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Mixing in weakly turbulent stably stratified flows

C. Staquet a,∗, P. Bouruet-Aubertot b

a LEGI, B.P. 53, 38041 Grenoble Cedex 9, France
b LODYC, Université Pierre et Marie Curie, 4 Place Jussieu, Boîte 100, 75252 Paris Cedex 05, France

We analyse mixing in three weakly turbulent stably stratified flows, namely low amplitude break-

ing internal gravity waves, stably stratified homogeneous decaying turbulence and a stably 
stratified unstable shear layer. We use the method proposed by Winter et al. [J. Fluid Mech. 289 
(1995) 115], which provides an exact expression of the diffusive flux of density responsible for 
mixing. When the three flows have stabilized and organized into quasi-horizontal layers, we show 
that the diffusion coefficient behaves linearly as a function of a dynamical parameter that 
characterizes the largest scales of the flow (a Froude number squared or the inverse of a 
Richardson number) and we provide a simple expression of this linear law.
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1. Introduction

In a stably stratified inviscid fluid, the restoring action of the buoyancy force prevents

vertical transport of mass from occuring: any fluid particle displaced vertically from its equi-

librium position will oscillate around this position so that the net vertical displacement of the

particle over a phase period will be zero. It follows that vertical transport of mass in a stably

stratified fluid can only result from molecular diffusion, that is, from mixing. This does not

mean that the vertical diffusivity of density is equal to the molecular diffusivity at all times:

turbulent motions put into contact fluid particles with each other so that diffusive exchange

of mass (which is roughly proportional to the density difference between the fluid particles)

will be promoted. Fluid mixing is therefore enhanced, if the diffusive time scale of the mo-

tions which advect the fluid particles is not too large compared to the advective time scale.

The purpose of this note is to show that weakly turbulent stably stratified flows, in which

the dissipation rate of kinetic energy is controlled by horizontal motions with a vertical shear,
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share a common feature when their mixing properties are compared. We focus upon three

different flows, namely low amplitude breaking internal gravity waves, a three-dimensional

homogeneous stably-stratified turbulence and a stably stratified shear layer, in two and three

dimensions. The Boussinesq equations are solved for this purpose, using direct numerical

simulations. Mixing is analysed using the method derived by Winters et al. (1995) and

Winters and D’Asaro (1996), which allows one to compute exactly the diffusive flux of

density resulting in fluid mixing. This flux occurs across surfaces of constant density (rather

than vertically) and is referred to as the diapycnal flux.

We shall show that in the three flows we consider, the diapycnal diffusivity displays the

same dependency as a function of a dynamical parameter that characterizes the largest scales

of the flow and we provide a simple expression of this law. The dynamical parameter is a

Froude number when there is no background shear and a Richardson number when there is

a mean shear.

The outline of the paper is the following. In Section 2, the method of mixing analysis

is described, along with the numerical method we use to solve the equations of motions.

Sections 3–5 successively report about the three flows we consider: in each section, we

briefly specify the equations of motion that drive the flow dynamics, provide the striking

features of those dynamics and focus upon the common mixing law shared by the three

flows. Conclusions are drawn in Section 6.

A subset of the results presented in Sections 4 and 5 can be found in Godeferd and Staquet

(2001) and Staquet (2000), respectively, while Section 3 complements results obtained by

Bouruet-Aubertot et al. (2001). The purpose of the present paper, in gathering these results

and in further analysing them within a common frame, is to suggest that a characteristic law

may exist between mixing and the large scale dynamics in weakly turbulent stably stratified

flows.

2. Methodology

2.1. Analysis of mixing

The quantification of mixing in a stably stratified fluid relies upon the estimate of a

mixing rate, which is the rate of increase per time unit of potential energy resulting from

fluid mixing. This potential energy is denoted Eb in the following. It is only a part of the

total potential energy of the flow, Ep, and was characterized by Lorenz (1955) as being

its instantaneous minimum value: Eb is the potential energy of the fluid when all motions

have ceased and the fluid has returned to rest. Lombard et al. (1990) showed that Eb is the

potential energy of a stable density profile introduced by Thorpe (1977), obtained by sorting

adiabatically the fluid particles so that the heaviest fluid particle has the lowest altitude. This

sorted profile, which we shall refer to as ρb(z), is stable by construction. The third step,

realized by Lombard et al. (1990), was to compute the rate of change of Eb (i.e. Ėb) from

the sorted profile. This problem was solved by Winters et al. (1995) who provided analytical

expressions for the fluxes that control Ėb. These fluxes are the diapycnal flux, denoted Φd,

as well as, if mass flux occurs across the bounding surface of the fluid domain, advective

and diffusive mass fluxes across that surface. The latter fluxes are denoted Ėsurf adv
b and



Ėsurf dif
b , respectively. The temporal evolution of Eb thus obeys the equation

Ėb = Φd + Ėsurf adv
b + Ėsurf dif

b . (1)

Among the three flows we consider, the surface fluxes are zero for the shear layer only.

