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On transport across a barotropic shear flow by breaking
inertia-gravity waves

C. Staqueta) and G. Huerre
LEGI, B.P. 53, 38041 Grenoble Cedex 9, France

~Received 22 January 2001; accepted 14 March 2002; published 6 May 2002!

We investigate the interaction of an inertia-gravity wave packet with a barotropic dynamical barrier,
by means of three-dimensional direct numerical simulations of the Boussinesq equations in a
rotating reference frame. A simple model is used for the barrier, namely a barotropic shear layer with
a horizontal shear. We show that the increase of the intrinsic frequencyV of the wave packet by
Doppler shifting may result in the breaking of the wave packet, in the neighborhood of a trapping
plane whereV5N ~N is the Brunt–Va¨isälä frequency of the fluid and is constant in the present
study!. The breaking process triggers a turbulent diffusive transport of mass and momentum across
the barrier, with a turbulent Prandtl number of order 1. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1476303#

I. INTRODUCTION

Dynamical barriers are ubiquitous large-scale features in
geophysical flows. Fronts of temperature or the edges of vor-
tices, such as meddies in the ocean or the polar vortex in the
stratosphere, are examples of dynamical barriers. They are
characterized by a strong local gradient of temperature~for
fronts! or of potential vorticity~for vortex edges!. These bar-
riers, as they are entitled, are supposedly impermeable to
transport by quasi-two-dimensional turbulence but this im-
permeability has recently been put into question~e.g.,
McIntyre1! from observational evidence. The existence of a
transport of material across a dynamical barrier is a crucial
issue in geophysical fluid dynamics because, for instance, of
the possible release of chemical reactants or pollutants origi-
nally trapped or isolated by the barrier.

In the present paper, we investigate the possible trans-
port across a dynamical barrier by inertia-gravity waves, fol-
lowing a conjecture proposed by McIntyre1 within the con-
text of the polar vortex. We shall make use of a very
simplified model for the barrier and for the waves so that our
work must be considered as a study of the fundamentals of
the wave-barrier interaction, motivated by the geophysical
considerations discussed above.

The simple model we consider consists in a barotropic
current, that is, a vertically uniform horizontal flow with a
horizontal shear, toward which an inertia-gravity wave
packet propagates, the fluid being uniformly stably stratified
~the Brunt–Väisälä frequencyN is therefore constant!. The
interaction of internal gravity waves with such a current has
been studied in the literature within an oceanic context, using
a linear analysis2 and a Wentzel–Kramers–Brillouin~WKB!
approximation.3–6 Our study will thus rely on these theoret-
ical works.

These works display strong analogies with those related

to the vertical propagation of internal gravity waves in a
horizontal wind with a vertical shear, a topic extensively
studied within an atmospheric context~starting with the
work of Bretherton7 and Booker and Bretherton;8 see Baik
et al.9 for recent development!. The main results of the latter
works are as follows. When an internal gravity wave propa-
gates upwards along a vertically sheared horizontal wind
whose velocity increases with height, the wave may be
trapped near a level at which its horizontal phase speed
matches the wind velocity. This is the so-called critical level.
As the wave propagates toward that level, its intrinsic fre-
quencyV ~i.e., the frequency measured by an observer mov-
ing with the wind! decreases by Doppler shifting and reaches
a minimum value at this level~this value is zero if the Cori-
olis force is ignored!. Hence, the wave cannot propagate fur-
ther up. Using the WKB approximation, Bretherton7 first
showed that, for a wave packet, the vertical component of
the wave vector increases ash21, whereh is the distance of
the wave packet from the critical level~located ath50!
along the vertical direction and the vertical component of the
group velocity decreases ash2 @Fig. 1~a!#. However, the
WKB approximation also predicts that the wave induced
horizontal velocityu8 goes to infinity~u8;h21/2 ash→0!
and the critical level is never reached~the time required to
reach that level scales likeh21!. This unphysical behavior is
due to the WKB approximation to becoming invalid at the
critical level. Using the linear Boussinesq approximation,
without WKB approximation, Booker and Bretherton8

showed that the wave energy actually decays, being totally
absorbed into the mean flow~which is therefore accelerated!
at the critical level. Viscous and thermal dissipation are ne-
glected in this approach. As pointed out by McIntyre,10 the
horizontal phase speed of the wave packetcx decays faster
than the wave induced horizontal velocityu8 as t→1` so
that, in spite of this absorption, the ratiou8/cx , which is one
measure of the wave steepness, increases. As a consequence,
the linear theory becomes invalid for large time and breaking
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may occur before the critical level is reached. Using three-
dimensional numerical simulations, Winters and D’Asaro11

showed that the occurrence of breaking depends upon the
initial steepness of the wave packet. For a large enough ini-
tial steepness, the wave does break. The details of the break-
ing process have been investigated by Do¨rnbrack12 and Fritts
et al.:13 breaking first occurs through a convective instability.
This result is consistent with the numerical finding by Lelong
and Dunkerton14 that a low frequency internal gravity wave
with a high vertical shear and a strong steepness, which are
the kinematic properties of a wave packet near a critical
level, breaks through convective instability. The behavior of
internal gravity waves near a critical level has also been in-
vestigated using laboratory experiments by Thorpe15 and
Koop and McGee16 ~see Staquet and Sommeria17 for a re-
view!.

