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Introduction

In a stably stratified inviscid fluid, the restoring action of the buoyancy force prevents vertical transport of mass from occuring: any fluid particle displaced vertically from its equilibrium position will oscillate around this position so that the net vertical displacement of the particle over a phase period will be zero. It follows that vertical transport of mass in a stably stratified fluid can only result from molecular diffusion, that is, from mixing. This does not mean that the vertical diffusivity of density is equal to the molecular diffusivity at all times: turbulent motions put into contact fluid particles with each other so that diffusive exchange of mass (which is roughly proportional to the density difference between the fluid particles) will be promoted. Fluid mixing is therefore enhanced, if the diffusive time scale of the motions which advect the fluid particles is not too large compared to the advective time scale.

The purpose of this note is to show that weakly turbulent stably stratified flows, in which the dissipation rate of kinetic energy is controlled by horizontal motions with a vertical shear, share a common feature when their mixing properties are compared. We focus upon three different flows, namely low amplitude breaking internal gravity waves, a three-dimensional homogeneous stably-stratified turbulence and a stably stratified shear layer, in two and three dimensions. The Boussinesq equations are solved for this purpose, using direct numerical simulations. Mixing is analysed using the method derived by [START_REF] Winters | Available potential energy and mixing in density-stratified fluids[END_REF] and [START_REF] Winters | Diascalar flux and the rate of fluid mixing[END_REF], which allows one to compute exactly the diffusive flux of density resulting in fluid mixing. This flux occurs across surfaces of constant density (rather than vertically) and is referred to as the diapycnal flux.

We shall show that in the three flows we consider, the diapycnal diffusivity displays the same dependency as a function of a dynamical parameter that characterizes the largest scales of the flow and we provide a simple expression of this law. The dynamical parameter is a Froude number when there is no background shear and a Richardson number when there is a mean shear.

The outline of the paper is the following. In Section 2, the method of mixing analysis is described, along with the numerical method we use to solve the equations of motions. Sections 3-5 successively report about the three flows we consider: in each section, we briefly specify the equations of motion that drive the flow dynamics, provide the striking features of those dynamics and focus upon the common mixing law shared by the three flows. Conclusions are drawn in Section 6.

A subset of the results presented in Sections 4 and 5 can be found in [START_REF] Godeferd | Statistical modelling and direct numerical simulations of decaying stably-stratified turbulence: Part 2. Large and small scale anisotropy[END_REF] and [START_REF] Staquet | Mixing in a stably stratified shear layer: two-and three-dimensional numerical experiments[END_REF], respectively, while Section 3 complements results obtained by [START_REF] Bouruet-Aubertot | Particle dispersion and mixing by breaking internal gravity waves: two-dimensional numerical experiments[END_REF]. The purpose of the present paper, in gathering these results and in further analysing them within a common frame, is to suggest that a characteristic law may exist between mixing and the large scale dynamics in weakly turbulent stably stratified flows.

Methodology

Analysis of mixing

The quantification of mixing in a stably stratified fluid relies upon the estimate of a mixing rate, which is the rate of increase per time unit of potential energy resulting from fluid mixing. This potential energy is denoted E b in the following. It is only a part of the total potential energy of the flow, E p , and was characterized by [START_REF] Lorenz | Available potential energy and the maintenance of the general circulation[END_REF] as being its instantaneous minimum value: E b is the potential energy of the fluid when all motions have ceased and the fluid has returned to rest. [START_REF] Lombard | Energetics of a stably stratified mixing layer[END_REF] showed that E b is the potential energy of a stable density profile introduced by [START_REF] Thorpe | Turbulence and mixing in a Scottish Loch[END_REF], obtained by sorting adiabatically the fluid particles so that the heaviest fluid particle has the lowest altitude. This sorted profile, which we shall refer to as ρ b (z), is stable by construction. The third step, realized by [START_REF] Lombard | Energetics of a stably stratified mixing layer[END_REF], was to compute the rate of change of E b (i.e. Ėb ) from the sorted profile. This problem was solved by [START_REF] Winters | Available potential energy and mixing in density-stratified fluids[END_REF] (1)

Among the three flows we consider, the surface fluxes are zero for the shear layer only.

A local diapycnal flux φ d (z, t) may also be defined, whose volume average is equal to Φ d /g, g being the modulus of the acceleration of gravity g. φ d (z, t) is expressed as [START_REF] Winters | Diascalar flux and the rate of fluid mixing[END_REF] 

φ d (z, t) =-κ |∇ρ| 2 I dρ b /dz , (2) 
where the average • I is performed on an isopycnal surface; z denotes the vertical coordinate and κ the molecular diffusivity of density.

When the fluid has returned to rest (if there is no shear) or to a hydrostatic balanced laminar state (if there is a horizontal mean shear), the diffusive flux of density results from purely molecular effects. We shall refer to this flux as Φ i . Its expression is

Φ i = κg ρ H , ( 3 
)
where ρ is the density difference across the fluid domain and H is the domain height.

