without limit. Irib), the interaction process is three

dimensional. It is displayed in a horizontal,y) pIane;th and 6gh, respectively, denote the restriction to this plane of the wave vector and of the intrinsic
group velocity of the wave. A trapping plane is located aty, , at which(} is equal toN. As the trapping plane is approacheg,— 0, cy,— Uy, , k, remains
constant whilek, increases without limit.

may occur before the critical level is reached. Using threeeritical level situation. The source of energy is of course
dimensional numerical simulations, Winters and D’Ad&ro provided by the current. As pointed out by Baduénal,®
showed that the occurrence of breaking depends upon thee wave packet slows down as it propagates into the current
initial steepness of the wave packet. For a large enough inipecause the intrinsic group velocity goes to zemhich

tial steepness, the wave does break. The details of the breakrovides an additional contribution to the local increase of
ing process have been investigated byrwack® and Fritts  the wave energy. As a result, the wave may break before the
et al:*® breaking first occurs through a convective instability. trapping plane location. This situation, despite its close anal-
This result is consistent with the numerical finding by LelongOgy to the critical level problem, has never been addressed

and Dunkertoff' that a low frequency internal gravity wave numerically and the purpose of the present paper is to inves-

with a high vertical shear and a strong steepness, which are : :
i : . ... _tigate whether breaking may indeed occur as a result of the
the kinematic properties of a wave packet near a crltlca}

level, breaks through convective instability. The behavior ofnteraction with the current and to analyze the resulting

. . 5
internal gravity waves near a critical level has also been infransport properties across that current. Badetiml.” also

vestigated using laboratory experiments by Th&tpend show that horizontal inhomogeneities of density, namely
Koop and McGe¥ (see Staquet and Somméfidor a re-  fronts, result in the same trapping process. The effect of the
view). Coriolis force does not fundamentally change these
When the horizontal mean flow displays a horizontalconclusions.

shear(such as an oceanic currg@ind increases as the wave ~ When the velocity of the horizontal flow increases as the
propagates into the current, a trapping process may also ograve propagates into that flow, reflection occurs when the
cur when the wave propagates against the cufféigt 1(b)].  wave propagateagainstthe flow in the vertical shear case
Indeed, in this case, the wave intrinsic frequefitincreases (e.g., a wind andalongthe flow in the horizontal shear case
by Doppler shifting. If there exists a location in the flow (e.g., a current This corresponds to an increase of the wave
where the intrinsic frequency reaches the Bruntisda fre-  intrinsic frequency in the former cadep to N) and to a
quencyN, the wave cannot propagate beyond that locationyecrease in the latter caggown to a minimum frequengy
(sinceQb=N for internal gravity waves, as we recall it in the Thjs reflection situation will not be considered heisee
next section WhenN is constant, this location is a vertical g,therlan®°for a theoretical and numerical study of inter-

plar!e, hergafter referred to as a trapping plane. ’?‘dje nal gravity wave packets reflecting in a vertically sheared
again the distance of a wave packet from the trapping plang i ontal flow

along the direction of inhomogeneity, which is now horizon- In the present paper, the interaction of an inertia-gravity

tal. The WKB approximation dictates that, agoes to zero, wave packet with a parallel shear flow in a horizontal plane

the component of the wave vector along that direction in-(th barriey is i tinated using th di ional direct
creases again without bound, as*?, and the group veloc- € barriey 1S nvestigated using three-dimensional direc

ity decreases ag®? (see Ref. & Like for the critical level numerical simulations of the Bou;sinesq equations in a ro-

situation, the wave energy increases without bounotat'”g referenceT frame. An equation fqr the transport of a

(~ 7% and the trapping plane is never reached, due to th@assive scalar is coupled to the equations so as to quantify
invalidity of the WKB approximation at that plane. Hints the possible resulting transport process across the barrier. In
about the actual wave behavior near the trapping plane maiji€ next section, we specify the physical and numerical mod-

be obtained from the linear analysis about the mean she®&ls we use for the study of the interaction. Section Ill reports

state performed by Ivanov and Morozowhe numerical —on the breaking process and the resulting transport properties
resolution of the eigenvalue problem thus obtained yieldsare analyzed in Sec. IV. Conclusions are drawn in the final

that the wave amplitude may increase in this case, unlike thsection.
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Il. A SIMPLIFIED MODEL OF THE WAVE-BARRIER 7 V
INTERACTION (_)f U, |
A. Physical model i é i
We consider a stably stratified fluid medium in hydro- gl H o
static equilibrium, within a rotating frame of reference with y
Coriolis frequencyf. Let (x,y,z) be a coordinate system in T’fcg
this reference frame, withk pointing upwards along the ro- o
tation axisX=(x,y,z) is thus the Eulerian position of a fluid
particle in this frame. The unit vectors along the axis of v ]
coordinates are denoted,(iy,i,). Let po+ pin(z) be the A Y1 J
density field of the hydrostatic equilibrium state, wheig Wa?,e shear
<py for any z and p, is a constant reference density. The packet layer
linear density profilep;in(z) sets the Brunt-Mada fre- FIG. 2. Sketch of the initial condition of the simulations: an inertia-gravity
quency wave packet is introduced &0 about they=Yy, plane and propagates in
dox a horizontal shear layer with no vertical dependency centered aboyt the
N2= — 9 0piin @ plane.
po dz’