A local diapycnal flux φd(z, t) may also be defined, whose volume average is equal to

Φd/g, g being the modulus of the acceleration of gravity �g. φd(z, t) is expressed as (Winters

and D’Asaro, 1996)

φd(z, t) = −κ
〈|∇ρ|2〉I

dρb/dz
, (2)

where the average 〈·〉I is performed on an isopycnal surface; z denotes the vertical coordinate

and κ the molecular diffusivity of density.

When the fluid has returned to rest (if there is no shear) or to a hydrostatic balanced

laminar state (if there is a horizontal mean shear), the diffusive flux of density results from

purely molecular effects. We shall refer to this flux as Φi. Its expression is

Φi = κg
�ρ

H
, (3)

where �ρ is the density difference across the fluid domain and H is the domain height.

Φd − Φi is therefore the fluctuating diapycnal flux. Φi is the minimum value of Φd so that

Φd − Φi is always positive.

Since the background potential energy Eb results from the irreversible process of mixing,

Ep −Eb defines the potential energy associated with reversible processes. The latter energy

is usually referred to as the available potential energy and denoted Ea. It is the potential

energy of the density fluctuations about the sorted density profile. From the equation for

the total potential energy

Ėp = Φa + Φi + Ėsurf adv
p + Ėsurf dif

p , (4)

and from Eq. (1), one infers immediately the equation that governs the rate of change of Ea

Ėa = Φa − (Φd − Φi) + (Ėsurf adv
p − Ėsurf adv

b ) + (Ėsurf dif
p − Ėsurf dif

b ), (5)

where Φa is the vertical advective flux of density; the last two terms in Eqs. (4) and (5)

account for the rate of change of Ep and Ea, respectively, due to advective and surface

mass fluxes across the bounding surface of the fluid domain. Eq. (5) shows that, in the fluid

interior, a part of Ea is reversibly converted into vertical kinetic energy, at a rate equal to Φa

while another part is irreversibly converted into fluctuating background potential energy, at

a rate equal to Φd − Φi (Winters et al., 1995).

Several estimators of mixing have been proposed in the literature (see, for instance Fer-

nando, 1991) and we shall focus in the present paper upon two of them. These are the

diapycnal diffusivity and the mixing efficiency, which we now define.

As any diffusion coefficient, the diapycnal diffusivity Kρ is defined by the ratio of the

flux of scalar along the background scalar gradient (φd) divided by this scalar gradient



(−dρb/dz). Hence (Winters and D’Asaro, 1996)

Kρ = φd

−dρb/dz
. (6)

The efficiency of mixing (within the interior of the fluid domain) accounts for the amount

of energy gained per time unit through the mixing process, Φd, relative to the amount of

energy brought to the fluid per time unit, Ṁ say. When the fluid system is not forced, which

is the case in the three flows we consider, the dissipation rate of kinetic energy ǫ is used

in place of Ṁ . Also, only mixing resulting from the flow dynamics, that is from density

fluctuations about the sorted density profile, are of interest so that the fluctuating diapycnal

flux Φd − Φi should be employed in place of Φd. The definition of the mixing efficiency

we shall use is thus

γ = Φd − Φi

ǫ
. (7)

2.2. Mathematical model and numerical method

The dynamics of the flows we consider are driven by the Navier–Stokes equations in

the Boussinesq approximation: density fluctuations about a hydrostatic balanced state are

supposed to be small enough (in magnitude and frequency) for the fluid motions to be

incompressible. The effect of these density fluctuations upon the fluid motions comes into

play through a buoyancy force (difference between the gravity and the Archimedean forces).

These equations display a different form for each flow we consider so that their expression

will be written in the next sections. The boundary conditions are either periodic or of the

free slip type along the horizontal boundaries.

The Boussinesq equations are solved by a classical pseudo-spectral method (e.g. Canuto

et al., 1988): the spatial derivatives are computed using Fourier transforms while the nonlin-

ear terms are computed in physical space. The latter computation produces aliasing errors,

which are eliminated in Fourier space by a standard truncation procedure. Time is advanced

using a third order Adams–Bashforth scheme. When the boundary conditions are of the free

slip type along a boundary, the numerical domain is doubled about that boundary assuming

symmetry or antisymmetry properties of the fields about it. These fields become periodic

upon the doubled domain and can be expanded in Fourier series. The specific properties

of the associated Fourier coefficients are used to reduce the computation time, following a

now classical method proposed by Orszag (1971).

The analysis of mixing described in the previous section relies upon a sorted density

profile, whose computation is performed as follows. The value of the density field at each

grid point is identified with one fluid particle. These fluid particles are next sorted out with

their density. The sorted density profile is constructed by filling out each horizontal plane

with the heaviest fluid particles, starting with the bottom plane of the numerical domain.

Because the density slightly varies from particle to particle, it is averaged over each plane

to yield a one-dimensional profile. The word plane should be replaced by line when the

flow evolves in two dimensions.