Φ d -Φ i is therefore the fluctuating diapycnal flux. Φ i is the minimum value of Φ d so that Φ d -Φ i is always positive.
Since the background potential energy E b results from the irreversible process of mixing, E p -E b defines the potential energy associated with reversible processes. The latter energy is usually referred to as the available potential energy and denoted E a . It is the potential energy of the density fluctuations about the sorted density profile. From the equation for the total potential energy

Ėp = Φ a + Φ i + Ėsurf adv p + Ėsurf dif p , (4) 
and from Eq. ( 1), one infers immediately the equation that governs the rate of change of

E a Ėa = Φ a -(Φ d -Φ i ) + ( Ėsurf adv p -Ėsurf adv b ) + ( Ėsurf dif p -Ėsurf dif b ), (5) 
where Φ a is the vertical advective flux of density; the last two terms in Eqs. ( 4) and ( 5) account for the rate of change of E p and E a , respectively, due to advective and surface mass fluxes across the bounding surface of the fluid domain. Eq. ( 5) shows that, in the fluid interior, a part of E a is reversibly converted into vertical kinetic energy, at a rate equal to Φ a while another part is irreversibly converted into fluctuating background potential energy, at a rate equal to Φ d -Φ i [START_REF] Winters | Available potential energy and mixing in density-stratified fluids[END_REF]. Several estimators of mixing have been proposed in the literature (see, for instance Fernando, 1991) and we shall focus in the present paper upon two of them. These are the diapycnal diffusivity and the mixing efficiency, which we now define.

As any diffusion coefficient, the diapycnal diffusivity K ρ is defined by the ratio of the flux of scalar along the background scalar gradient (φ d ) divided by this scalar gradient (-dρ b /dz). Hence [START_REF] Winters | Diascalar flux and the rate of fluid mixing[END_REF])

K ρ = φ d -dρ b /dz . ( 6 
)
The efficiency of mixing (within the interior of the fluid domain) accounts for the amount of energy gained per time unit through the mixing process, Φ d , relative to the amount of energy brought to the fluid per time unit, Ṁ say. When the fluid system is not forced, which is the case in the three flows we consider, the dissipation rate of kinetic energy ǫ is used in place of Ṁ. Also, only mixing resulting from the flow dynamics, that is from density fluctuations about the sorted density profile, are of interest so that the fluctuating diapycnal flux Φ d -Φ i should be employed in place of Φ d . The definition of the mixing efficiency we shall use is thus

γ = Φ d -Φ i ǫ . (7)

Mathematical model and numerical method

The dynamics of the flows we consider are driven by the Navier-Stokes equations in the Boussinesq approximation: density fluctuations about a hydrostatic balanced state are supposed to be small enough (in magnitude and frequency) for the fluid motions to be incompressible. The effect of these density fluctuations upon the fluid motions comes into play through a buoyancy force (difference between the gravity and the Archimedean forces). These equations display a different form for each flow we consider so that their expression will be written in the next sections. The boundary conditions are either periodic or of the free slip type along the horizontal boundaries.

The Boussinesq equations are solved by a classical pseudo-spectral method (e.g. [START_REF] Canuto | Spectral Methods in Fluid Dynamics[END_REF]: the spatial derivatives are computed using Fourier transforms while the nonlinear terms are computed in physical space. The latter computation produces aliasing errors, which are eliminated in Fourier space by a standard truncation procedure. Time is advanced using a third order Adams-Bashforth scheme. When the boundary conditions are of the free slip type along a boundary, the numerical domain is doubled about that boundary assuming symmetry or antisymmetry properties of the fields about it. These fields become periodic upon the doubled domain and can be expanded in Fourier series. The specific properties of the associated Fourier coefficients are used to reduce the computation time, following a now classical method proposed by [START_REF] Orszag | Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representation[END_REF].

The analysis of mixing described in the previous section relies upon a sorted density profile, whose computation is performed as follows. The value of the density field at each grid point is identified with one fluid particle. These fluid particles are next sorted out with their density. The sorted density profile is constructed by filling out each horizontal plane with the heaviest fluid particles, starting with the bottom plane of the numerical domain. Because the density slightly varies from particle to particle, it is averaged over each plane to yield a one-dimensional profile. The word plane should be replaced by line when the flow evolves in two dimensions.

Breaking internal gravity waves of low amplitude

Overall flow dynamics

We consider a stably stratified fluid in which the Brunt-Väisälä frequency

N = - g ρ 0 dρ lin dz 1/2 (8)
has a constant value. ρ 0 + ρ lin is the density of a hydrostatic balanced state, ρ 0 being a constant reference density and ρ lin (z) a linear density profile. A monochromatic, high frequency (that is close to N) internal gravity wave of low amplitude, hereafter referred to as the primary wave, propagates in this fluid. Low amplitude means that the isopycnals are only slightly tilted with respect to the horizontal and far from overturning. We have studied the dynamics of this wave in the vertical plane formed by g and its wave vector k. The restriction to two-dimensional dynamics is motivated by a linear stability analysis by [START_REF] Klostermeyer | Two and three-dimensional parametric instabilities in finite amplitude internal gravity waves[END_REF], which predicts that such a low amplitude wave is most unstable to two-dimensional perturbations in the ( g, k) plane. Comparison of the two-dimensional wave dynamics with a three-dimensional computation [START_REF] Bouruet-Aubertot | Particle dispersion and mixing by breaking internal gravity waves: two-dimensional numerical experiments[END_REF] and with laboratory experiments [START_REF] Benielli | Excitation of internal waves and stratified turbulence by parametric instability[END_REF] confirms the validity of the two-dimensional approach when flow statistics are compared.