whereg is the acceleration of graviti is therefore constant where kh:m is the horizontal wave number arid

in the present study. i X ST
The barrier is a horizontal shear flow, whose shear is also_|k|' Relation(4) |mpI|.es thatfstN. The group velpc-
horizontal ity of the wave packet in the rotating reference fraftiat is,

the absolute group velocitys ¢4+ Uy, wherec,=aQ/dk is
Up(y)=Up(Y)1y. (2)  the intrinsic group velocitye.qg., Lighthill?! p. 327. In the
. . : L . ... present case where the shear flow is directed along the hori-
This f|0V\i IS in _geostroph|c equilibrium since _the Coriolis zontal x direction, the group velocity is expressed by
force —f1,/\Uy, is balanced by a pressure gradient along the 5/ gk, + U, , 9/ 3k, , 9/ k). We also recall that the en-
y direction. The barrier is barotropic for simplicity. Indeed, grgy of an internal wave packet is transported at the group

any change otJ,, along the vertical direction would yield a ye|ocity along trajectories referred to as rays; a ray path is
horizontal inhomogeneity of the density field, according 0ius defined b)d)?/dt=ég+ljb.

the thermal wind balance.g., Gill?° p. 217. Hence, both a
density front and a shear flow would be present in the flow_
and r_efract the wave. In the pr_esent paper, we _focus 0 relocity and density fields induced by the wave packet are
attention about a single mechanism for the refraction of th hus given by(e.g., OlberS Gill, 2% p. 263

wave, so that a barotropic shear flow is considered. The use = T

The energy of the wave packet is confined aboutythe
yo Vertical plane(with yy<y;) at initial time. The initial

of a shear flow represents either a horizontal current or the . —0)=Ae~ (Yo 2aikA| _ k, K+ ik i
edge of a vortex whose horizontal extent is much larger than U'(x,1=0)=Ae € Eﬁ xt] yQ )’
the horizontal wavelength of the wave. Two different shear
flows have been considered, a shear layer and a plane jet; the B ﬁ( ko—ik i) 1} 5)
same qualitative behavior, with respect to the breaking and K2\ Q)]
transport properties, has been obtained for either flow and N2
_re_s_ults for the shegr layer will be presented in thls_ paper. The P (F,t=0)=i —Ww'(%,t=0). (6)
initial velocity profile we chose for the latter flow is Q
vy, A is the initial amplitude of the vertical velocity component
Ub(y)zuotanl‘( ) (3 w’. This simple physical model of the wave-barrier interac-

tion is sketched in Fig. 2.

where a and U, denote, respectively, half theso-called The wave packet being introduced in a moving fl(tttk
vorticity thickness of the shear layer and half the velocityshear laye); its frequencyw, in the rotating frame of refer-
difference across the shear layer. Note that this shear flow isnce (the absolute frequengydiffers from its intrinsic fre-
anticyclonic: the vertical component of its vorticity quency.wq is defined by the Doppler relation
—dU,/dy(<0) is of opposite sign to the Coriolis frequency I

£ wo=0+k-Uy,=Q+k,Uy,. )

An inertia-gravity wave packet of the main wave vector Because the background shear flow is not homogeneous
Ez(kx,ky,kz) is introduced as the initial condition. The along they direction, the properties of the wave packet
wave vectork sets the intrinsic frequenc@ of the wave change as it propagates into this flow. Those changes are
packet via the dispersion relation easily predicted if the wavelength along thiedirection is
much smaller than the scale over whidfj varies. When this
assumption holds, a WKB approximation can be used which
predicts that, at lowest orders, the dispersion relation remains

k, 2
?> , (4)

ki) 2
02=N?| 7| +12
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locally valid but the wave is refracted along rays by thecustomary, we scalp as an acceleration using the variable
spatial variability of the background flowA very clear in-  p’= (g/po) p in order forN to come into play in the equa-
troduction to the WKB approximation for internal gravity tions of motion. These equations thus d@weaitten per unit
waves is provided by Olber$.SinceU, depends only upon mas$

y, the k, and k, components of the wave packet do not JG

change along a ray. By contrak{, changes according to a—l:+(ﬁ- V)i=—-VP—p’ rz—frz/\m vV20Q, (12
dk du
y b
— = ko ) ap’ v
at . *dy _; (U V)p =N+ 5V, (13

whered/dt=d/dt+(Cq+ Ub)~V denotes the rate of change

along a ray in the rotating reference frame. EquatiBn § - _ VYo

i ! . 5 +(0.V)S V<S, (14
implies thatk, increases along the ray whég is negative, at Pe

sincedU,/dy is positive from definition(3). (This choice V. G=0 (15)
for the sign ofk, will be made in the next sectionNote that ' '

the increase ok, as the wave propagates toward the barrierin Eq. (12), the termP stands for the dynamical pressure
implies that the wavelength of the wave packet along thigdivided bypg andv is the kinematic viscosity. In Eq13), Pr
direction becomes increasingly smaller with respect to thes the Prandtl numbei.e., »/Pr defines the molecular diffu-
characteristic scale afU,/dy, which enforces the validity sivity for density changgsEquation(14) describes the evo-
of the WKB approximation(but the latter approximation lution of the passive scal@(X,t); the equation involves the
fails in the immediate vicinity of the trapping plane, as al- Peclet number Pe defined such thdPe is the molecular
ready noted in the IntroductipnSinceU,, does not depend diffusivity of the passive scalar.