When the horizontal mean flow displays a horizontal
shear~such as an oceanic current! and increases as the wave
propagates into the current, a trapping process may also oc-
cur when the wave propagates against the current@Fig. 1~b!#.
Indeed, in this case, the wave intrinsic frequencyV increases
by Doppler shifting. If there exists a location in the flow
where the intrinsic frequency reaches the Brunt–Va¨isälä fre-
quencyN, the wave cannot propagate beyond that location
~sinceV<N for internal gravity waves, as we recall it in the
next section!. WhenN is constant, this location is a vertical
plane, hereafter referred to as a trapping plane. Leth be
again the distance of a wave packet from the trapping plane
along the direction of inhomogeneity, which is now horizon-
tal. The WKB approximation dictates that, ash goes to zero,
the component of the wave vector along that direction in-
creases again without bound, ash21/2, and the group veloc-
ity decreases ash3/2 ~see Ref. 3!. Like for the critical level
situation, the wave energy increases without bound
(;h23/2) and the trapping plane is never reached, due to the
invalidity of the WKB approximation at that plane. Hints
about the actual wave behavior near the trapping plane may
be obtained from the linear analysis about the mean shear
state performed by Ivanov and Morozov.2 The numerical
resolution of the eigenvalue problem thus obtained yields
that the wave amplitude may increase in this case, unlike the

critical level situation. The source of energy is of course
provided by the current. As pointed out by Badulinet al.,5

the wave packet slows down as it propagates into the current
~because the intrinsic group velocity goes to zero!, which
provides an additional contribution to the local increase of
the wave energy. As a result, the wave may break before the
trapping plane location. This situation, despite its close anal-
ogy to the critical level problem, has never been addressed
numerically and the purpose of the present paper is to inves-
tigate whether breaking may indeed occur as a result of the
interaction with the current and to analyze the resulting
transport properties across that current. Badulinet al.5 also
show that horizontal inhomogeneities of density, namely
fronts, result in the same trapping process. The effect of the
Coriolis force does not fundamentally change these
conclusions.3

When the velocity of the horizontal flow increases as the
wave propagates into that flow, reflection occurs when the
wave propagatesagainst the flow in the vertical shear case
~e.g., a wind! andalong the flow in the horizontal shear case
~e.g., a current!. This corresponds to an increase of the wave
intrinsic frequency in the former case~up to N! and to a
decrease in the latter case~down to a minimum frequency!.
This reflection situation will not be considered here~see
Sutherland18,19 for a theoretical and numerical study of inter-
nal gravity wave packets reflecting in a vertically sheared
horizontal flow!.

In the present paper, the interaction of an inertia-gravity
wave packet with a parallel shear flow in a horizontal plane
~the barrier! is investigated using three-dimensional direct
numerical simulations of the Boussinesq equations in a ro-
tating reference frame. An equation for the transport of a
passive scalar is coupled to the equations so as to quantify
the possible resulting transport process across the barrier. In
the next section, we specify the physical and numerical mod-
els we use for the study of the interaction. Section III reports
on the breaking process and the resulting transport properties
are analyzed in Sec. IV. Conclusions are drawn in the final
section.

FIG. 1. Interaction of an internal gravity wave of absolute frequencyv0 and wave vectorkW with a horizontal flowUbıWx with either a vertical shear~a! or a
horizontal shear~b!, in a stably stratified fluid with constant Brunt–Va¨isälä frequencyN ( f 50). The shear is taken constant for simplicity. In~a!, the

interaction process is two dimensional and occurs in the vertical (kW ,gW ) plane. A critical level is located atz5zc , at which the intrinsic frequency of the wave
V vanishes. As the critical layer is approached,cgz→0, cgx→Ub , kx remains constant whilekz increases without limit. In~b!, the interaction process is three

dimensional. It is displayed in a horizontal (x,y) plane;kWh andcWgh
, respectively, denote the restriction to this plane of the wave vector and of the intrinsic

group velocity of the wave. A trapping plane is located aty5yt , at whichV is equal toN. As the trapping plane is approached,cgy→0, cgx→Ub , kx remains
constant whileky increases without limit.
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II. A SIMPLIFIED MODEL OF THE WAVE-BARRIER
INTERACTION

A. Physical model

We consider a stably stratified fluid medium in hydro-
static equilibrium, within a rotating frame of reference with
Coriolis frequencyf . Let (x,y,z) be a coordinate system in
this reference frame, withz pointing upwards along the ro-
tation axis.xW5(x,y,z) is thus the Eulerian position of a fluid
particle in this frame. The unit vectors along the axis of
coordinates are denoted (iWx , iWy , iWz). Let r01r lin(z) be the
density field of the hydrostatic equilibrium state, wherer lin

!r0 for any z and r0 is a constant reference density. The
linear density profiler lin(z) sets the Brunt–Va¨isälä fre-
quency

N252
g

r0

dr lin

dz
, ~1!

whereg is the acceleration of gravity.N is therefore constant
in the present study.

The barrier is a horizontal shear flow, whose shear is also
horizontal,

UW b~y!5Ub~y! ıWx . ~2!

This flow is in geostrophic equilibrium since the Coriolis
force2 f ıWz`UW b is balanced by a pressure gradient along the
y direction. The barrier is barotropic for simplicity. Indeed,
any change ofUb along the vertical direction would yield a
horizontal inhomogeneity of the density field, according to
the thermal wind balance~e.g., Gill,20 p. 217!. Hence, both a
density front and a shear flow would be present in the flow
and refract the wave. In the present paper, we focus our
attention about a single mechanism for the refraction of the
wave, so that a barotropic shear flow is considered. The use
of a shear flow represents either a horizontal current or the
edge of a vortex whose horizontal extent is much larger than
the horizontal wavelength of the wave. Two different shear
flows have been considered, a shear layer and a plane jet; the
same qualitative behavior, with respect to the breaking and
transport properties, has been obtained for either flow and
results for the shear layer will be presented in this paper. The
initial velocity profile we chose for the latter flow is

Ub~y!5U0 tanhS y2y1

a D , ~3!

where a and U0 denote, respectively, half the~so-called!
vorticity thickness of the shear layer and half the velocity
difference across the shear layer. Note that this shear flow is
anticyclonic: the vertical component of its vorticity
2dUb /dy(,0) is of opposite sign to the Coriolis frequency
f .