3. Breaking internal gravity waves of low amplitude

3.1. Overall flow dynamics

We consider a stably stratified fluid in which the Brunt–Väisälä frequency

N =
(

− g

ρ0

dρlin

dz

)1/2

(8)

has a constant value. ρ0 + ρlin is the density of a hydrostatic balanced state, ρ0 being

a constant reference density and ρlin(z) a linear density profile. A monochromatic, high

frequency (that is close to N ) internal gravity wave of low amplitude, hereafter referred

to as the primary wave, propagates in this fluid. Low amplitude means that the isopycnals

are only slightly tilted with respect to the horizontal and far from overturning. We have

studied the dynamics of this wave in the vertical plane formed by �g and its wave vector
�k. The restriction to two-dimensional dynamics is motivated by a linear stability analysis

by Klostermeyer (1991), which predicts that such a low amplitude wave is most unstable

to two-dimensional perturbations in the (�g, �k) plane. Comparison of the two-dimensional

wave dynamics with a three-dimensional computation (Bouruet-Aubertot et al., 2001) and

with laboratory experiments (Benielli and Sommeria, 1996) confirms the validity of the

two-dimensional approach when flow statistics are compared.

Let us consider a coordinate system (0, x, y, z), where (x, z) is the vertical plane of the

primary wave with z pointing upwards. The Boussinesq equations in this plane are

∂∇2ψ

∂t
+ J (∇2ψ, ψ) = ∂ρ′

∂x
+ ν(∇2)2ψ (9)

∂ρ′

∂t
+ J (ρ′, ψ) = −N2 ∂ψ

∂x
+ ν

Pr
∇2ρ′. (10)

As is customary, the use of a stream function ψ such that u = −∂ψ/∂z and w = ∂ψ/∂x

implies that the incompressibility condition is satisfied implicitly. ρ′(x, z, t) is the density

fluctuation about the hydrostatic density profile mentioned above, scaled as an acceleration:

ρ′(x, z, t) = (g/ρ0)(ρ(x, z, t) − (ρ0 + ρlin(z)), where ρ(x, z, t) denotes the total density.

J is the nonlinear Jacobian operator, ν the kinematic viscosity and

Pr = ν

κ
(11)

is the Prandtl number of the fluid (κ has been defined in the previous section).

The fluid domain is a square box and periodic boundary conditions are used along the two

directions. Eqs. (9) and (10) are initialized with a propagating internal gravity wave (the pri-

mary wave) of wave vector �k = (1, 0, 1), Froude number A(|�k|/2π)2/N equal to 0.013 and

Reynolds number Re = A/ν equal to 10700. A is the initial amplitude of the stream func-

tion of the wave and N is set to 1. Four computations will be presented in this section, with

resolution 5122, which differ only in the value of the Prandtl number: Pr = 0.72, 1, 5 and 10.

Whether propagating (Koudella and Staquet, 2001) or standing (Bouruet-Aubertot et al.,

1995), the dynamics of the wave display the same behaviour: it becomes unstable through



parametric instability among resonant triads, a result predicted theoretically by Drazin

(1977) and Mied (1976) for a propagating wave. The damping action of viscosity at small

scales selects a range of unstable triads, among which the numerical grid operates a second

selection. One particular triad eventually grows, which controls the whole instability. The

amplification of the resonant waves within the triad, through extraction of energy from

the primary wave, eventually makes the latter wave break. Breaking means here that the

primary wave loses its coherence (but it does not grow in amplitude). A turbulent regime

sets in, where the kinetic energy and potential energy spectra display a k−3
z law, kz being the

vertical wavenumber. This regime lasts a few Brunt–Väisälä periods (2π/N ) only because

the primary wave is not forced (see Bouruet-Aubertot et al., 1996 for standing waves;

Koudella, 1999 for propagating waves). The breaking of the wave is illustrated in Fig. 1 for

a propagating primary wave.

3.2. Analysis of mixing

Wavebreaking in an unforced uniformly stably stratified fluid appears to result in weak

fluid mixing over the duration the (laboratory or numerical) experiments are conducted (e.g.

McEwan, 1983; Taylor, 1992; Benielli and Sommeria, 1996; Bouruet-Aubertot et al., 2001).

The reason is that the energy input to the fluid, a part of which only will be available for

mixing, is much smaller than the potential energy of the background density profile. This

point may be expressed alternately by noting that the vertical scale of the wave instability is

much smaller than that of the background density profile. In laboratory experiments of an

internal gravity wave propagating along an interface by contrast, the breaking of the wave

may destroy the interface when the wave amplitude becomes comparable to the thickness of

that interface (e.g. Hannoun and List, 1988). It follows that, when unforced wavebreaking

occurs in a linearly stratified fluid, the sorted density profile only slightly departs from the

linear profile: relatives changes are smaller than 1% and are associated with modulations

of dρb/dz over thin layers, whose thickness has been estimated in Bouruet-Aubertot et al.