Let us consider a coordinate system (0,x,y,z), where (x, z) is the vertical plane of the primary wave with z pointing upwards. The Boussinesq equations in this plane are

∂∇ 2 ψ ∂t + J (∇ 2 ψ, ψ) = ∂ρ ′ ∂x + ν(∇ 2 ) 2 ψ (9) ∂ρ ′ ∂t + J (ρ ′ ,ψ) =-N 2 ∂ψ ∂x + ν Pr ∇ 2 ρ ′ . ( 10 
)
As is customary, the use of a stream function ψ such that u =-∂ψ/∂z and w = ∂ψ/∂x implies that the incompressibility condition is satisfied implicitly. ρ ′ (x,z,t)is the density fluctuation about the hydrostatic density profile mentioned above, scaled as an acceleration:

ρ ′ (x,z,t) = (g/ρ 0 )(ρ(x, z, t) -(ρ 0 + ρ lin (z))
, where ρ(x,z,t) denotes the total density. J is the nonlinear Jacobian operator, ν the kinematic viscosity and

Pr = ν κ (11)
is the Prandtl number of the fluid (κ has been defined in the previous section).

The fluid domain is a square box and periodic boundary conditions are used along the two directions. Eqs. ( 9) and ( 10) are initialized with a propagating internal gravity wave (the primary wave) of wave vector k = (1, 0, 1), Froude number A(| k|/2π) 2 /N equal to 0.013 and Reynolds number Re = A/ν equal to 10700. A is the initial amplitude of the stream function of the wave and N is set to 1. Four computations will be presented in this section, with resolution 512 2 , which differ only in the value of the Prandtl number: Pr = 0.72, 1, 5 and 10.

Whether propagating [START_REF] Koudella | Two-dimensional instability mechanisms of a progressive internal gravity wave[END_REF] or standing [START_REF] Bouruet-Aubertot | Breaking of internal gravity waves trough two-dimensional instabilities[END_REF], the dynamics of the wave display the same behaviour: it becomes unstable through parametric instability among resonant triads, a result predicted theoretically by [START_REF] Drazin | On the instability of an internal gravity wave[END_REF] and [START_REF] Mied | The occurence of parametric instabilities in finite amplitude internal gravity waves[END_REF] for a propagating wave. The damping action of viscosity at small scales selects a range of unstable triads, among which the numerical grid operates a second selection. One particular triad eventually grows, which controls the whole instability. The amplification of the resonant waves within the triad, through extraction of energy from the primary wave, eventually makes the latter wave break. Breaking means here that the primary wave loses its coherence (but it does not grow in amplitude). A turbulent regime sets in, where the kinetic energy and potential energy spectra display a k -3 z law, k z being the vertical wavenumber. This regime lasts a few Brunt-Väisälä periods (2π/N) only because the primary wave is not forced (see [START_REF] Bouruet-Aubertot | Stratified turbulence produced by internal wave breaking: two-dimensional numerical experiments[END_REF] for standing waves; Koudella, 1999 for propagating waves). The breaking of the wave is illustrated in Fig. 1 for a propagating primary wave.

Analysis of mixing

Wavebreaking in an unforced uniformly stably stratified fluid appears to result in weak fluid mixing over the duration the (laboratory or numerical) experiments are conducted (e.g. [START_REF] Mcewan | Internal mixing in stratified fluids[END_REF][START_REF] Taylor | The energetics of breaking events in a resonantly forced internal wave field[END_REF][START_REF] Benielli | Excitation of internal waves and stratified turbulence by parametric instability[END_REF][START_REF] Bouruet-Aubertot | Particle dispersion and mixing by breaking internal gravity waves: two-dimensional numerical experiments[END_REF]. The reason is that the energy input to the fluid, a part of which only will be available for mixing, is much smaller than the potential energy of the background density profile. This point may be expressed alternately by noting that the vertical scale of the wave instability is much smaller than that of the background density profile. In laboratory experiments of an internal gravity wave propagating along an interface by contrast, the breaking of the wave may destroy the interface when the wave amplitude becomes comparable to the thickness of that interface (e.g. [START_REF] Hannoun | Turbulent mixing at a shear-free density interface[END_REF]. It follows that, when unforced wavebreaking occurs in a linearly stratified fluid, the sorted density profile only slightly departs from the linear profile: relatives changes are smaller than 1% and are associated with modulations of dρ b /dz over thin layers, whose thickness has been estimated in [START_REF] Bouruet-Aubertot | Particle dispersion and mixing by breaking internal gravity waves: two-dimensional numerical experiments[END_REF]. These changes, which would initiate the formation of density steps if the wave were forced, are ignored in the following. We shall thus consider that ρ b (z, t) ≃ ρ lin (z) (this approximation being further discussed at the end of this section). The diapycnal diffusivity (6) therefore takes the simpler expression

K ρ (z, t) ≃ g ρ 0 φ d (z, t) N 2 . ( 12 
)
We shall focus in this section upon the relation between the diapycnal diffusivity (averaged over the height of the fluid domain) and a Froude number associated with the largest scales of the flow. The Froude number we consider is defined as follows:

Fr t = √ 2Z N = ǫ μN 2 1/2 , ( 13 
)
where Z is half the domain averaged vorticity squared and ǫ = 2μZ denotes the dissipation rate of kinetic energy per unit area (μ = ρ 0 ν is the dynamical viscosity). In ordinary turbulence, such a Froude number is associated with the smallest scales of the flow (e.g. [START_REF] Imberger | Application of the Wigner-Ville distribution to temperature gradient microstructure: a new technique to study small-scale variations[END_REF]). In the present case where the kinetic energy spectrum evolves as k -3 z , however, the enstrophy spectrum evolves as k -1 z , meaning that the volume averaged enstrophy is controlled by the largest scales of the flow. Hence, in stably stratified turbulence resulting from internal gravity wave breaking, Fr t is a dynamical parameter associated with the largest scales.