An inertia-gravity wave packet of the main wave vector
kW5(kx ,ky ,kz) is introduced as the initial condition. The
wave vectorkW sets the intrinsic frequencyV of the wave
packet via the dispersion relation

V25N2S kh

k D 2

1 f 2S kz

k D 2

, ~4!

where kh5Akx
21ky

2 is the horizontal wave number andk
5ukW u. Relation~4! implies thatf <V<N. The group veloc-
ity of the wave packet in the rotating reference frame~that is,
the absolute group velocity! is cWg1UW b , wherecWg5]V/]kW is
the intrinsic group velocity~e.g., Lighthill,21 p. 327!. In the
present case where the shear flow is directed along the hori-
zontal x direction, the group velocity is expressed by
(]V/]kx1Ub ,]V/]ky ,]V/]kz). We also recall that the en-
ergy of an internal wave packet is transported at the group
velocity along trajectories referred to as rays; a ray path is
thus defined bydxW /dt5cWg1UW b .

The energy of the wave packet is confined about they
5y0 vertical plane~with y0,y1! at initial time. The initial
velocity and density fields induced by the wave packet are
thus given by~e.g., Olbers,3 Gill,20 p. 263!

uW 8~xW ,t50!5Ae2(y2y0)2
eikW .xWF2

kz

kh
2 S kx1 iky

f

V D ,

2
kz

kh
2 S ky2 ikx

f

V D ,1G , ~5!

r8~xW ,t50!5 i
N2

V
w8~xW ,t50!. ~6!

A is the initial amplitude of the vertical velocity component
w8. This simple physical model of the wave-barrier interac-
tion is sketched in Fig. 2.

The wave packet being introduced in a moving fluid~the
shear layer!, its frequencyv0 in the rotating frame of refer-
ence~the absolute frequency! differs from its intrinsic fre-
quency.v0 is defined by the Doppler relation

v05V1kW•UW b5V1kxUb . ~7!

Because the background shear flow is not homogeneous
along the y direction, the properties of the wave packet
change as it propagates into this flow. Those changes are
easily predicted if the wavelength along they direction is
much smaller than the scale over whichUb varies. When this
assumption holds, a WKB approximation can be used which
predicts that, at lowest orders, the dispersion relation remains

FIG. 2. Sketch of the initial condition of the simulations: an inertia-gravity
wave packet is introduced att50 about they5y0 plane and propagates in
a horizontal shear layer with no vertical dependency centered about they
5y1 plane.
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locally valid but the wave is refracted along rays by the
spatial variability of the background flow.~A very clear in-
troduction to the WKB approximation for internal gravity
waves is provided by Olbers.3! SinceUb depends only upon
y, the kx and kz components of the wave packet do not
change along a ray. By contrast,ky changes according to

dky

dt
52kx

dUb

dy
, ~8!

whered/dt5]/]t1(cWg1UW b)•¹ denotes the rate of change
along a ray in the rotating reference frame. Equation~8!
implies thatky increases along the ray whenkx is negative,
since dUb /dy is positive from definition~3!. ~This choice
for the sign ofkx will be made in the next section.! Note that
the increase ofky as the wave propagates toward the barrier
implies that the wavelength of the wave packet along this
direction becomes increasingly smaller with respect to the
characteristic scale ofdUb /dy, which enforces the validity
of the WKB approximation~but the latter approximation
fails in the immediate vicinity of the trapping plane, as al-
ready noted in the Introduction!. SinceUb does not depend
upon time, the absolute frequencyv0 stays constant along a
ray (dv0 /dt50). Hence, using the Doppler relation~7!, the
intrinsic frequency changes along a ray according to

dV

dt
52kxcgy

dUb

dy
, ~9!

wherecgy is they component of the intrinsic group velocity.
Since the wave packet propagates toward the barrier,cgy is
positive. Thus, the intrinsic frequency increases along a ray
whenkx is negative. LikeV, the wave energyE is not con-
served along a ray~it would be if the fluid were at rest or
uniformly translating! but the wave actionA5E/V is con-
served instead of the energy7

]A

]t
1¹•@~cWg1UW b!A#50, ~10!

for a nondissipative and nondiffusive medium.
As noted in the Introduction, the trapping location is a

vertical y5yt plane obtained by settingV to N in the Dop-
pler relation~7!. Using v05V(y0)1kxUb(y0), one gets an
expression for the location of the trapping plane as a function
of the initial parameters of the wave

Ub~yt!5
V~y0!2N

kx
1Ub~y0!. ~11!

In the present case whereUb is monotonically varying,
yt is uniquely defined by expression~11!. This expression
shows thatyt can be located anywhere along they axis.

B. Mathematical and numerical models

The fluid motions are described by the Navier–Stokes
equations in the Boussinesq approximation within the rotat-
ing reference frame introduced in the preceding section. Let
uW 5(u,v,w) be the components of the velocity field in this
reference frame andr̃(x,y,z,t), the deviation of the density
field from the hydrostatic density fieldr01r lin(z). As is

customary, we scaler̃ as an acceleration using the variable
r85 (g/r0) r̃ in order forN to come into play in the equa-
tions of motion. These equations thus are~written per unit
mass!

]uW

]t
1~uW •¹!uW 52¹P2r8 ıWz2 f ıWz`uW 1n¹2uW , ~12!

]r8

]t
1~uW •¹!r85N2w1

n

Pr
¹2r8, ~13!

]S

]t
1~uW .¹!S5

n

Pe
¹2S, ~14!

¹.uW 50. ~15!

In Eq. ~12!, the termP stands for the dynamical pressure
divided byr0 andn is the kinematic viscosity. In Eq.~13!, Pr
is the Prandtl number~i.e., n/Pr defines the molecular diffu-
sivity for density changes!. Equation~14! describes the evo-
lution of the passive scalarS(xW ,t); the equation involves the
Peclet number Pe defined such thatn/Pe is the molecular
diffusivity of the passive scalar.