(2001). These changes, which would initiate the formation of density steps if the wave were

forced, are ignored in the following. We shall thus consider that ρb(z, t) ≃ ρlin(z) (this

approximation being further discussed at the end of this section). The diapycnal diffusivity

(6) therefore takes the simpler expression

Kρ(z, t) ≃ g

ρ0

φd(z, t)

N2
. (12)

We shall focus in this section upon the relation between the diapycnal diffusivity (averaged

over the height of the fluid domain) and a Froude number associated with the largest scales

of the flow. The Froude number we consider is defined as follows:

Frt =
√

2Z

N
=

(

ǫ

μN2

)1/2

, (13)

where Z is half the domain averaged vorticity squared and ǫ = 2μZ denotes the dis-

sipation rate of kinetic energy per unit area (μ = ρ0ν is the dynamical viscosity). In

ordinary turbulence, such a Froude number is associated with the smallest scales of the flow



Fig. 1. Contours of the density field (left column) and vorticity field (right column) in the (x, z) vertical plane,

for an internal gravity wave of Froude number Frt = 0.013 and Prandtl number Pr = 1 propagating toward

the upper right corner of the domain. Upper row: views at Nt/2π = 32.6, shortly before breaking occurs: the

parametric instability that grows through resonant interaction with the primary wave is of large enough amplitude

to be visible. It is manifested as vorticity bands of alternate sign, organized into a wave packet (right frame). Lower

row: the fields are displayed one Brunt–Väisälä period later, just after breaking has occurred. The vorticity layers

have become unstable (the origin of this instability is discussed in Koudella and Staquet (2001)).

(e.g. Imberger and Boashash, 1986). In the present case where the kinetic energy spectrum

evolves as k−3
z , however, the enstrophy spectrum evolves as k−1

z , meaning that the volume

averaged enstrophy is controlled by the largest scales of the flow. Hence, in stably strati-

fied turbulence resulting from internal gravity wave breaking, Frt is a dynamical parameter

associated with the largest scales.

This turbulent regime is statistically homogeneous along the vertical direction so that

the diapycnal diffusivity Kρ may be averaged along the vertical direction. Normalizing

this averaged value by the molecular diffusivity κ yields an estimate of the Cox number



Fig. 2. Instantaneous Cox number Cox(t) defined by Eq. (14) as a function of the Froude number squared Fr2
t (t)

defined by Eq. (13) for the runs with Pr = 0.72 (—, bottom curve), Pr = 5 (· · · ), Pr = 10 (—, top curve). All

times after breaking are shown (Nt/2π ≥ 35).

(Osborn and Cox, 1972)

Cox ≡ 1

H

∫ H

0

Kρ

κ
dz = Φd

Φi

, (14)

where Φi has the simple expression κρ0N
2 in the present case of a uniformly stably stratified

fluid and H is the domain height, as before.

The instantaneous values of the Cox number and of the turbulent Froude number have

been computed at all times of the runs having Pr = 0.72, 5 and 10. Cox(t) is plotted as a

function of Fr2
t (t) in Fig. 2, once breaking has occurred. A linear law is displayed for the

smallest values of Fr2
t , which can be modelled by the following simple expression. From

definition (7) for γ , one has: Φd = ǫγ + Φi. Expressing ǫ as a function of the turbulent

Froude number (13), we find Φd = γμN2Fr2
t + Φi. Dividing by Φi yields

Cox = γ Pr Fr2
t + 1, (15)

where Pr is the Prandtl number. The coefficient of the linear law inferred from Fig. 2 is thus

γ Pr. It yields a value for γ equal to ≃1.2 for Pr = 0.72, ≃0.5 for Pr = 5 and ≃0.35 for

Pr = 10.

The validity of expression (15) to account for the linear law displayed in Fig. 2 relies

upon the mixing efficiency to have reached a constant value once breaking has occurred. γ

is plotted as a function of time in Fig. 3: it seems indeed to relax toward an asymptotic value

after breaking, with the approach faster as the Prandtl number increases. The estimated

asymptotic values are lower than those inferred from Fig. 2 using the law (15) and an

argument to account for this behavior is provided in the last paragraph of this section.

The existence of final steady regime also appears when the rate of production Φa of the

available potential energy is compared with the rate of destruction Φd − Φi (Fig. 4). Both



Fig. 3. Mixing efficiency defined by Eq. (7) as a function of time (scaled by the Brunt–Väisälä period) for the

same runs as in Fig. 2. The Pr = 1 run is also shown for comparison.

advective and diffusive fluxes coincide during the initial stable regime but strongly depart

when breaking starts: Φa displays alternately positive and negative values while Φd − Φi

remains positive and filters out, in a sense, the oscillations displayed by Φa. Once breaking

has occurred (for Nt/2π > 45), the fluctuating diapycnal flux relaxes toward zero and may

be interpreted as the temporal average of Φa.

Fig. 4. Vertical advective flux of density Φa and fluctuating diapycnal flux Φd − Φi vs. time for the Pr = 0.72

run. Time is scaled by the Brunt–Väisälä period.