This turbulent regime is statistically homogeneous along the vertical direction so that the diapycnal diffusivity K ρ may be averaged along the vertical direction. Normalizing this averaged value by the molecular diffusivity κ yields an estimate of the Cox number ( [START_REF] Osborn | Oceanic fine structure[END_REF])

Cox ≡ 1 H H 0 K ρ κ dz = Φ d Φ i , (14) 
where Φ i has the simple expression κρ 0 N 2 in the present case of a uniformly stably stratified fluid and H is the domain height, as before.

The instantaneous values of the Cox number and of the turbulent Froude number have been computed at all times of the runs having Pr = 0.72, 5 and 10. Cox(t) is plotted as a function of Fr 2 t (t) in Fig. 2, once breaking has occurred. A linear law is displayed for the smallest values of Fr 2 t , which can be modelled by the following simple expression. From definition (7) for γ , one has: Φ d = ǫγ + Φ i . Expressing ǫ as a function of the turbulent Froude number (13), we find

Φ d = γμN 2 Fr 2 t + Φ i . Dividing by Φ i yields Cox = γ Pr Fr 2 t + 1, ( 15 
)
where Pr is the Prandtl number. The coefficient of the linear law inferred from Fig. 2 is thus γ Pr. It yields a value for γ equal to ≃1.2 for Pr = 0.72, ≃0.5 for Pr = 5 and ≃0.35 for Pr = 10. The validity of expression (15) to account for the linear law displayed in Fig. 2 relies upon the mixing efficiency to have reached a constant value once breaking has occurred. γ is plotted as a function of time in Fig. 3: it seems indeed to relax toward an asymptotic value after breaking, with the approach faster as the Prandtl number increases. The estimated asymptotic values are lower than those inferred from Fig. 2 using the law (15) and an argument to account for this behavior is provided in the last paragraph of this section.

The existence of final steady regime also appears when the rate of production Φ a of the available potential energy is compared with the rate of destruction Φ d -Φ i (Fig. 4). Both We finally comment upon the initial behavior of γ displayed in Fig. 3: γ has a constant value, which is Prandtl number dependent. This is consistent with the fact that, for a low amplitude internal gravity wave propagating in a linearly inviscid stratified fluid in an infinite domain, γ is equal to 1/Pr; the sorted density profile and the linear density profile coincide at any time in this case because the flow is inviscid. Fig. 3 shows that the constant initial values of γ actually underestimate by 37% the theoretical prediction 1/Pr. The reason is that the sorted density profile does not coincide with the linear density profile near the horizontal boundaries of the fluid domain. A strong density gradient is observed instead at the horizontal boundaries, which modifies Φ d and, consequently, γ . The steepening of the density gradient near the boundaries is caused by the application of the sorting process in a bounded domain with periodic boundary conditions: at the lower boundary for instance, positive density fluctuations correspond to particles which would have been displaced upward in a infinite domain, thus stemming from a lower altitude, where the fluid is denser. The influence of this effect weakens when breaking occurs because strong gradients are created in the fluid interior as well.

Stably stratified homogeneous turbulence

Overall flow dynamics

Stably stratified homogeneous turbulence with a uniform density (or temperature) profile has been studied by many authors in the past, using laboratory and numerical experiments. In the latter case, a stably stratified turbulent flow is created by a method that has become standard [START_REF] Riley | Direct numerical simulations of homogeneous turbulence in density-stratified fluids[END_REF]: a velocity field is initialized in spectral (Fourier) space through a prescribed kinetic energy spectrum (usually peaked about a given wavenumber that sets the scale at which energy is injected) and evolves temporally up to the time t 0 the triple correlations have built. (In practice, this time is estimated by the skewness factor to have reached a value of order 0.45 or so, according to laboratory experiments, implying that a fully turbulent flow has developed.) The velocity field at t = t 0 is used as the initial condition of a stably stratified flow, created by setting the Brunt-Väisälä frequency to a non-zero value at t = t 0 . A density field may also be imposed at this time. In the simulations we present below, this density field is set so that it has the same spectral distribution as the velocity field at t = t 0 and the potential energy is half the kinetic energy of the flow at t = t 0 .

We solve the three-dimensional Boussinesq equations in a cubic numerical domain with periodic boundary conditions. These equations are

∂ u ∂t + ( u •∇) u =- 1 ρ 0 ∇P -ρ ′ i z + ν∇ 2 u, ( 16 
) ∂ρ ′ ∂t + ( u •∇)ρ ′ = N 2 w + ν Pr ∇ 2 ρ ′ , (17) 
∇• u = 0. ( 18 
)
The notations are the same as in the previous section: u = (u, v, w) is the velocity field, P denotes the pressure field and ρ ′ (x,y,z,t)refers to the field of density fluctuations about a hydrostatic balanced state, scaled like an acceleration. ν and Pr, respectively, denote the kinematic viscosity and the Prandtl number of the fluid (defined by ( 11)). The numerical method has been described in Section 2.2.