The initial condition is provided by the physical model
described in Sec. II A: att50, an inertia-gravity wave packet
localized about they5y0 plane propagates in a horizontal
shear layer centered about they5y1 plane. Periodic bound-
ary conditions are imposed along thex andz directions and
free slip ones are used along the inhomogeneousy direction.

Equations~12!–~15! are solved numerically in a rectan-
gular box. The spatial derivatives are computed by a pseu-
dospectral method in all three directions. Along they direc-
tion, periodicity is recovered by using a classical
technique:22 symmetry properties of the fields are assumed
about they boundaries so that the fields become periodic
when the domain is doubled by symmetry about these
boundaries. Time advancement is performed by a third order
Adams–Bashforth scheme. Note that no subgrid scale mod-
elling is used: the terms responsible for the diffusion of mo-
mentum, density, and passive scalar@n¹2uW , (n/Pr)¹2r8 and
(n/Pe)¹2S, respectively# involve a constant molecular vis-
cosity n, whose value is specified below.

C. Physical and numerical parameters of the runs

For simplicity, the physical parametersa ~half the vor-
ticity thickness of the shear layer!, A ~the initial amplitude of
the vertical velocity induced by the wave! andN are set to 1,
0.1 and 1, respectively. The other parameters of the problem
~kW and y0 for the wave;U0 and y1 for the barrier;f , n, Pr,
and Pe! as well as the size of the computational domain are
dictated by two sets of constraints. A first set consists of
physical constraints:~i! the horizontal shear layer should re-
main stable against the Kelvin–Helmholtz instability during
the propagation and evolution of the wave;~ii ! there should
exist a trapping plane somewhere in the flow;~iii ! the hori-
zontal wavelength of the wave should be larger, by a factor
of 10 or so, than the thickness of the shear flow~this ratio is
dictated by geophysical application!. The second set consists
of numerical constraints:~iv! the trapping plane should be
located within the computational domain;~v! the wave

1996 Phys. Fluids, Vol. 14, No. 6, June 2002 C. Staquet and G. Huerre



packet should quickly reach the neighborhood of the trap-
ping plane, in order to save computer time;~vi! theN/ f ratio
should not exceed a value of order 10 or so because a very
small vertical wavelength relative to the horizontal one
should then be employed, thus imposing a high resolution
along the vertical direction;~vii ! for a given resolution, the
molecular diffusion coefficients should be high enough for
the smallest scales along the inhomogeneousy direction to
be properly solved~we recall that the wavelength along they
direction decreases as the wave packet propagates toward the
barrier!.

Table I gives the values chosen in view of these con-
straints. In all runs, the wave packet is introduced att50
about locationy0522 and the main wave vector iskW

5(2p/3,p/3,4p/3); the barrier is located aty151 andU0

is equal to 1 except in runs 5–8 where it is varied from 0.5 to
4. In all runs,n51024 ~except in run 3!, the Coriolis param-
eter f 50.23~so thatN/ f 54.35! and Pr51. The Peclet num-
ber is equal to 10~except in run 2!. The size of the compu-
tational domain is (Lx ,Ly ,Lz)5(12,12,6). Preliminary
computations at resolution~128,129,64! have been per-
formed in order to explore the parameter space. Several com-
putations have next been carried out at the higher resolution
of ~256,257,128!. The interaction between the wave and the
barrier displays the same features from one run to the other
for a given resolution and the same dynamical properties are
recovered when the resolution is increased. Results for run
1a are thus presented in the paper and the influence of a
varying viscosity, Peclet number and sheardUb /dy will be
discussed in connection with these results.

III. THE BREAKING PROCESS

A. Overall behavior of the wave packet

The overall dynamics of the wave packet in a vertical
(y,z) plane are illustrated in Figs. 3 and 4 through contours
at successive times of the total density field2N2z1r8. Fig-
ure 3 displays the density field before breaking occurs and
Fig. 4 illustrates the turbulent regime that follows breaking.
The shear flow is not visible in these figures because, having
no component in the (y,z) plane, it does not displace the
isopycnals. All properties of the wave in this plane are thus

intrinsic properties. Contours of the enstrophyZ are plotted
in Fig. 5 at successive times in the same (y,z) plane to
illustrate the wave-barrier interaction~both the shear flow
and the wave packet being rotational!; the maximum value of
Z over the numerical domain is displayed versus time in Fig.

6. Z is defined by 0.5uzW u2 where zW5¹`uW is the vorticity
field of the flow.

The changes in the wave kinematics described in the
preceding section are apparent in Fig. 3. As the wave packet
propagates, the wavelength along they direction decreases
~that is,ky increases! while the wavelength along the vertical
direction remains unchanged~that is,kz is unchanged!. As a
consequence, the direction of the phase lines tilts toward the
vertical direction. Indeed, a vector perpendicular to the phase
lines in this plane is (ky ,kz) ~kx being constant in time!,
which tends toward the horizontal direction asky→1`. An-
other feature is that the steepness of the isopycnals increases
from Figs. 3~a! to 3~c!, the isopycnals being locally vertical
in Fig. 3~c!. They have overturned in Fig. 3~d!, implying that
the wave packet is prone to breaking. Note that the breaking
process, which may be defined as the generation of small
dissipative scales, has not occurred yet: the isopycnals are
still continuous lines in Fig. 3~d!. Figure 3 also shows that
the wave packet propagates beyond the theoretical location
of the trapping plane@marked by a straight vertical line in
Fig. 3~a!#. This point will be further discussed in the next
section.