upon time, the absolute frequenay, stays constant along a The initial condition is provided by the physical model
ray (dwo/dt=0). Hence, using the Doppler relatiér), the  described in Sec. Il A: &@t=0, an inertia-gravity wave packet
intrinsic frequency changes along a ray according to localized about the/=y, plane propagates in a horizontal
shear layer centered about the y; plane. Periodic bound-
@ =_—k.c % (9) ary conditions are imposed along tkeandz directions and
dt Y dy free slip ones are used along the inhomogengodisection.

Equations(12)—(15) are solved numerically in a rectan-

wherecg, is they component of the intrinsic group velocity. ) N
Since the wave packet propagates toward the bamgris gular box. The spatial derivatives are computed by a pseu-
?ospectral method in all three directions. Along thdirec-

positive. Thus, the intrinsic frequency increases along a ray L i .
ion, periodicity is recovered by using a classical

whenk, is negative. Like(), the wave energ¥ is not con- . > . .
served along a rayit would be if the fluid were at rest or techniqué’ symmetry properties of the fields are assu_me_d
uniformly translating but the wave actio=E/Q is con- about they boun_dar_les so that the fields become periodic
served instead of the enefgy when the domain is doubled by symmetry about these
boundaries. Time advancement is performed by a third order
Adams—Bashforth scheme. Note that no subgrid scale mod-
elling is used: the terms responsible for the diffusion of mo-
mentum, density, and passive scadleV2d, (v/Pr)V2p’ and

for a nondissipative and nondiffusive medium. ~ (vIPe)V?S, respectively involve a constant molecular vis-
As noted in the Introduction, the trapping location is acosity », whose value is specified below.

vertical y=Yy, plane obtained by settin@ to N in the Dop-
pler relation(7). Using wo=Q(yo) + kxUp(Yo), One gets an . physical and numerical parameters of the runs
expression for the location of the trapping plane as a function
of the initial parameters of the wave

IA o
—oHV-[(Egt Up)AI=0, (10)

For simplicity, the physical parameteas(half the vor-
ticity thickness of the shear layeA (the initial amplitude of
Q(yg)—N the vertical velocity induced by the wavendN are set to 1,
Un(yo = k—x+ Ub(Yo)- 1D 0.1 and 1, respectively. The other parameters of the problem
(k andy, for the wave;U, andy, for the barrier;f, v, Pr,
and Pe¢ as well as the size of the computational domain are
dictated by two sets of constraints. A first set consists of
physical constraintdi) the horizontal shear layer should re-
main stable against the Kelvin—Helmholtz instability during
the propagation and evolution of the wav#) there should
The fluid motions are described by the Navier—Stokesxist a trapping plane somewhere in the fldi;) the hori-
equations in the Boussinesq approximation within the rotatzontal wavelength of the wave should be larger, by a factor
ing reference frame introduced in the preceding section. Ledf 10 or so, than the thickness of the shear flohis ratio is
d=(u,v,w) be the components of the velocity field in this dictated by geophysical applicatipiThe second set consists
reference frame anp(x,y,z,t), the deviation of the density of numerical constraints(iv) the trapping plane should be
field from the hydrostatic density fieldy+ p;in(2). As is  located within the computational domairfy) the wave

In the present case whetg, is monotonically varying,
y; is uniquely defined by expressiqdl). This expression
shows thaty; can be located anywhere along thexis.

B. Mathematical and numerical models
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TABLE |. Description of the runs. The resolution along they, andz directions, respectively, is indicated

is half the velocity difference across the shear layethe molecular viscosity, and Pe is the Peclet number
associated with the passive scalgris the position of the trapping plane, defined by EHl) andys is the
position along they axis of the maximum concentration of the passive sdalafined by Eq(22)]. The other
parameters of the runs are described in Sec. Il C.