A number of runs initialized by the method described above has been performed, at resolution 256 3 , in which N is equal to π or π/2 and 1/ν is varied from 150 to 400, the Prandtl number having the constant value of 1. Two runs will be presented in this section, corresponding to N = π/2 and N = π, the viscosity having the value 1/300 in both cases. The dynamics of these flows is best described in terms of three dimensional parameters, namely a Froude number Fr, a Reynolds number Re λ based upon the Taylor microscale λ and the Prandtl number Pr. In laboratory experiments (e.g. [START_REF] Lienhard | The decay of turbulence in thermally stratified flow[END_REF][START_REF] Yoon | The evolution of grid-generated turbulence under conditions of stable thermal stratification[END_REF], the Froude number is commonly defined by the ratio of two length scales, a buoyancy length scale L ρ = w ′ /N , which is the greatest distance a fluid particle can move against the density gradient and an integral length scale L = u ′3 /ǫ, which characterizes the scale of the largest energetic structures. u ′ and w ′ denote the rms value of the u and w velocity components, respectively. Thus

Fr = L ρ L = ǫ N w ′ u ′3 , Re λ = u ′ λ ν . ( 19 
)
As is well-known, the buoyancy force stabilizes the flow, in converting vertical kinetic energy into potential energy, the latter energy being involved in irreversible processes such as nonlinear transfers toward small scales (at a faster rate than kinetic energy, e.g. [START_REF] Holloway | The buoyancy flux from internal gravity wave breaking[END_REF][START_REF] Lesieur | Turbulence in Fluids, 3rd Edition[END_REF][START_REF] Staquet | Statistical modelling and direct numerical simulations of decaying stably-stratified turbulence: I. Flow Energetics[END_REF] and molecular mixing. Consequently, as time evolves, the flow organizes into quasi-horizontal layers (e.g. Metais and Herring, 1989). This organization of the flow leads to a strong variability of the velocity components along the vertical direction, which is best put forward by considering the vertical derivative of a velocity component. An iso-surface of ∂v/∂z is thus displayed in Fig. 5 (see caption) at the end of the simulation with N = π. Since more energy is left in the horizontal plane, a horizontal velocity component is considered. This horizontal velocity component may be arbitrarily chosen because the flow is statistically isotropic about the vertical direction (so that u ≃ v).

The temporal evolution of Re λ is displayed in Fig. 6 for the two runs discussed in this section. Re λ starts from a value close to 45 and, from Nt/2π ≃ 3, relaxes toward a nearly constant value. This value depends upon N , which shows that the evolution of Re λ is not solely driven by buoyancy effects; the reason is that u ′ is mostly contributed by (large scale) horizontal motions. We found that other quantities relax toward a constant value from this time on, such as the ratio u ′ /w ′ [START_REF] Godeferd | Statistical modelling and direct numerical simulations of decaying stably-stratified turbulence: Part 2. Large and small scale anisotropy[END_REF]. This ratio remains close to the value of 1.4 from about Nt/2π ≃ 2, in good agreement with laboratory experiments [START_REF] Lienhard | The decay of turbulence in thermally stratified flow[END_REF][START_REF] Yoon | The evolution of grid-generated turbulence under conditions of stable thermal stratification[END_REF]. This suggests that a weakly turbulent, and even quasi-balanced, dynamical state may have been reached.

Analysis of mixing

As discussed in the previous section, the sorted density profile is close at all times to the linear density profile in such a homogeneous flow so that the available potential energy E a may be approximated by the variance of the density fluctuations about either profile: E a ≃ 0.5 ρ ′2 /N 2 , where • denotes a volume average (the validity of this approximation is discussed in [START_REF] Holliday | On potential energy density in an incompressible stratified fluid[END_REF]. It follows that a simple expression for the fluctuating diapycnal flux Φ d -Φ i is provided by the dissipation rate of the fluctuating density variance χ = κ |∇ρ ′ | 2 divided by N 2 : Φ d -Φ i ≃ χ/N 2 . This estimate is commonly used in the ocean (see, e.g. Toole, 1998 for a review). In this context, the mixing efficiency γ should be defined by γ h = χ/(N 2 ǫ), the volume averaged diapycnal Fig. 7a displays the rate of production Φ a and the rate of destruction Φ d -Φ i of the available potential energy. Both quantities nearly coincide during the final regime of the flow which attests that a quasi-steady regime has been reached.

The temporal evolution of γ h is plotted in Fig. 7b for the two runs we consider. As opposed to Re λ , the curves nearly coincide which shows that the evolution of γ h is driven by the accumulated effect of buoyancy. Apart from the very initial stage of the computation where a0.7 value is reached, γ h remains close to 0.45 at all times while slowly decaying.

In order to relate the mixing properties of the flow to the large scale dynamics, we express the Cox number Cox h as a function of the Froude number Fr defined by Eq. ( 19). When a dependency as a function of Fr 2 is sought, a simple expression is obtained

Cox h = Pr 20 u ′ w ′ 2 γ h (Fr Re λ ) 2 . ( 20 
)
This expression involves Re λ and u ′ /w ′ , in addition to γ h (we recall that Pr = 1). The former three quantities relax toward a constant value as time elapses, implying that the Cox number should behave linearly upon Fr 2 when Fr is small enough. This is attested in Fig. 8, where Cox h is plotted as a function of (Fr Re λ ) 2 for the runs we consider. The slope of the linear dependency is about 0.045, in good agreement with the large time value of its theoretical expression (taking Pr = 1, γ h = 0.45 and u ′ /w ′ = 1.4 yields Pr/20(u ′ /w ′ ) 2 γ h = 0.044). One interest of this linear dependency is that, conversely, it provides an estimate of the mixing efficiency if the other parameters are known.