The generation of small dissipative scales occurs att
.30, as displayed in Fig. 4~a!. This event is manifested as a
first peak in the enstrophy curve~Fig. 6!. It occurs att530
so that this time will be taken as the breaking time. A turbu-
lent regime next sets in. The turbulent region broadens about
the trapping plane, through horizontal intrusions of turbulent
fluid within the shear flow@Figs. 4~b! and 5~c!#, and intensi-
fies@Figs. 4~c! and 5~d!#, up to the time viscous dissipation at
small scale overcomes turbulent production: att558.8, as
seen in Fig. 6, the enstrophy has reached a maximum value
~over space and time! and decays afterward.

It should be noted that breaking does not always occur,

TABLE I. Description of the runs. The resolution along thex, y, andz directions, respectively, is indicated.U0

is half the velocity difference across the shear layer,n the molecular viscosity, and Pe is the Peclet number
associated with the passive scalar.yt is the position of the trapping plane, defined by Eq.~11! and ys is the
position along they axis of the maximum concentration of the passive scalar@defined by Eq.~22!#. The other
parameters of the runs are described in Sec. II C.

Run Resolution U0 n Pe yt ys

1a ~256,257,128! 1 1024 10 0.55 1
1b ~128,129,64! 1 1024 10 0.55 1
2 ~256,257,128! 1 1024 1 0.55 1
3 ~256,257,128! 1 1023 10 0.55 1
4a ~256,257,128! 1 1024 10 0.55 1.65
4b ~128,129,64! 1 1024 10 0.55 1.65
5 ~128,129,64! 0.5 1024 10 1.15 1
6 ~128,129,64! 2 1024 10 0.12 1
7 ~128,129,64! 3 1024 10 20.107 20.107
8 ~128,129,64! 4 1024 10 20.26 20.26
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even if there exists a trapping plane in the flow. In run 3
where the viscosity is 10 times larger than in run 1a, the
phase lines tilt toward the vertical as the wave propagates
toward that plane but the steepness of the isopycnals hardly

increases. The wave packet dissipates without breaking in
the neighborhood of the trapping plane beforet530.

B. Energetics

Insight into the energetics of the wave packet can be
gained by linearizing the equations of motions about the

shear flow. Let (u81Ū,v8,w8) be the decomposition of the

velocity field into a fluctuating partuW 8 and a mean partŪ ıWx ,
where the overline denotes a spatial average overx and z.
~Note thatv85v andw85w but the primes will be retained
for these two components, for consistency withu8.! As long
as the amplitude of the wave packet remains small with re-

spect toU0 , uW 8 andŪ ıWx may be identified with the velocity
field induced by the wave packet and of the horizontal shear
flow, respectively. The linearized equations for the fluctuat-

FIG. 3. Contours of the total density field2N2z1r8 in a vertical (y,z)
plane.~a! t50; the vertical line marks the theoretical location of the trap-
ping plane;~b! t512; ~c! t524; ~d! t528.8.

FIG. 4. Same as Fig. 3 at later times:~a! t530; ~b! t537.8; ~c! t558.8.
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ing kinetic energy components~^u82&/2, ^v82&/2, ^w82&/2!
and available potential energy@defined by ^r82&/(2N2),
within a good approximation23# averaged over the numerical
domain are~per unit mass, ignoring dissipative effects!:

1

2

d^u82&
dt

5 K p8
]u8

]x L 2K u8v8
dŪ

dy L 1 f ^u8v8&, ~16!

1

2

d^v82&
dt

5 K p8
]v8

]y L 2 f ^u8v8&, ~17!

1

2

d^w82&
dt

5 K p8
]w8

]y L 2^r8w8&, ~18!

1

2N2

d^r82&
dt

5^r8w8&. ~19!

d/dt now denotes the Eulerian time derivative andp8 is the
fluctuating pressure. The term̂u8v8& is the horizontal Rey-
nolds stress averaged over the numerical domain,
2^u8v8dŪ/dy& is responsible for energy exchange between
the wave packet and the mean flow and^r8w8&, the buoy-
ancy flux, reversibly transfers vertical kinetic energy into
available potential energy.

In order to track the location of the wave packet as time
evolves, we plot in Fig. 7~a! the shear of the unperturbed
mean flowdUb /dy at they location, denotedyw , thex and
z averaged wave kinetic energy is maximum. The shear of
the actual mean flowdŪ/dy at locationyw is also displayed
in the figure.yw itself is drawn as a function of time in Fig.
7~b!. Temporal evolutions are displayed up to the time break-
ing occurs. Figure 7~a! shows that the wave packet enters the
region of strong shear att.10. The shear of the unperturbed
mean flowdUb /dy(yw) strongly increases from this time
on, thus the wave packet continues to propagate into the
mean flow. Fromt.20, dUb /dy(yw) saturates at a value
close to 0.8, just below its value at the trapping plane~equal
to 0.819!. This means that the propagation of the wave
packet has nearly stopped in the neighborhood of this plane.
This is confirmed by Fig. 7~b!: yw is nearly constant fromt
.20 and close to, but smaller than,yt ~equal to 0.55!. The

FIG. 5. ~Color! Contours of the enstrophy in the same vertical (y,z) plane
as in Figs. 3 and 4.~a! t50; ~b! t524; ~c! t537.8; ~d! t558.8.

FIG. 6. Maximum values of the enstrophyZ over the numerical domain
versus time.Z is normalized by its initial maximum value.
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shear of the actual mean flowdŪ/dy(yw) follows that of the
undisturbed mean flow up tot.24. From this time on,
dŪ/dy(yw) decays. This decay may be due to finite ampli-
tude effects~such as a self-induced mean flow! resulting
from the growth of the wave packet energy. The local decay
of the actual mean shear results in a decay of the intrinsic
frequency of the wave packet@by Eq.~9!#, so that the packet
can propagate further down. This is visible in Fig. 7~b!: the
decrease ofdŪ/dy(yw) at t525 makesyw reach the trap-
ping plane. The latter plane is eventually crossed when
dŪ/dy(yw) further decays att530. This effect was also
noted in Sec. III A.