Run Resolution Ug v Pe Vi Ys
la (256,257,128 1 104 10 0.55 1
1b (128,129,64 1 104 10 0.55 1

2 (256,257,128 1 104 1 0.55 1

3 (256,257,128 1 108 10 0.55 1
4a (256,257,128 1 104 10 0.55 1.65
4b (128,129,64 1 104 10 0.55 1.65
5 (128,129,64 0.5 104 10 1.15 1

6 (128,129,64 2 104 10 0.12 1

7 (128,129,64 3 104 10 -0.107 -0.107
8 (128,129,64 4 104 10 —-0.26 -0.26

packet should quickly reach the neighborhood of the trapintrinsic properties. Contours of the enstrophyare plotted
ping plane, in order to save computer tinfg) theN/f ratio  in Fig. 5 at successive times in the samgzj plane to
should not exceed a value of order 10 or so because a vefyystrate the wave-barrier interactiofboth the shear flow

slhouldtr:hen ?_e T"SP'O{_edrk th)“? imposing a hi?ht. rescilhutio& over the numerical domain is displayed versus time in Fig.
along the vertical direction(vii) for a given resolution, the _ . =12 > - .
molecular diffusion coefficients should be high enough for6' Z is defined by 0.K]* where {=V/\i is the vorticity

the smallest scales along the inhomogeneputirection to  1€ld of the flow.

be properly solvedwe recall that the wavelength along the Thg changles in the wave I.<ine'matics described in the
direction decreases as the wave packet propagates toward tp@ceding section are apparent in Fig. 3. As the wave packet
barriep. propagates, the wavelength along thelirection decreases

Table | gives the values chosen in view of these con<{that is,k, increaseswhile the wavelength along the vertical
straints. In all runs, the wave packet is introducedaD  direction remains unchangéthat is,k, is unchanged As a
about locationy,=—2 and the main wave vector i&  consequence, the direction of the phase lines tilts toward the
=(—w/3,7/3,47/3); the barrier is located at;=1 andU, vertical direction. Indeed, a vector perpendicular to the phase
is equal to 1 except in runs 5—8 where it is varied from 0.5 tdines in this plane is K, .k,) (k. being constant in time
4. In all runs,»=10"" (except in run § the Coriolis param-  which tends toward the horizontal directionlgs- + 0. An-
eterf=0.23(so thatN/f=4.35 and Pr=1. The Peclet num-  other feature is that the steepness of the isopycnals increases
ber is equal to 1@except in run 2 The size of the compu- 4 Figs. 3a) to 3(c), the isopycnals being locally vertical
tational domain is .Ly,L;)=(12,12,6). Preliminary in Fig. 3(c). They have overturned in Fig(®, implying that

computguons at resolutiont128,129,64 have been per- the wave packet is prone to breaking. Note that the breaking
formed in order to explore the parameter space. Several com-

putations have next been carried out at the higher resqutioH,roc_eSS_' which may be defined as the gener.at|on of small
of (256,257,128 The interaction between the wave and thediSSiPative scales, has not occurred yet: the isopycnals are
barrier displays the same features from one run to the othéttill continuous lines in Fig. @). Figure 3 also shows that
for a given resolution and the same dynamical properties arde wave packet propagates beyond the theoretical location
recovered when the resolution is increased. Results for ru@f the trapping plangmarked by a straight vertical line in

la are thus presented in the paper and the influence of Fig. 3@]. This point will be further discussed in the next
varying viscosity, Peclet number and shelds,/dy will be  section.

discussed in connection with these results. The generation of small dissipative scales occurs$ at
=30, as displayed in Fig.(4). This event is manifested as a

ll. THE BREAKING PROCESS first peak in the enstrophy cur(€ig. 6). It occurs att=30

A. Overall behavior of the wave packet so that this time will be taken as the breaking time. A turbu-

lent regime next sets in. The turbulent region broadens about

The overall dynamics of the wave packet in a vertical . . . .
(y,2) plane are illustrated in Figs. 3 and 4 through contoursthe trapping plane, through horizontal intrusions of turbulent

at successive times of the total density fielt\?z+p’. Fig-  1uid within the shear flowFigs. 4b) and §c)], and intensi-

ure 3 displays the density field before breaking occurs ané€S[Figs. 4¢) and §d)], up to the time viscous dissipation at
Fig. 4 illustrates the turbulent regime that follows breaking.Small scale overcomes turbulent productiontat58.8, as
The shear flow is not visible in these figures because, havingeen in Fig. 6, the enstrophy has reached a maximum value
no component in they(z) plane, it does not displace the (over space and timeand decays afterward.

isopycnals. All properties of the wave in this plane are thus It should be noted that breaking does not always occur,
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x : === T FIG. 4. Same as Fig. 3 at later timds) t=230; (b) t=37.8; (c) t=58.8.
5_
4
N3 Y increases. The wave packet dissipates without breaking in

the neighborhood of the trapping plane before30.