Stably stratified shear layer in two and three dimensions

Overall flow dynamics

The shear layer is the simplest case of an inhomogeneous flow. It is formed by two layers of fluids having different densities and horizontal velocities. The interface between the layers, which thickens by molecular diffusion, enlarges most efficiently if the interface is unstable. A necessary condition for instability is the Richardson number

J = min z g ρ 0 -dρ/dz dU/dz 2 (21)
to have a value smaller than 0.25 somewhere in the fluid (see, e.g. [START_REF] Drazin | Hydrodynamic Stability[END_REF]. The overbar in Eq. ( 21) refers to a horizontal average. If this condition is met, the Kelvin-Helmholtz instability may develop in the vertical plane of the unstable shear flow.

It is therefore a two-dimensional instability. As its amplitude grows, nonlinear effects gain importance and makes it saturate while the flow vorticity organises into quasi-horizontal billows. The billows are most unstable to a (two-dimensional) subharmonic instability which makes them pair (see, e.g. [START_REF] Ho | Perturbed free shear layers[END_REF] for a review). Secondary three-dimensional instabilities may also occur, at smaller scales than the two-dimensional instabilities. Further detail about the three-dimensional instabilities in a stably stratified shear layer may be found in, e.g. [START_REF] Schowalter | A study of streamwise vortex structure in a stratified shear layer[END_REF], [START_REF] Klaassen | The influence of stratification on secondary instability in free shear layers[END_REF] or [START_REF] Caulfield | Three-dimensionalization of the stratified mixing layer[END_REF].

To investigate the shear layer dynamics and resulting mixing properties, we solve the Boussinesq equations in two and three dimensions. Non-dimensional variables are used: we take half the thickness of the initial velocity profile as a length scale, which we denote as δ i , half the velocity difference across the flow as a velocity scale (U ) and half the density difference across the flow times √ Pr, as a density scale ( ρ √ Pr/2). In three dimensions, the resulting non dimensional equations are

∂ u ∂t + ( u •∇) u =-∇P + Jρ + 1 Re ∇ 2 u, (22) 
∂ρ ∂t + ( u •∇)ρ = 1 Pr Re ∇ 2 ρ, (23) 
∇ u = 0. ( 24 
)
As in the previous section, u = (u, v, w) denotes the velocity field with u being the streamwise component and w the vertical one; P and ρ, respectively, are the dynamical pressure deviation and density deviation about a hydrostatic balanced state of reference density ρ 0 . J , Re and Pr are the three parameters, set by the scaling mentioned above, upon which the flow dynamics depend. J and Re are expressed as (Pr is defined by Eq. ( 11))

J = g ρ 0 ρ √ Pr 2 δ i U 2 , Re = Uδ i ν . ( 25 
)
The initial mean (horizontally averaged) velocity and density fields are of the error function type, the thickness of the density profile being √ Pr larger than that of the velocity profile. The velocity field is destabilized by two-and three-dimensional perturbations. The boundary conditions are periodic along the streamwise (x) and spanwise (y) directions and of free slip type along the vertical. The same numerical method as in the previous sections is employed.

We have performed several runs, in two and three dimensions, in which J ranges between 0.04 and 0.16 and Pr has a value of 0.7 or 1.4. The resolution is (N x ,N z ) = (1024, 1025) in two dimensions implying that a high Reynolds number can be chosen (Re = 1000 or 2000); in three dimensions, the resolution is (N x ,N y ,N z ) = (128, 128, 257) and Re ≃ 300. (N i denotes the number of grid points along direction i).

An example of the flow development in two and three dimensions is displayed in Figs. 9 and 10, respectively.

Analysis of mixing

The mixing properties of a stably stratified shear layer have been studied by a few authors [START_REF] Koop | Instability and turbulence in a stratified fluid with shear[END_REF][START_REF] Scinocca | The mixing of mass and momentum by Kelvin-Helmholz billows[END_REF][START_REF] Cortesi | Numerical investigation of the entrainment and mixing processes in neutral and stably stratified shear layers[END_REF][START_REF] Staquet | Mixing in a stably-stratified shear layer[END_REF][START_REF] Staquet | Mixing in a stably stratified shear layer: two-and three-dimensional numerical experiments[END_REF][START_REF] Caulfield | The anatomy of the mixing transition in homogeneous and stratified free shear layers[END_REF]. Only in the three latter papers is the method derived by [START_REF] Winters | Available potential energy and mixing in density-stratified fluids[END_REF] used.