The domain averaged horizontal Reynolds stress times
the Coriolis frequencyf ^u8v8& is plotted in Fig. 7~c! ~with a
minus sign! along with the energy exchange term

^2u8v8 dŪ/dy&. An estimate of the former term may be
obtained, using WKB approximation, from expressions~5!
for u8 and v8 without the Gaussian modulation~we recall
that u8 andv8 are normalized byw8!. This yields

^u8v8&5
s2

2
kx

ky

~kh
2!2 ~V22 f 2!;s2

kx

ky
3 ~V22 f 2!

as ky→1`. ~20!

^u8v8& is thus negative in the present case,kx being negative
~also, ky.0 and V. f !. SincedŪ/dy varies much slower
than u8v8 in the neighborhood of the trapping plane,
2^u8v8 dŪ/dy& may be approximated bŷ2u8v8&dŪ/dy.
BecausedŪ/dy is positive, the latter term is positive: the
kinetic energy of the wave field is fed by the mean shear

FIG. 7. ~a! Horizontal shear of the unperturbed shear layerdUb /dy ~solid line! and of the actual mean flowdŪ/dy ~dashed line! at they location, denoted
yw , thex andz averaged wave kinetic energy is maximum versus time. The value ofdUb /dy at the theoretical trapping plane is indicated by a dashed–dotted
line. ~b! Temporal evolution ofyw . The trapping plane positionyt is indicated with a dashed–dotted line.~c! Horizontal Reynolds stress of the wave packet
times the Coriolis frequencyf ^u8v8& ~plotted with a minus sign to yield a positive quantity! ~dashed line! and rate of change of the energy of the wave packet

due to energy exchange with the mean flow2^u8v8 dŪ/dy& ~solid line!; both quantities are averaged over the numerical domain and plotted versus time.
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flow. This is attested in Fig. 7~c!: 2 f ^u8v8& is positive and
decays with time~relative to^w82&), in agreement with the
estimate~20! when ky increases~sincekx is constant ands
remains of order 1!. As for the energy exchange term, Fig.
7~c! shows that it nearly vanishes at initial time because the
wave is located out of the shear region; it displays a~weak!
positive maximum value att.10, when the wave packet has
penetrated the strong shear region and stays about constant
up to t.25, implying that the decay of2 f ^u8v8& is partly
made up for by the increase of the shear. The estimate~20!
also shows that the extraction of energy from the mean flow
is reduced by the Coriolis force, owing to theV22 f 2 factor.

The components of the fluctuating kinetic energy and of
the energy of the mean flow are plotted in Fig. 8 along with
the available potential energy of the wave~the latter curve is
plotted up tot530 since the notion of wave becomes mean-
ingless when breaking occurs!. Equation~16! shows that the
energy extracted from the mean flow is fed into the compo-
nent of the wave energy parallel to the mean flow, as physi-
cally expected. This energy is transferred into the^v82& com-
ponent by the Coriolis termf ^u8v8& and into thê w82& ~and
^v82& as well! components by the pressure–velocity correla-
tion term. As a result,̂u82& constantly decreases during the
propagation of the wave toward the barrier. By contrast, the
feeding of the^v82& component through the Coriolis term
results in a nearly constant level of this component up tot
.20, despite the progressive orientation of the wave mo-
tions toward a vertical (x,z) plane. As expected, most of the
energy gained by the wave packet is fed into vertical mo-
tions: the vertical kinetic energy component increases by a
factor of 10 betweent50 and t.26. Figure 8 also shows
that the total wave energy~kinetic energy plus available po-
tential energy! increases by a factor of 1.8 betweent50 and
t530. This increase cannot be attributed to the accumulation

of the energy of the wave packet near the trapping plane.
Indeed, the accumulation will lead to a local increase of the
wave energy density but will leave unchanged the volume
averaged energy.

From the breaking timet530, the dynamics of the wave
packet change dramatically~Fig. 8!: the ^u82& component
suddenly increases and, by the Coriolis force, the^v82& com-
ponent increases as well. The^w82& component displays the
same behavior, with some delay. Figure 8 shows that the
energy of the mean shear flow appreciably decays during this
turbulent stage: the small scale turbulence is thus sustained
by the mean shear. We found indeed that the correlated
growth of ^u82& and ^v82& gives a strong increase in
2^u8v8 dŪ/dy&, which in turn feeds the small scale turbu-
lence (2^u8v8 dŪ/dy& increases by a factor of 100 between
its minimum value att.24 and its maximum value att
.50!. Note that the energy exchange term can no longer be
interpreted as an energy transfer from the mean shear flow to
the wave~since the notion of wave has become meaningless!
but, because of the clear scale separation that exists during
this regime, from a large scale shear flow to small scale
turbulence. Such a regime is triggered by the breaking pro-
cess.

When U0 is increased, all other parameters being un-
changed,̂ dŪ/dy& increases as well so that the location of
the trapping plane gets closer to the initial position of the
wave packet~see the value ofyt in the table for runs 6 to 8!.
As a consequence, breaking occurs earlier than in run 1a.

C. Instability and breaking

The maxima of the components of the fluctuating vortic-
ity zW85¹`uW 8 are plotted versus time in Fig. 9. Fort<30,
the main result is the growth at a constant rate of the stream-
wise componentzx8 while the other components remain at a
nearly constant level. The growth ofzx8 is easily accounted
for by the tilting of the fluid motion toward a vertical plane
while the wave numberky increases, as the packet propa-
gates toward the barrier: the dominant velocity gradient is
then ]w8/]y, which contributes to~and controls! zx8 . zx8 in
turn controls the dissipation rate of kinetic energy fort
<30: Fig. 6 shows indeed that the maximum value ofZ
behaves identically to that ofzx8 up to the breaking time.