1 B. Energetics

% = —~ : > : A . Insight ipto thg energetics qf the wave _packet can be
y gained by linearizing the equations of motions about the
(d) shear flow. Let ¢’ +U,v’,w’) be the decomposition of the

FIG. 3. Contours of the total density field N2z+p’ in a vertical §,7)  Vvelocity field intq a fluctuating pad’ _and a mean patd 1y,
plane.(a) t=0; the vertical line marks the theoretical location of the trap- Wwhere the overline denotes a spatial average avand z.

ping plane;(b) t=12; (c) t=24; (d) t=28.8. (Note thaty’ =v andw’=w but the primes will be retained
for these two components, for consistency with) As long
even if there exists a trapping plane in the flow. In run 32 the amplitude of the wave packet remains small with re-
where the viscosity is 10 times larger than in run 1a, thespect toUg, U’ andUT, may be identified with the velocity
phase lines tilt toward the vertical as the wave propagatefield induced by the wave packet and of the horizontal shear
toward that plane but the steepness of the isopycnals hardflow, respectively. The linearized equations for the fluctuat-
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id)

FIG. 5. (Color) Contours of the enstrophy in the same vertioalz] plane
as in Figs. 3 and 4(@) t=0; (b) t=24; (c) t=37.8; (d) t=58.8.

ing kinetic energy component§u’?)/2, (v'?)/2, (w'?)/2)
and available potential energidefined by (p’2)/(2N?),
within a good approximatidi] averaged over the numerical
domain are(per unit mass, ignoring dissipative effects
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FIG. 6. Maximum values of the enstroptZ over the numerical domain
versus timeZ is normalized by its initial maximum value.

1 d(u'?) ,au’ ., du L

E T = W —\u'v d_y +f<u v >; (16)
1 d<v,2> / L;'U, oyt

S—ar \p ¥ —f(u'v’), 17
1 d<W,2> /aW, AYYL

T p ay —(p'w'), (18)

1 d 12
G =) o

d/dt now denotes the Eulerian time derivative gudis the
fluctuating pressure. The terta’v’) is the horizontal Rey-
nolds stress averaged over the numerical domain,
—(u’v’dU/dy) is responsible for energy exchange between
the wave packet and the mean flow aadw’), the buoy-
ancy flux, reversibly transfers vertical kinetic energy into
available potential energy.

In order to track the location of the wave packet as time
evolves, we plot in Fig. (&) the shear of the unperturbed
mean flowdU,/dy at they location, denoteg,,, thex and
z averaged wave kinetic energy is maximum. The shear of
the actual mean flowlU/dy at locationy,, is also displayed
in the figure.y,, itself is drawn as a function of time in Fig.
7(b). Temporal evolutions are displayed up to the time break-
ing occurs. Figure (&) shows that the wave packet enters the
region of strong shear &t=10. The shear of the unperturbed
mean flowdU,/dy(y,,) strongly increases from this time
on, thus the wave packet continues to propagate into the
mean flow. Fromt=20, dU,/dy(y,,) saturates at a value
close to 0.8, just below its value at the trapping pléegual
to 0.819. This means that the propagation of the wave
packet has nearly stopped in the neighborhood of this plane.
This is confirmed by Fig. (b): y,, is nearly constant from
=20 and close to, but smaller thap, (equal to 0.5% The



2000 Phys. Fluids, Vol. 14, No. 6, June 2002 C. Staquet and G. Huerre

d U mean/dy (yW)

dugdy(y,)
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/dy >

mean

—f<wv>, —<u’vdu

FIG. 7. (a) Horizontal shear of the unperturbed shear laye, /dy (solid line) and of the actual mean flodU/dy (dashed lingat they location, denoted

Yw, thex andz averaged wave kinetic energy is maximum versus time. The vald&pfdy at the theoretical trapping plane is indicated by a dashed—dotted
line. (b) Temporal evolution ofy,, . The trapping plane positioy, is indicated with a dashed—dotted lire) Horizontal Reynolds stress of the wave packet
times the Coriolis frequencf{u’v’) (plotted with a minus sign to yield a positive quantitdashed lingand rate of change of the energy of the wave packet

due to energy exchange with the mean flewu'v’ dU/dy) (solid line); both quantities are averaged over the numerical domain and plotted versus time.

shear of the actual mean flashJ/dy(y,,) follows that of the (—u’v’ dU/dy). An estimate of the former term may be
undisturbed mean flow up t6=24. From this time on, obtained, using WKB approximation, from expressidbs
dU/dy(yW) decays. This decay may be due to finite ampli-for u’ andv’ without the Gaussian modulatiame recall
tude effects(such as a self-induced mean flowesulting thatu’ andv’ are normalized byv’). This yields
from the growth of the wave packet energy. The local decay 2 K K

: NN y X
of the actual mean shear results in a decay of the intrinsi¢u’v ') = —k,—— (Q2—2)~s?>— (Q?—f?)
frequency of the wave packpty Eq.(9)], so that the packet 2 " (kn) y
can propagate further down. This is visible in Figb)7 the as ky— +o. (20)

decrease oflU/dy(y,,) att=25 makesy,, reach the trap- Lo o ) _
ping plane. The latter plane is eventually crossed whenU'v’) is thus negative in the present casgbeing negative

dU/dy(yW) further decays at=30. This effect was also (also, ky>01andQ>f).. SincedU/dy varies muc.h slower
noted in Sec. Il A. than u’v’ in the neighborhood of the trapping plane,

The domain averaged horizontal Reynolds stress times (U'v’ dU/dy) may be approximated b—u’v")dU/dy.
the Coriolis frequency(u’v’) is plotted in Fig. 7c) (witha  BecausedU/dy is positive, the latter term is positive: the
minus sign along with the energy exchange term kinetic energy of the wave field is fed by the mean shear
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x10™ of the energy of the wave packet near the trapping plane.
' ' ' ' ' ' ' ' Indeed, the accumulation will lead to a local increase of the
wave energy density but will leave unchanged the volume
averaged energy.