In such a vertically inhomogeneous flow, the sorted density profile strongly differs from the mean (horizontally averaged) density profile because the vertical scale of the instability is comparable to that of the vertical density gradient [START_REF] Staquet | Mixing in a stably stratified shear layer: two-and three-dimensional numerical experiments[END_REF]. Hence, as opposed to the previous sections, quantitative information into the mixing properties of the flow can only be gained by using the exact expression of the diapycnal flux, which relies upon the sorted density profile. The mixing efficiency γ defined by Eq. ( 7) is plotted in Fig. 11a for two-dimensional simulations and in Fig. 11b for three-dimensional simulations. The curves display similar features during the development of the Kelvin-Helmholtz instability (for t ≤ 45) and during the later stage of the flow (for t larger than ≃150). By contrast, during the intermediate turbulent regime, the two-dimensional simulations are unable to reproduce the mixing efficiency predicted the three-dimensional simulations because the conservation of enstrophy by nonlinear terms in two dimensions prevents kinetic energy from being efficiently transferred toward small scales. As a consequence, the dissipation rate of kinetic energy has a value too low relative to its three-dimensional counterpart, which overestimates γ .

As in the previous sections, we investigate the relation between the diapycnal diffusivity K ρ (normalized by the molecular diffusivity κ) and a large scale dynamical parameter. Note that, in the present inhomogeneous flow, the z-dependency of the parameters should be considered (for instance, a volume averaged Cox number would be meaningless). The presence of a mean shear implies that a Richardson number should be taken for the dynamical parameter. We make use of the monotonicity of the sorted density profile ρ b to introduce a Richardson number that remains one-signed at any time

Ri b (z) =-J dρ b /dz (dU/dz) 2 . ( 26 
)
K ρ (z)/κ is plotted as a function of 1/Ri b (z) in Fig. 12 during the final regime of the two-dimensional runs displayed in Fig. 11a, when γ has reached a constant value. A linear dependency is found. It may be expressed by the same simple relation as in the previous sections, though a local formulation should be used to account for the vertical inhomogeneity. Since we deal with a sorted density profile, local means here that a given isopycnal is considered. We get where γ loc (z) = (φ d (z)φ i (z))/ǫ loc (z) is a local mixing efficiency (φ i (z) =-κdρ b /dz), which depends upon z a priori; we have also assumed that the local (in the above sense) dissipation rate of kinetic energy is mostly contributed by the vertical shear of the mean flow: ǫ loc (z) ≃ 2ν(dU/dz) 2 .

K ρ (z) κ = Pr γ loc (z) Ri b (z) + 1 (27) 
The linear dependency we find in Fig. 12 implies that γ loc is actually a constant function of z. We found that this constant function has a value equal to 3γ . When the same analysis is conducted in a three-dimensional shear layer, this linear dependency is not recovered, even when Ri b (z) is defined using either a sorted or a horizontally averaged dissipation rate divided by 2ν (instead of (dU/dz) 2 ). Hence, in general, γ loc is a non trivial function of z.

The finding of a constant value in the two-dimensional shear layer but not in the threedimensional one suggests to analysing the main differences between the two-and threedimensional flow dynamics during the final regime. One important difference is that a quasi-steady state has been reached in two dimensions. For instance, the advective flux Φ a nearly matches the fluctuating diapycnal flux Φ d -Φ i during this later stage [START_REF] Staquet | Mixing in a stably stratified shear layer: two-and three-dimensional numerical experiments[END_REF]. The same result holds for the final regime of breaking gravity waves (Fig. 4) as well as of homogeneous stably stratified turbulence (Fig. 7a). The second difference is that the flow has organized into layers during this final regime, which implies that the dissipation rate of kinetic energy is mainly contributed by the vertical variability of horizontal motions. In homogeneous stably stratified turbulence for instance, 60% of ǫ is contributed by ν(∂u/∂z) 2 [START_REF] Godeferd | Statistical modelling and direct numerical simulations of decaying stably-stratified turbulence: Part 2. Large and small scale anisotropy[END_REF] and we found this ratio to be higher for low amplitude breaking gravity waves. This is also the case in the two-dimensional shear layer but does not hold at all during the final stage of the three-dimensional shear layer.

Conclusion

We have studied the mixing properties of three stably stratified flows: breaking gravity waves, a homogeneous stably stratified decaying turbulence and a stably stratified shear layer in two and three dimensions. We have found that, during the final regime of the homogeneous flows (stably stratified turbulence and breaking gravity waves) and of the two-dimensional stably stratified shear layer, the diapycnal diffusivity behaves linearly as a function of a Froude number squared when the flow is homogeneous and as a function of the inverse of a Richardson number in the two-dimensional shear layer case. This behaviour can be accounted for by a simple expression which shows that the coefficient of the linear law is the mixing efficiency of the flow, γ , times the Prandtl number of the fluid. Such a linear law thus amounts to the scaling often assumed by oceanographers (e.g. [START_REF] Munk | Abyseal recipes II: energetics of tidal mixing and wind mixing[END_REF]. The mixing efficiency is volume averaged in the homogeneous case and averaged over an isopycnal in the shear layer case. This linear law implies that γ has reached a constant value.

When analysing the final regime of the three flows sharing this common linear law, we find that a quasi-steady stable state has been reached, in which the production and dissipation rates of available potential energy balance; also, the dissipation rate of kinetic energy is mostly contributed by the vertical variability of horizontal motions. Thus, the flow has become weakly turbulent and organized into layers. Further work remains to be done to understand whether such a linear law is a generic mixing property of this type of flow.

  who provided analytical expressions for the fluxes that control Ėb . These fluxes are the diapycnal flux, denoted Φ d , as well as, if mass flux occurs across the bounding surface of the fluid domain, advective and diffusive mass fluxes across that surface. The latter fluxes are denoted Ėsurf adv b and Ėsurf dif b , respectively. The temporal evolution of E b thus obeys the equation Ėb = Φ d + Ėsurf adv b + Ėsurf dif b .