As shown from Figs. 3~d! and 4~a!, the instability
through which the wave breaks is a convective instability
~the term ‘‘buoyancy induced’’ instability, employed by
Schowalteret al.24 would actually be more appropriate!. This
instability results in the formation of vortices of alternate
sign, with axis aligned along thex direction. These vortices
are visualized in Fig. 10 by a cross section of the streamwise
vorticity in the (y,z) plane. An noted in the Introduction,
such a convective instability is known to develop from a
large amplitude wave of low frequency but the result is also
valid when the wave is of high frequency~see Frittset al.13

for numerical evidence and Benielli and Sommeria25 for ex-
perimental evidence!. The breaking process eventually leads
to a turbulent flow with all vorticity components having the
same amplitude~Fig. 9!.

The turbulent regime does not result from a Kelvin–

FIG. 8. Temporal evolution of the volume-averaged fluctuating kinetic en-
ergy ~per unit mass! ^u82&/2 ~bottom solid line!, ^v82&/2 ~dashed line!, and
^w82&/2 ~dotted line!; the volume-averaged potential energy^r82/(2N2)& is
also shown~dashed–dotted line!. The upper solid line displays the volume

averaged kinetic energy of the mean shear^Ū2&/2, divided by a factor 60 to
fit the range of the vertical coordinate of the fluctuating components.
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Helmholtz instability of the shear layer. The flow att50 is
solely made of the wave packet and of the shear layer so that
no background noise has perturbed the shear layer when the
wave packet reaches its highest vorticity region. Of course,

FIG. 9. Maximum values over the numerical domainD of the fluctuating
vorticity components:~a! maxD zx8 ; ~b! maxD zy8 ; ~c! maxD zz8 .

FIG. 10. ~Color! Contours of the streamwise vorticity componentzx5(¹

`uW )• iWx at t531.8 in the same (y,z) plane as in Figs. 3 and 4.

FIG. 11. ~Color! Contours of the vertical vorticity componentzz5(¹`uW )

• iWz in a horizontal (x,y) plane.~a! t536; ~b! t540.8.
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the wave packet may play the role of a perturbation of finite
amplitude for the shear layer. Two factors actually stabilize
the layer against this two-dimensional instability. The first
one is that the streamwise extent of the shear layer has been
chosen to be a little lower~in view of the constraints listed in
Sec. II C! than the most amplified wavelength, in order to
lower the growth rate of the Kelvin–Helmholtz instability;
this yieldsLx512 instead ofLx.14.5 ~for a hyperbolic tan-
gent velocity profile, see Michalke26!. The second factor,
which is much more efficient at stabilizing the shear flow
against a Kelvin–Helmholtz instability, stems from the small
scale turbulence itself: the velocity profile of the shear layer
is broadened by the turbulence through momentum transport,
as we show in the next section. The layer thicknessd(t)
increases by a factor of 2 so that the ratioLx /d is greatly
reduced.

By contrast, the shear layer is subjected to a~three-
dimensional! inertial instability, which is triggered by the
small scale turbulence stemming from the breaking of the
wave packet. This instability next enhances this small scale
turbulence. Indeed, a sufficient condition for a plane parallel
shear flow to become locally unstable through an inertial
instability is27

f S f 2
dUb

dy D,0, ~21!

which is fully satisfied with the present set of parameters
( f 50.23 anddUb /dy.0.8 in the neighborhood of the trap-
ping plane!. Preliminary calculations with an inertially stable
shear layer~obtained by reversing the sign ofdUb /dy, and
of kx as well to keep2kxdUb /dy.0! show that the break-
ing process is similar but the resulting small scale turbulence
quickly decays because it is no longer sustained by the mean
shear flow.28

The stability of the shear layer with respect to the two-
dimensional Kelvin–Helmholtz instability is attested in Fig.
11, where contours of the vertical vorticity componentzz

5(¹`uW)•ıWz are displayed at the beginning of the breaking
process in a horizontal plane. We found that these contours
are identical to those ofzz8 at the same times, implying that
the vertical vorticity is dominated by its fluctuating part.
Very small structures of negative and positive sign are vis-
ible. A Kelvin–Helmholtz instability would have led to a
large scale structure along the streamwise direction~Corcos
and Sherman29!. The small scale structures belong to the
wave field because they propagate along the streamwise di-
rection when the vertical plane is moved vertically. Their
small scale along they direction is a manifestation of the
decrease of the wave vector component along this direction
as the wave propagates toward the barrier. The scale of a
structure of a given sign along they direction,l h say, may be
approximately predicted by stating thatzx8 is mostly contrib-
uted by ]w8/]y. Let us assume thatw8 is of the form
W cos(kyy2Nt) just before breaking. Thus,l h.p/ky . The
breaking event being local, maximum values ofzx8 and w8
over the numerical domainD may be used to estimatel h so
that l h.p maxD w8/maxD zx8 . From Fig. 9~a!, maxD zx8.11 at
t540. We computed the maximum values over the numeri-

cal domain of w8 ~not shown! and found that maxD w8
.0.32 at the same time. This yieldsl h.0.09, which is in
good agreement with the value obtained from Fig. 11, equal
to .0.12.

IV. TRANSPORT PROPERTIES

A passive scalar located on the opposite side of the trap-
ping plane with respect to the wave packet is added to the
initial condition in order to quantify the transport triggered
by the breaking process. The scalar fieldS has a Gaussian
distribution about a vertical planey5ys ,

S~x,y,z,t50!5As exp2(y2ys /s0)2
. ~22!

The value ofys was varied from 0.65 to 1.65 without any
apparent change in the behavior of the scalar field as we shall
show it. We thus describe the results for the caseys51, that
is when the Gaussian distribution is centered about the same
value as the vorticity of the undisturbed shear layer.s0 is
equal to 1.3, in units of the half-thickness of the shear layer
a.