We finally comment upon the initial behavior of γ displayed in Fig. 3: γ has a constant

value, which is Prandtl number dependent. This is consistent with the fact that, for a low

amplitude internal gravity wave propagating in a linearly inviscid stratified fluid in an in-

finite domain, γ is equal to 1/Pr; the sorted density profile and the linear density profile

coincide at any time in this case because the flow is inviscid. Fig. 3 shows that the constant

initial values of γ actually underestimate by 37% the theoretical prediction 1/Pr. The reason

is that the sorted density profile does not coincide with the linear density profile near the

horizontal boundaries of the fluid domain. A strong density gradient is observed instead at

the horizontal boundaries, which modifies Φd and, consequently, γ . The steepening of the

density gradient near the boundaries is caused by the application of the sorting process in

a bounded domain with periodic boundary conditions: at the lower boundary for instance,

positive density fluctuations correspond to particles which would have been displaced up-

ward in a infinite domain, thus stemming from a lower altitude, where the fluid is denser.

The influence of this effect weakens when breaking occurs because strong gradients are

created in the fluid interior as well.

4. Stably stratified homogeneous turbulence

4.1. Overall flow dynamics

Stably stratified homogeneous turbulence with a uniform density (or temperature) profile

has been studied by many authors in the past, using laboratory and numerical experiments.

In the latter case, a stably stratified turbulent flow is created by a method that has become

standard (Riley et al., 1981): a velocity field is initialized in spectral (Fourier) space through

a prescribed kinetic energy spectrum (usually peaked about a given wavenumber that sets

the scale at which energy is injected) and evolves temporally up to the time t0 the triple

correlations have built. (In practice, this time is estimated by the skewness factor to have

reached a value of order 0.45 or so, according to laboratory experiments, implying that a

fully turbulent flow has developed.) The velocity field at t = t0 is used as the initial condition

of a stably stratified flow, created by setting the Brunt–Väisälä frequency to a non-zero value

at t = t0. A density field may also be imposed at this time. In the simulations we present

below, this density field is set so that it has the same spectral distribution as the velocity

field at t = t0 and the potential energy is half the kinetic energy of the flow at t = t0.

We solve the three-dimensional Boussinesq equations in a cubic numerical domain with

periodic boundary conditions. These equations are

∂ �u
∂t

+ (�u · ∇)�u = − 1

ρ0
∇P − ρ′�iz + ν∇2 �u, (16)

∂ρ′

∂t
+ (�u · ∇)ρ′ = N2w + ν

Pr
∇2ρ′, (17)

∇ · �u = 0. (18)

The notations are the same as in the previous section: �u = (u, v, w) is the velocity field, P

denotes the pressure field and ρ′(x, y, z, t) refers to the field of density fluctuations about



a hydrostatic balanced state, scaled like an acceleration. ν and Pr, respectively, denote the

kinematic viscosity and the Prandtl number of the fluid (defined by (11)). The numerical

method has been described in Section 2.2.

A number of runs initialized by the method described above has been performed, at

resolution 2563, in which N is equal to π or π/2 and 1/ν is varied from 150 to 400, the

Prandtl number having the constant value of 1. Two runs will be presented in this section,

corresponding to N = π/2 and N = π , the viscosity having the value 1/300 in both cases.

The dynamics of these flows is best described in terms of three dimensional parameters,

namely a Froude number Fr, a Reynolds number Reλ based upon the Taylor microscale λ

and the Prandtl number Pr. In laboratory experiments (e.g. Lienhard and Van Atta, 1990;

Yoon and Warhaft, 1990), the Froude number is commonly defined by the ratio of two

length scales, a buoyancy length scale Lρ = w′/N , which is the greatest distance a fluid

particle can move against the density gradient and an integral length scale L = u′3/ǫ, which

characterizes the scale of the largest energetic structures. u′ and w′ denote the rms value of

the u and w velocity components, respectively. Thus

Fr = Lρ

L
= ǫ

N

w′

u′3 , Reλ = u′λ
ν

. (19)

As is well-known, the buoyancy force stabilizes the flow, in converting vertical kinetic en-

ergy into potential energy, the latter energy being involved in irreversible processes such as

nonlinear transfers toward small scales (at a faster rate than kinetic energy, e.g. Holloway,

1988; Lesieur, 1997; Staquet and Godeferd, 1998) and molecular mixing. Consequently, as

time evolves, the flow organizes into quasi-horizontal layers (e.g. Metais and Herring, 1989).

This organization of the flow leads to a strong variability of the velocity components along

the vertical direction, which is best put forward by considering the vertical derivative of a ve-

locity component. An iso-surface of ∂v/∂z is thus displayed in Fig. 5 (see caption) at the end

Fig. 5. Run with N = π at 6 Brunt–Väisälä periods. Iso-surface of ∂v/∂z of value equal to 25% of the maximum

value of ∂v/∂z in the fluid domain at that time (from Godeferd and Staquet, 2001).



Fig. 6. Temporal evolution of the Reynolds number based upon the Taylor microscale, defined by (19) for the two

following runs, (—): ν = 1/300, N = π ; (- - -): ν = 1/300, N = π/2. Time is scaled by the Brunt–Väisälä

period 2π/N .

of the simulation with N = π . Since more energy is left in the horizontal plane, a horizontal

velocity component is considered. This horizontal velocity component may be arbitrarily

chosen because the flow is statistically isotropic about the vertical direction (so that u ≃ v).