From the breaking timée= 30, the dynamics of the wave
packet change dramaticallfFig. 8): the (u’2) component
suddenly increases and, by the Coriolis force (the) com-
ponent increases as well. Tke’?) component displays the
same behavior, with some delay. Figure 8 shows that the
energy of the mean shear flow appreciably decays during this
turbulent stage: the small scale turbulence is thus sustained
by the mean shear. We found indeed that the correlated
growth of (u’?) and (v'?) gives a strong increase in

—(u’v" dU/dy), which in turn feeds the small scale turbu-

lence (—(u’v' dU/dy) increases by a factor of 100 between
its minimum value att=24 and its maximum value &t
=50). Note that the energy exchange term can no longer be
_ o interpreted as an energy transfer from the mean shear flow to
FIG. 8. Temporal evolution of the volume-averaged fluctuating kinetic en- . - .
ergy (per unit mass(u'2)/2 (bottom solid ling, (v'2)/2 (dashed ling and the wave(since the notion of wave has bgcome meqnm@les;
(w'2)/2 (dotted ling; the volume-averaged potential enexgy 2/(2N?)) is but, because of the clear scale separation that exists during
also shown(dashed—dotted lineThe upper solid line displays the volume this regime, from a large scale shear flow to small scale
averaged kinetic energy of the mean sh@af)/2, divided by a factor 60 to  turbulence. Such a regime is triggered by the breaking pro-
fit the range of the vertical coordinate of the fluctuating components. cess.
When U, is increased, all other parameters being un-
. - _ Do iy changed(dU/dy) increases as well so that the location of
flow. Th's,'s gttested n F|g.(@)’.2—f(_u v')is posmvg and the trapping plane gets closer to the initial position of the
decays with timgrelative to{w’<)), in agreement with the wave packetsee the value of; in the table for runs 6 to)8

estim.ate(ZO) whenk, increasegsincek, is constant anc . As a consequence, breaking occurs earlier than in run la.
remains of order JL As for the energy exchange term, Fig.

7(c) shows that it nearly vanishes at_initigl time because thq:. Instability and breaking
wave is located out of the shear region; it displaysvaak
positive maximum value a@t=10, when the wave packet has ~ The maxima of the components of the fluctuating vortic-
penetrated the strong shear region and stays about constaiyt {’=V/\U’ are plotted versus time in Fig. 9. Fo 30,
up tot=25, implying that the decay of f(u’v’) is partly ~ the main result is the growth at a constant rate of the stream-
made up for by the increase of the shear. The estirf2fle  wise component;, while the other components remain at a
also shows that the extraction of energy from the mean flowearly constant level. The growth ¢f is easily accounted
is reduced by the Coriolis force, owing to th¥—f2 factor.  for by the tilting of the fluid motion toward a vertical plane
The components of the fluctuating kinetic energy and ofwhile the wave numbek, increases, as the packet propa-
the energy of the mean flow are plotted in Fig. 8 along withgates toward the barrier: the dominant velocity gradient is
the available potential energy of the waltke latter curve is  thendw'/dy, which contributes tqand controls £y,. ¢, in
plotted up tot =30 since the notion of wave becomes mean-turn controls the dissipation rate of kinetic energy for
ingless when breaking occurd€Equation(16) shows that the <30: Fig. 6 shows indeed that the maximum valueZof
energy extracted from the mean flow is fed into the compobehaves identically to that df, up to the breaking time.
nent of the wave energy parallel to the mean flow, as physi- As shown from Figs. @) and 4a), the instability
cally expected. This energy is transferred intoh&”) com-  through which the wave breaks is a convective instability
ponent by the Coriolis terrf{u’v’) and into the{w’?) (and  (the term “buoyancy induced” instability, employed by
(v'?) as wel) components by the pressure—velocity correla-Schowalteret al* would actually be more appropriatd his
tion term. As a result{u’?) constantly decreases during the instability results in the formation of vortices of alternate
propagation of the wave toward the barrier. By contrast, thesign, with axis aligned along the direction. These vortices
feeding of the(v'?) component through the Coriolis term are visualized in Fig. 10 by a cross section of the streamwise
results in a nearly constant level of this component up to vorticity in the (y,z) plane. An noted in the Introduction,
=20, despite the progressive orientation of the wave mosuch a convective instability is known to develop from a
tions toward a verticalx,z) plane. As expected, most of the large amplitude wave of low frequency but the result is also
energy gained by the wave packet is fed into vertical movalid when the wave is of high frequenéyee Frittset al®
tions: the vertical kinetic energy component increases by #&or numerical evidence and Benielli and Sommé&tiar ex-
factor of 10 betweern=0 andt=26. Figure 8 also shows perimental evidengeThe breaking process eventually leads
that the total wave energikinetic energy plus available po- to a turbulent flow with all vorticity components having the
tential energyincreases by a factor of 1.8 betwelen0 and  same amplitudéFig. 9).
t=30. This increase cannot be attributed to the accumulation The turbulent regime does not result from a Kelvin—