The temporal evolution of the scalar distribution aver-
aged overx and z is plotted in Fig. 12. The distribution
remains nearly Gaussian as time elapses. Diffusion starts at a
different time on the left-hand side than on the right-hand
side so that, at a given time, each side of the distribution was
fitted by a Gaussian function with a different standard devia-
tion. These standard deviations are referred to ass l ands r ,
respectively, and their average value ass.

The variances2 is plotted as a function of time in Fig.
13~a!, while the right and left variancess r

2 ands l
2 are dis-

played in Figs. 13~b! and 13~c!, respectively.s2 remains
constant and equal tos0

2 as long as breaking has not oc-
curred. When breaking occurs,s2 starts departing from its
initial value and displays a nearly linear evolution fromt
.35. A change in the slope occurs att.55, which coincides
with the decay of the small scale turbulence. An identical
behavior is found for run 2, in which Pe51 and in run 4a, in

FIG. 12. Distribution of the passive scalar averaged overx and z as a
function of y for five successive times: solid lines are used fort50 andt
584, and dashed–dotted lines for intermediate times (t542, 54, 66).
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which ys51.65. In the latter run, the change of slope is
delayed because of the more distant position ofys from the
breaking region. Overall,s2 grows up to a value close to 5
ands l

2 up to 5.5, which is nearly three times larger than the
shear layer thickness: this means that transport occurs across
the barrier. The linear growth ofs2 attests that the transport
by the small scale turbulence amounts to a diffusive process.
The diffusion coefficient is defined byk t50.25ds2/dt and
from Fig. 13~a!, a value of 0.026 is obtained fork t for 30
<t<55. In order to compute a Peclet number associated
with the transport process, we normalizek t by a character-
istic length scale and a characteristic velocity scale associ-
ated with the breaking wave packet along the direction of
transporty. We choosel h for the length scale~equal to 0.12
at t540! and the maximum value of thev8 component for
the velocity scale~equal to 0.4 at the same time!. The Peclet
number l h v/k t thus obtained is equal to 0.5, which is of
order one: the transport induced by the small scale turbu-
lence is indeed of turbulent nature. This conclusion is con-
firmed by the fact that this turbulent Peclet number remains
unchanged when the molecular Peclet number is decreased
by a factor of 10.~We also found thatk t increases linearly
with U0 but we did not compute the dependence of the Pe-
clet number onU0 .!

The small scale turbulence also transports momentum.
This is attested in Fig. 14 from the temporal evolution of the
mean velocity profile of the shear layerŪ(y,t). Ū(y,t) re-
mains unchanged as long as breaking has not occurred and
smoothes out fort.30 ~significant fluctuations about the
mean profile are however observed att548!. Like for the
passive scalar, the diffusive nature of the transport implies
that the velocity profile should evolve self-similarly, being of
the form f (y/d(t)). If the velocity profile were of the error
function type,d2 should be equal topn tt1C, wheren t is a
turbulent viscosity andC a constant value. A hyperbolic tan-
gent function being very close to an error function, we shall
assume that this scaling holds in the present case.d2 is there-
fore plotted as a function of time in Fig. 14~b!. It remains
constant up tot.30 and starts increasing from this time. The
growth is not linear but can reasonably be approximated by a
linear law, displayed with a dotted line in the figure. This
linear law yields a value of 0.025 forn t . Hence, the turbu-
lent Prandtl numbern t /k t associated with the transport by
the small scale turbulence is nearly equal to 1.

V. CONCLUSION

We have shown that an inertia-gravity wave packet may
break in the neighborhood of a barotropic dynamical barrier
and trigger a turbulent diffusive transport of mass and mo-
mentum across the barrier. Three-dimensional numerical
simulations of the Boussinesq equations in a rotating refer-
ence frame were performed for this purpose. The dynamical
barrier consists of a horizontally sheared horizontal shear
layer, toward which an inertia-gravity wave packet propa-
gates. The basic mechanism of the interaction is the increase
of the intrinsic frequency of the wave packetV by Doppler
shifting, which leads to the formation of a trapping plane at
the location whereV5N. As this plane is approached, en-

FIG. 13. ~a! Variance of the passive scalar distributions2 as a function of
time.* , run 1a; o, run 2;1, run 4a.~b! Variance of the right-hand side of the
passive scalar distribution, symmetrized about the instantaneous maximum
value and fitted by a Gaussian function, as a function of time.~c! Same as
~b!, for the left-hand side of the distribution.
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ergy is transferred from the mean flow to the wave packet,
the wavelength along the direction of inhomogeneity de-
creases and the phase surfaces tilt toward a vertical plane; the
wave steepness increases so that breaking may occur. The
breaking process triggers an inertial instability of the shear
layer ~but no Kelvin–Helmholtz instability develops!. As a
result, a small scale turbulent regime sets in, which the mean
flow sustains. Enhanced transport properties are found dur-
ing this regime, with a turbulent Prandtl number of order
one. Preliminary computations with an inertially stable shear
layer show that the breaking process remains unchanged. But
the small scale turbulence stemming from breaking is no
longer sustained by the mean flow and, therefore, it quickly
decays. The resulting transport properties are weakened and
are currently quantified.28

Though this study was motivated by geophysical consid-
erations, the simple configuration we have addressed makes
it premature to draw any implication to realistic cases. We
still note that gravity wave frequency spectra with peaks at a
frequency close toN have been observed in the ocean,30 a
phenomenon that may be accounted for by the interaction of
the waves with a horizontally sheared current@D’Asaro ~pri-
vate communication!#. As well, Jacobitz and Sarkar31 found
that turbulence production in a stably stratified fluid is
strongly increased when the flow involves a horizontally
sheared horizontal mean flow, a numerical result which may
be explained by the occurrence of wave breaking in the
neighborhood of trapping locations.

The next step is to investigate the interaction of inertia-
gravity waves with a baroclinic barrier, and this is the pur-
pose of current research.
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