The temporal evolution of Reλ is displayed in Fig. 6 for the two runs discussed in this

section. Reλ starts from a value close to 45 and, from Nt/2π ≃ 3, relaxes toward a nearly

constant value. This value depends upon N , which shows that the evolution of Reλ is not

solely driven by buoyancy effects; the reason is that u′ is mostly contributed by (large scale)

horizontal motions. We found that other quantities relax toward a constant value from this

time on, such as the ratio u′/w′ (Godeferd and Staquet, 2001). This ratio remains close to

the value of 1.4 from about Nt/2π ≃ 2, in good agreement with laboratory experiments

(Lienhard and Van Atta, 1990; Yoon and Warhaft, 1990). This suggests that a weakly

turbulent, and even quasi-balanced, dynamical state may have been reached.

4.2. Analysis of mixing

As discussed in the previous section, the sorted density profile is close at all times to

the linear density profile in such a homogeneous flow so that the available potential energy

Ea may be approximated by the variance of the density fluctuations about either profile:

Ea ≃ 0.5〈ρ′2〉/N2, where 〈·〉 denotes a volume average (the validity of this approxima-

tion is discussed in Holliday and McIntyre, 1981). It follows that a simple expression for

the fluctuating diapycnal flux Φd − Φi is provided by the dissipation rate of the fluctu-

ating density variance χ = κ〈|∇ρ′|2〉 divided by N2: Φd − Φi ≃ χ/N2. This estimate

is commonly used in the ocean (see, e.g. Toole, 1998 for a review). In this context, the

mixing efficiency γ should be defined by γh = χ/(N2ǫ), the volume averaged diapycnal



Fig. 7. (a) Comparison of the fluctuating diapycnal flux Φd − Φi (—) with the advective flux of density Φa (- - -)

for the N = π run. (b) Temporal evolution of the mixing efficiency γh , defined in Section 4.2, (—): N = π ; (- - -):

N = π/2. Time is scaled by the Brunt–Väisälä period 2π/N .

diffusivity by Kh = χ/N4 and the Cox number by Coxh = χ/(κN4). The index h stands

for homogeneous.

Fig. 7a displays the rate of production Φa and the rate of destruction Φd − Φi of the

available potential energy. Both quantities nearly coincide during the final regime of the

flow which attests that a quasi-steady regime has been reached.

The temporal evolution of γh is plotted in Fig. 7b for the two runs we consider. As opposed

to Reλ, the curves nearly coincide which shows that the evolution of γh is driven by the



Fig. 8. Cox number Coxh(t) as a function of (Fr(t)Reλ(t))
2, where Fr denotes a Froude number and Reλ, a Reynolds

number based upon the Taylor microscale, for all times of the two runs described in Fig. 6. (- - -): N = π/2; (—):

N = π . All parameters are defined in Section 4.

accumulated effect of buoyancy. Apart from the very initial stage of the computation where

a 0.7 value is reached, γh remains close to 0.45 at all times while slowly decaying.

In order to relate the mixing properties of the flow to the large scale dynamics, we express

the Cox number Coxh as a function of the Froude number Fr defined by Eq. (19). When a

dependency as a function of Fr2 is sought, a simple expression is obtained

Coxh = Pr

20

(

u′

w′

)2

γh(Fr Reλ)
2. (20)

This expression involves Reλ and u′/w′, in addition to γh (we recall that Pr = 1). The former

three quantities relax toward a constant value as time elapses, implying that the Cox number

should behave linearly upon Fr2 when Fr is small enough. This is attested in Fig. 8, where

Coxh is plotted as a function of (Fr Reλ)
2 for the runs we consider. The slope of the linear

dependency is about 0.045, in good agreement with the large time value of its theoretical

expression (taking Pr = 1, γh = 0.45 and u′/w′ = 1.4 yields Pr/20(u′/w′)2γh = 0.044).

One interest of this linear dependency is that, conversely, it provides an estimate of the

mixing efficiency if the other parameters are known.

5. Stably stratified shear layer in two and three dimensions

5.1. Overall flow dynamics

The shear layer is the simplest case of an inhomogeneous flow. It is formed by two

layers of fluids having different densities and horizontal velocities. The interface between



the layers, which thickens by molecular diffusion, enlarges most efficiently if the interface

is unstable. A necessary condition for instability is the Richardson number

J = min
z

g

ρ0

−dρ/dz
(

dU/dz
)2

(21)

to have a value smaller than 0.25 somewhere in the fluid (see, e.g. Drazin and Read,

1981). The overbar in Eq. (21) refers to a horizontal average. If this condition is met, the

Kelvin–Helmholtz instability may develop in the vertical plane of the unstable shear flow.

It is therefore a two-dimensional instability. As its amplitude grows, nonlinear effects gain

importance and makes it saturate while the flow vorticity organises into quasi-horizontal bil-

lows. The billows are most unstable to a (two-dimensional) subharmonic instability which

makes them pair (see, e.g. Ho and Huerre, 1984 for a review). Secondary three-dimensional

instabilities may also occur, at smaller scales than the two-dimensional instabilities. Fur-

ther detail about the three-dimensional instabilities in a stably stratified shear layer may be

found in, e.g. Schowalter et al. (1994), Klaassen and Peltier (1991) or Caulfield and Peltier

(1994).