Fig. 1 .

 1 Fig.1. Contours of the density field (left column) and vorticity field (right column) in the (x, z) vertical plane, for an internal gravity wave of Froude number Fr t = 0.013 and Prandtl number Pr = 1 propagating toward the upper right corner of the domain. Upper row: views at Nt/2π = 32.6, shortly before breaking occurs: the parametric instability that grows through resonant interaction with the primary wave is of large enough amplitude to be visible. It is manifested as vorticity bands of alternate sign, organized into a wave packet (right frame). Lower row: the fields are displayed one Brunt-Väisälä period later, just after breaking has occurred. The vorticity layers have become unstable (the origin of this instability is discussed in[START_REF] Koudella | Two-dimensional instability mechanisms of a progressive internal gravity wave[END_REF]).

Fig. 2 .

 2 Fig. 2. Instantaneous Cox number Cox(t) defined by Eq. (14) as a function of the Froude number squared Fr 2 t (t) defined by Eq. (13) for the runs with Pr = 0.72 (-, bottom curve), Pr = 5(•••), Pr = 10 (-, top curve). All times after breaking are shown (Nt/2π ≥ 35).

Fig. 3 .

 3 Fig. 3. Mixing efficiency defined by Eq. (7) as a function of time (scaled by the Brunt-Väisälä period) for the same runs as in Fig. 2. The Pr = 1 run is also shown for comparison.

Fig. 4 .

 4 Fig. 4. Vertical advective flux of density Φ a and fluctuating diapycnal flux Φ d -Φ i vs. time for the Pr = 0.72 run. Time is scaled by the Brunt-Väisälä period.

Fig. 5 .

 5 Fig. 5. Run with N = π at 6 Brunt-Väisälä periods. Iso-surface of ∂v/∂z of value equal to 25% of the maximum value of ∂v/∂z in the fluid domain at that time (from Godeferd and Staquet, 2001).

Fig. 6 .

 6 Fig. 6. Temporal evolution of the Reynolds number based upon the Taylor microscale, defined by (19) for the two following runs, (-): ν = 1/300, N = π; (---): ν = 1/300, N = π/2. Time is scaled by the Brunt-Väisälä period 2π/N.

Fig. 7 .

 7 Fig. 7. (a) Comparison of the fluctuating diapycnal flux Φ d -Φ i (-) with the advective flux of density Φ a (---) for the N = π run. (b) Temporal evolution of the mixing efficiency γ h , defined in Section 4.2, (-): N = π ; (---): N = π/2. Time is scaled by the Brunt-Väisälä period 2π/N.

Fig. 8 .

 8 Fig. 8. Cox number Cox h (t) as a function of (Fr(t)Re λ (t)) 2 , where Fr denotes a Froude number and Re λ , a Reynolds number based upon the Taylor microscale, for all times of the two runs described in Fig. 6. (---): N = π/2; (-): N = π. All parameters are defined in Section 4.

Fig. 9 .

 9 Fig. 9. Vorticity contours of a shear layer evolving in a vertical plane (J = 0.16, Re = 2000, Pr = 0.7). (a) The Kelvin-Helmholtz instability has developed and saturated. (b) Turbulent regime, once two-dimensional secondary instabilities have developed. (c) Final time of the simulation: a steady regime (apart from diffusive effects) has been reached. The time unit is δ i /U (δ i and U are defined in Section 5.1).

Fig. 10 .

 10 Fig. 10. Temporal evolution of a three-dimensional shear layer simulation with J = 0.167, Re ≃ 300 and Pr = 1.4. A surface equal to 0.5 max D (|ω x |+|ω y |+|ω z |), where |ω i | is the i-component of the vorticity and D the fluid domain, is shown at successive times: (a) t = 34, once the Kelvin-Helmholtz instability has grown; the Kelvin-Helmholtz billow, already distorted by the growth of the three-dimensional perturbation, is visible in between vortex sheets (these are the usual braids, reinforced by the baroclinic torque); the streamwise axis is indicated by an X. (b) t = 108, when three-dimensional small scale secondary instabilities have developed. (c) t = 227, at the end of simulation; only 3/4 of the numerical domain along the vertical direction is shown for clarity. Time unit is defined in Fig. 9 (from Staquet, 2000).

Fig. 11 .

 11 Fig. 11. Mixing efficiency for a stably-stratified shear layer. (a) Two-dimensional shear layer: (-) Re = 2000, Pr = 0.5, (---) Re = 1000, Pr = 1.4, (•••) Re = 1000, Pr = 0.7( J = 0.167 for the three computations); the arrow indicates the time at which the Kelvin-Helmholtz instability saturates. (b) Three-dimensional shear layer; the mixing efficiency has been averaged over 7 computations with 0.04 ≤ J ≤ 0.167, Pr = 0.7 or 1.4 and Re ≃ 300. Time unit is defined in Fig. 9.

Fig. 12 .

 12 Fig. 12. Diapycnal diffusivity K ρ (z) defined by Eq. (6) as a function of the inverse of the Richardson number Ri b (z) defined by Eq. (26). The different curves correspond to successive times of the final regime of a two-dimensional simulation with J = 0.167, Re = 1000, Pr = 1.4.
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