kinetic energy
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solely made of the wave packet and of the shear layer so that
no background noise has perturbed the shear layer when th&s. 11. (Colon Contours of the vertical vorticity componetit= (V/\G)
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the wave packet may play the role of a perturbation of finite [ ' ' ' ' '
amplitude for the shear layer. Two factors actually stabilize
the layer against this two-dimensional instability. The first
one is that the streamwise extent of the shear layer has bee osf
chosen to be a little lowdin view of the constraints listed in

Sec. 11Q than the most amplified wavelength, in order to
lower the growth rate of the Kelvin—Helmholtz instability;
this yieldsL,=12 instead oL ,=14.5(for a hyperbolic tan-  wos}
gent velocity profile, see Michalk®. The second factor, 04k
which is much more efficient at stabilizing the shear flow
against a Kelvin—Helmholtz instability, stems from the small
scale turbulence itself: the velocity profile of the shear layer oz}
is broadened by the turbulence through momentum transport 441
as we show in the next section. The layer thicknésg 2
increases by a factor of 2 so that the rdtig/ 6 is greatly o . . .
reduced. - - 2 y 2 4 ®

By contrast, the shear layer is subjected tdtlree-

dimensional inertial instability, which is triggered by the FIG. 12. fDiS]}fib;J_tion of the passive Scall%r I_averaged Ovct;f;ndz asda
small scale urbulence stemming from the breaking of thd’{eer oy o fe Sesceshe tmes sl e e s anc
wave packet. This instability next enhances this small scale
turbulence. Indeed, a sufficient condition for a plane parallel

shear flow to become locally unstable through an inertiakb5| domain ofw’ (not shown and found that maxw’

instability is’ =0.32 at the same time. This yieldg=0.09, which is in
du good agreement with the value obtained from Fig. 11, equal
f<f_d_yb)<0’ (21 to =0.12.

which is fully satisfied with the present set of parametergv' TRANSPORT PROPERTIES

(f=0.23 anddU,,/dy=0.8 in the neighborhood of the trap- A passive scalar located on the opposite side of the trap-
ping plang. Preliminary calculations with an inertially stable ping plane with respect to the wave packet is added to the
shear layefobtained by reversing the sign dU,/dy, and initial condition in order to quantify the transport triggered
of k, as well to keep—k,dU,/dy>0) show that the break- by the breaking process. The scalar fi€ldas a Gaussian
ing process is similar but the resulting small scale turbulencelistribution about a vertical plang=y.,

quickly decays because it is no longer sustained by the mean 2

shear flow?® S(x,y,z,t=0)=Agexp VYs/70)", (22)

The stability of the shear layer with respect to the two-The value ofy, was varied from 0.65 to 1.65 without any
dimensional Kelvin—Helmholtz instability is attested in Fig. apparent change in the behavior of the scalar field as we shall
11, where contours of the vertical vorticity componeft — show it. We thus describe the results for the case1, that
=(V/U)- TZ are displayed at the beginning of the breakingis when the Gaussian distribution is centered about the same
process in a horizontal plane. We found that these contourglue as the vorticity of the undisturbed shear laysy.is
are identical to those of, at the same times, implying that equal to 1.3, in units of the half-thickness of the shear layer
the vertical vorticity is dominated by its fluctuating part. a.

Very small structures of negative and positive sign are vis- The temporal evolution of the scalar distribution aver-
ible. A Kelvin—Helmholtz instability would have led to a aged overx and z is plotted in Fig. 12. The distribution
large scale structure along the streamwise directidorcos remains nearly Gaussian as time elapses. Diffusion starts at a
and Shermat). The small scale structures belong to thedifferent time on the left-hand side than on the right-hand
wave field because they propagate along the streamwise diide so that, at a given time, each side of the distribution was
rection when the vertical plane is moved vertically. Theirfitted by a Gaussian function with a different standard devia-
small scale along thg direction is a manifestation of the tion. These standard deviations are referred toj@ando, ,
decrease of the wave vector component along this directiorespectively, and their average valueaas