To investigate the shear layer dynamics and resulting mixing properties, we solve the

Boussinesq equations in two and three dimensions. Non-dimensional variables are used:

we take half the thickness of the initial velocity profile as a length scale, which we denote

as δi, half the velocity difference across the flow as a velocity scale (U ) and half the density

difference across the flow times
√

Pr, as a density scale (�ρ
√

Pr/2). In three dimensions,

the resulting non dimensional equations are

∂ �u
∂t

+ (�u · ∇)�u = −∇P + Jρ + 1

Re
∇2 �u, (22)

∂ρ

∂t
+ (�u · ∇)ρ = 1

Pr Re
∇2ρ, (23)

∇�u = 0. (24)

As in the previous section, �u = (u, v, w) denotes the velocity field with u being the

streamwise component and w the vertical one; P and ρ, respectively, are the dynamical

pressure deviation and density deviation about a hydrostatic balanced state of reference

density ρ0. J , Re and Pr are the three parameters, set by the scaling mentioned above, upon

which the flow dynamics depend. J and Re are expressed as (Pr is defined by Eq. (11))

J = g

ρ0

�ρ
√

Pr

2

δi

U2
, Re = Uδi

ν
. (25)

The initial mean (horizontally averaged) velocity and density fields are of the error function

type, the thickness of the density profile being
√

Pr larger than that of the velocity profile.

The velocity field is destabilized by two- and three-dimensional perturbations. The boundary

conditions are periodic along the streamwise (x) and spanwise (y) directions and of free slip

type along the vertical. The same numerical method as in the previous sections is employed.

We have performed several runs, in two and three dimensions, in which J ranges between

0.04 and 0.16 and Pr has a value of 0.7 or 1.4. The resolution is (Nx, Nz) = (1024, 1025)



Fig. 9. Vorticity contours of a shear layer evolving in a vertical plane (J = 0.16, Re = 2000, Pr = 0.7). (a) The

Kelvin–Helmholtz instability has developed and saturated. (b) Turbulent regime, once two-dimensional secondary

instabilities have developed. (c) Final time of the simulation: a steady regime (apart from diffusive effects) has

been reached. The time unit is δi/U (δi and U are defined in Section 5.1).

in two dimensions implying that a high Reynolds number can be chosen (Re = 1000 or

2000); in three dimensions, the resolution is (Nx, Ny, Nz) = (128, 128, 257) and Re ≃ 300.

(Ni denotes the number of grid points along direction i).

An example of the flow development in two and three dimensions is displayed in Figs. 9

and 10, respectively.

5.2. Analysis of mixing

The mixing properties of a stably stratified shear layer have been studied by a few authors

(Koop and Browand, 1979; Scinocca, 1995; Cortesi et al., 1999; Staquet and Winters, 1997;

Staquet, 2000; Caulfield and Peltier, 2000). Only in the three latter papers is the method

derived by Winters et al. (1995) used.

In such a vertically inhomogeneous flow, the sorted density profile strongly differs from

the mean (horizontally averaged) density profile because the vertical scale of the instability

is comparable to that of the vertical density gradient (Staquet, 2000). Hence, as opposed to



Fig. 10. Temporal evolution of a three-dimensional shear layer simulation with J = 0.167, Re ≃ 300 and

Pr = 1.4. A surface equal to 0.5 maxD(|ωx | + |ωy | + |ωz|), where |ωi | is the i-component of the vorticity and

D the fluid domain, is shown at successive times: (a) t = 34, once the Kelvin–Helmholtz instability has grown;

the Kelvin–Helmholtz billow, already distorted by the growth of the three-dimensional perturbation, is visible

in between vortex sheets (these are the usual braids, reinforced by the baroclinic torque); the streamwise axis is

indicated by an X. (b) t = 108, when three-dimensional small scale secondary instabilities have developed. (c)

t = 227, at the end of simulation; only 3/4 of the numerical domain along the vertical direction is shown for

clarity. Time unit is defined in Fig. 9 (from Staquet, 2000).

the previous sections, quantitative information into the mixing properties of the flow can

only be gained by using the exact expression of the diapycnal flux, which relies upon the

sorted density profile. The mixing efficiency γ defined by Eq. (7) is plotted in Fig. 11a

for two-dimensional simulations and in Fig. 11b for three-dimensional simulations. The

curves display similar features during the development of the Kelvin–Helmholtz instability

(for t ≤ 45) and during the later stage of the flow (for t larger than ≃150). By contrast,



Fig. 11. Mixing efficiency for a stably-stratified shear layer. (a) Two-dimensional shear layer: (—) Re = 2000,

Pr = 0.5, (- - -) Re = 1000, Pr = 1.4, (· · · ) Re = 1000, Pr = 0.7 (J = 0.167 for the three computations);

the arrow indicates the time at which the Kelvin–Helmholtz instability saturates. (b) Three-dimensional shear

layer; the mixing efficiency has been averaged over 7 computations with 0.04 ≤ J ≤ 0.167, Pr = 0.7 or 1.4 and

Re ≃ 300. Time unit is defined in Fig. 9.



during the intermediate turbulent regime, the two-dimensional simulations are unable to

reproduce the mixing efficiency predicted the three-dimensional simulations because the

conservation of enstrophy by nonlinear terms in two dimensions prevents kinetic energy

from being efficiently transferred toward small scales. As a consequence, the dissipation

rate of kinetic energy has a value too low relative to its three-dimensional counterpart, which

overestimates γ .