as the wave propagates toward the barrier. The scale of a The variances? is plotted as a function of time in Fig.
structure of a given sign along tlyedirection,|, say, may be  13(a), while the right and left variances? and o7 are dis-
approximately predicted by stating thgtis mostly contrib-  played in Figs. 1®) and 13c), respectively.o® remains
uted by ow’/dy. Let us assume thaw’ is of the form  constant and equal toé as long as breaking has not oc-
W cosk,y—Nt) just before breaking. Thud,=m/k,. The curred. When breaking occurs? starts departing from its
breaking event being local, maximum valuesZgfand w’ initial value and displays a nearly linear evolution fram
over the numerical domaiD may be used to estimatg so  =35. A change in the slope occurstai55, which coincides
thatl,= 7 maxp W'/max, ¢y . From Fig. 9a), max, {;=11 at  with the decay of the small scale turbulence. An identical
t=40. We computed the maximum values over the numeribehavior is found for run 2, in which Rel and in run 4a, in
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6 ' ; ‘ ; ; ' ' ‘ which ys=1.65. In the latter run, the change of slope is
55| | delayed because of the more distant positiory ofrom the
breaking region. Overally?> grows up to a value close to 5
and 0,2 up to 5.5, which is nearly three times larger than the
shear layer thickness: this means that transport occurs across
the barrier. The linear growth ef? attests that the transport
by the small scale turbulence amounts to a diffusive process.
The diffusion coefficient is defined by,=0.25do?/dt and
from Fig. 13a), a value of 0.026 is obtained for; for 30
<t=<55. In order to compute a Peclet number associated
with the transport process, we normalizgby a character-
istic length scale and a characteristic velocity scale associ-
ated with the breaking wave packet along the direction of
transporty. We choosd,, for the length scaléequal to 0.12
1 T e a3 m s 0 @ att=40) and the maximum value of the’ component for

t the velocity scaldequal to 0.4 at the same tim&he Peclet

@) numberl,, v/k; thus obtained is equal to 0.5, which is of
6 ‘ : : : : : : : order one: the transport induced by the small scale turbu-
lence is indeed of turbulent nature. This conclusion is con-
firmed by the fact that this turbulent Peclet number remains
5¢ 1 unchanged when the molecular Peclet number is decreased
sl i by a factor of 10.(We also found thak;, increases linearly
» with U, but we did not compute the dependence of the Pe-
] clet number orlJ,.)
35f * % - The small scale turbulence also transports momentum.
o This is attested in Fig. 14 from the temporal evolution of the

* mean velocity profile of the shear layer(y,t). U(y,t) re-
1 mains unchanged as long as breaking has not occurred and
ol i smoothes out fott>30 (significant fluctuations about the
FRERRRRAR I RRRAE K * mean profile are however observedtat48). Like for the
o7 - N i passive scalar, the diffusive nature of the transport implies
1 = = - m = = = = that the velocity profile should evolve self-similarly, being of
1 the formf(y/5(t)). If the velocity profile were of the error
(b) function type,s? should be equal tervt+C, wherew, is a
, , , turbulent viscosity ane a constant value. A hyperbolic tan-
. | gent function being very close to an error function, we shall
* * X assume that this scaling holds in the present céfsis. there-
fore plotted as a function of time in Fig. ). It remains
constant up td=30 and starts increasing from this time. The
growth is not linear but can reasonably be approximated by a
linear law, displayed with a dotted line in the figure. This
linear law yields a value of 0.025 far,. Hence, the turbu-
lent Prandtl numbew,/«; associated with the transport by

the small scale turbulence is nearly equal to 1.
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2t x 1 V. CONCLUSION
drwrpprrrrrrrgn * * . . .
1sf " * o* e We have shown that an inertia-gravity wave packet may
; ‘ . s . . , . break in the neighborhood of a barotropic dynamical barrier
0 0 20 30 40 ) 50 60 w0 80 and trigger a turbulent diffusive transport of mass and mo-
© mentum across the barrier. Three-dimensional numerical

simulations of the Boussinesq equations in a rotating refer-
ence frame were performed for this purpose. The dynamical
barrier consists of a horizontally sheared horizontal shear
layer, toward which an inertia-gravity wave packet propa-
FIG. 13. (a) Variance of the passive scalar distributio? as a function of ga‘[es_ The basic mechanism of the interaction is the increase

time.*, run 1a; o, run 2;t, run 4a.(b) Variance of the r_|ght hand side of the of the intrinsic frequency of the wave pack@tby Doppler
passive scalar distribution, symmetrized about the instantaneous maximu

value and fitted by a Gaussian function, as a function of tifmeSame as ghifting, ‘_’VhiCh leads to the fo”_nation Of_ a trapping plane at
(b), for the left-hand side of the distribution. the location wherg)=N. As this plane is approached, en-
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N ' ' ' ' Though this study was motivated by geophysical consid-
erations, the simple configuration we have addressed makes
08r it premature to draw any implication to realistic cases. We
06 still note that gravity wave frequency spectra with peaks at a
04l frequency close tdN have been observed in the océ8m
phenomenon that may be accounted for by the interaction of
0.2 . . .
< the waves with a horizontally sheared currebtAsaro (pri-
D‘é’ op vate communicatiod. As well, Jacobitz and Sark¥rfound
02} that turbulence production in a stably stratified fluid is
oal strongly increased when the flow involves a horizontally
' sheared horizontal mean flow, a numerical result which may
-o8r be explained by the occurrence of wave breaking in the
-0} neighborhood of trapping locations.
» The next step is to investigate the interaction of inertia-
. — gravity waves with a baroclinic barrier, and this is the pur-
pose of current research.
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