As in the previous sections, we investigate the relation between the diapycnal diffusivity

Kρ (normalized by the molecular diffusivity κ) and a large scale dynamical parameter.

Note that, in the present inhomogeneous flow, the z-dependency of the parameters should

be considered (for instance, a volume averaged Cox number would be meaningless). The

presence of a mean shear implies that a Richardson number should be taken for the dynamical

parameter. We make use of the monotonicity of the sorted density profile ρb to introduce a

Richardson number that remains one-signed at any time

Rib(z) = −J
dρb/dz

(dU/dz)2
. (26)

Kρ(z)/κ is plotted as a function of 1/Rib(z) in Fig. 12 during the final regime of the

two-dimensional runs displayed in Fig. 11a, when γ has reached a constant value. A linear

dependency is found. It may be expressed by the same simple relation as in the previous

sections, though a local formulation should be used to account for the vertical inhomogene-

ity. Since we deal with a sorted density profile, local means here that a given isopycnal is

considered. We get

Kρ(z)

κ
= Pr

γloc(z)

Rib(z)
+ 1 (27)

Fig. 12. Diapycnal diffusivity Kρ(z) defined by Eq. (6) as a function of the inverse of the Richardson number Rib(z)

defined by Eq. (26). The different curves correspond to successive times of the final regime of a two-dimensional

simulation with J = 0.167, Re = 1000, Pr = 1.4.



where γloc(z) = (φd(z) − φi(z))/ǫloc(z) is a local mixing efficiency (φi(z) = −κdρb/dz),

which depends upon z a priori; we have also assumed that the local (in the above sense)

dissipation rate of kinetic energy is mostly contributed by the vertical shear of the mean

flow: ǫloc(z) ≃ 2ν(dU/dz)2.

The linear dependency we find in Fig. 12 implies that γloc is actually a constant function

of z. We found that this constant function has a value equal to 3γ . When the same analysis

is conducted in a three-dimensional shear layer, this linear dependency is not recovered,

even when Rib(z) is defined using either a sorted or a horizontally averaged dissipation rate

divided by 2ν (instead of (dU/dz)2). Hence, in general, γloc is a non trivial function of z.

The finding of a constant value in the two-dimensional shear layer but not in the three-

dimensional one suggests to analysing the main differences between the two- and three-

dimensional flow dynamics during the final regime. One important difference is that a

quasi-steady state has been reached in two dimensions. For instance, the advective flux Φa

nearly matches the fluctuating diapycnal flux Φd −Φi during this later stage (Staquet, 2000).

The same result holds for the final regime of breaking gravity waves (Fig. 4) as well as of

homogeneous stably stratified turbulence (Fig. 7a). The second difference is that the flow

has organized into layers during this final regime, which implies that the dissipation rate

of kinetic energy is mainly contributed by the vertical variability of horizontal motions. In

homogeneous stably stratified turbulence for instance, 60% of ǫ is contributed by ν(∂u/∂z)2

(Godeferd and Staquet, 2001) and we found this ratio to be higher for low amplitude breaking

gravity waves. This is also the case in the two-dimensional shear layer but does not hold at

all during the final stage of the three-dimensional shear layer.

6. Conclusion

We have studied the mixing properties of three stably stratified flows: breaking gravity

waves, a homogeneous stably stratified decaying turbulence and a stably stratified shear

layer in two and three dimensions. We have found that, during the final regime of the

homogeneous flows (stably stratified turbulence and breaking gravity waves) and of the

two-dimensional stably stratified shear layer, the diapycnal diffusivity behaves linearly as

a function of a Froude number squared when the flow is homogeneous and as a function of

the inverse of a Richardson number in the two-dimensional shear layer case. This behaviour

can be accounted for by a simple expression which shows that the coefficient of the linear

law is the mixing efficiency of the flow, γ , times the Prandtl number of the fluid. Such a

linear law thus amounts to the scaling often assumed by oceanographers (e.g. Munk and

Wunsch, 1998). The mixing efficiency is volume averaged in the homogeneous case and

averaged over an isopycnal in the shear layer case. This linear law implies that γ has reached

a constant value.

When analysing the final regime of the three flows sharing this common linear law, we find

that a quasi-steady stable state has been reached, in which the production and dissipation

rates of available potential energy balance; also, the dissipation rate of kinetic energy is

mostly contributed by the vertical variability of horizontal motions. Thus, the flow has

become weakly turbulent and organized into layers. Further work remains to be done to

understand whether such a linear law is a generic mixing property of this type of flow.
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