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Mean Square Error Approximation for
Wavelet-Based Semiregular Mesh

Compression
Frédéric Payan and Marc Antonini

Abstract—The objective of this paper is to propose an efficient model-based bit allocation process optimizing the performances of a

wavelet coder for semiregular meshes. More precisely, this process should compute the best quantizers for the wavelet coefficient

subbands that minimize the reconstructed mean square error for one specific target bitrate. In order to design a fast and low complex

allocation process, we propose an approximation of the reconstructed mean square error relative to the coding of semiregular mesh

geometry. This error is expressed directly from the quantization errors of each coefficient subband. For that purpose, we have to take

into account the influence of the wavelet filters on the quantized coefficients. Furthermore, we propose a specific approximation for

wavelet transforms based on lifting schemes. Experimentally, we show that, in comparison with a “naı̈ve” approximation (depending on

the subband levels), using the proposed approximation as distortion criterion during the model-based allocation process improves the

performances of a wavelet-based coder for any model, any bitrate, and any lifting scheme.

Index Terms—Weighted mean square error (MSE), biorthogonal wavelet, lifting scheme, butterfly scheme, bit allocation, geometry

coding, semiregular meshes.

�

1 INTRODUCTION

WAVELETS are now frequently exploited to perform
efficient compression. Based on multiresolution

analysis, not only do wavelet coders achieve better
compression rates [1], [2], [3], [4] than methods based on
signal quantization, but they also make the progressive
transmission, the adaptive displaying, or the level of details
control easier.

Compression algorithms always attempt to optimize the
trade-off between rate and distortion. Because of the
multiresolution representation of the transformed data, a
low frequency signal, and several levels of details (see
Fig. 1), the rate-distortion optimization problem for a
wavelet coder amounts to dispatch pertinently the bits
across the different subbands, in order to obtain the highest
quality of the reconstructed signal for a specific bitrate. One
relevant method to solve this problem is to include a bit
allocation process in the compression algorithm. This
process should compute the best quantizers for all the
coefficient subbands that minimize the reconstructed mean
square error (MSE) due to data quantization for one specific
target bitrate.

1.1 Goal and Contributions

The main objective of our current work is to design such an
allocation process for a wavelet-based geometry coder of
semiregular meshes [5], [6]. In particular, we aim to design
a fast and low complex algorithm. For this purpose, some
previous works have proposed to express the MSE relative
to a quantized signal directly from the MSE of each

subband of wavelet coefficients by taking into account the
influence of the synthesis wavelet filters on the quantized
coefficients [7], [8], [9], [10], [11]. Unfortunately, these
approximations have been developed and exploited only on
canonical sampling grids (in image or video processing for
instance). Moreover, the proposed formulations are always
adapted for “classical” wavelet transforms, i.e., defined by
low pass and high pass filters.

Therefore, the contribution of this paper is the develop-
ment of an approximation of the MSE relative to the
reconstructed mesh geometry (that is, a signal sampled on a
triangular edge lattice) across a wavelet coder. We show
precisely that this specific MSE can be expressed as a
weighted sum of the MSE of each coefficient subband. We
also observe that, like in the previous works on the
canonical sampling grids, the weighting on a triangular
edge lattice depends on the wavelet transform used.
Furthermore, as our work is only focused on wavelet
transforms based on lifting schemes, we also show that the
weighting can be expressed only in a function of the
prediction and update operators of lifting schemes.

We would like to draw the readers’ attention to the fact
that we already used this MSE in a previous paper [6].
However, in [6], its computation was not developed and
only focused the unlifted butterfly transform [4]. So, this
paper has three specific objectives. First, this manuscript
complements other works by the authors. In particular, it
fills in details about the computation of the weighting and
provides the relative numerical values used in [6]. More-
over, this paper shows that this weighting can be applied
easily to any lifting scheme and used for any kind of
(semi)regular meshes. Finally, we experimentally show the
interest of using this weighting in a wavelet-based
geometry coder by evaluating the coding gains relative to
its use during the bit allocation.

The remainder of this paper is organized as follows:
Section 2 presents the background and the problem
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statement of our work. Section 3 develops the MSE
approximation of a triangular mesh geometry. Then,
Section 4 provides the numerical values of the weighting
for the Butterfly-based lifting schemes. Finally, we show
experimentally the interest of using the MSE approximation
during a model-based bit allocation process in Section 5,
and conclude in Section 6.

2 PRELIMINARIES

As introduced previously, the final objective of our work is
to design an efficient wavelet-based geometry coder for
semiregular triangular meshes. For this purpose, we aim to
develop a bit allocation process to optimize the trade off
between the reconstructed MSE relative to the geometry
quantization and the global bitrate.

2.1 Overall Coding Scheme

The overall scheme of the wavelet coder used in this paper
is presented in Fig. 2. The source semiregular mesh M is
transformed by a Discrete Wavelet Transform DWT in
several subbands of wavelet coefficients. The coordinates of
the wavelet coefficients are then encoded with scalar
quantizers SQ (depending on the quantization steps
computed during the allocation process). An entropy
coding is finally applied on the quantized coefficients to
obtain the bitstream. In parallel, the coarse mesh connectiv-
ity can be encoded with any connectivity coder. In this
paper, we use the coder of [12].

2.2 The Allocation Process

The objective of the allocation process is to determine the
set of the quantization steps fqg (used to quantize the
subbands) that minimizes the distortion defined by the MSE
�2
" relative to the reconstructed mesh geometry, at one given

specific bitrate Rtarget. This can be modeled by the following
problem P:

ðPÞ minimize �2
" fqgð Þ

with constraint RT fqgð Þ ¼ Rtarget;

�
ð1Þ

where RT represents the total bitrate, Rtarget a user-given
bitrate, and fqg the set of quantization steps.

This constrained allocation problem can be formulated
by a Lagrangian criterion:

J�ðfqgÞ ¼ �2
" fqgð Þ þ �ðRT fqgÞ �Rtarget

� �
; ð2Þ

with � the lagrangian operator. Hence, the solutions of the
allocation problem P, i.e., the optimal quantization steps
fq�g are obtained by minimizing this lagrangian criterion.
So, we have to solve the following system [6]:

@J�ðfqgÞ
@q ¼ 0

@J�ðfqgÞ
@� ¼ 0:

(
ð3Þ

For more explanations about the resolution of this problem,
see [6].

2.3 Problem Statement

Let us now introduce the problem statement relative to this

allocation process. On one hand, the distortion relative to

the reconstructed mesh is computed on the mesh geometry

in the Euclidean space. On the other hand, the losses due to

the quantization are relative to the subbands of wavelet

coefficients. It means that, each time an estimation of the

reconstructed MSE is required during the allocation

process, we have to apply the synthesis filters of the

wavelet transform on the quantized coefficients before the

computation. This leads to a complex allocation process

and, consequently, a slow compression algorithm. So, it

should be more relevant to express the reconstructed MSE

directly from the quantization errors of each coefficient

subband, in order to reduce the algorithm complexity and

to speed the process up.
This relation has already been developed in previous

works [7], [8], [9], [10], [11]. It has indeed been shown that
the MSE of a reconstructed signal can be approximated by a

weighted sum of the MSE of each coefficient subband. This
is due to the fact that using biorthogonal filters weights the
amount of quantization error which appears on a recon-
structed data. Among the previous works, Usevitch

derived, for instance, the weighting of the quantization
error in the specific case of dyadic filtering of images [11].
More generally, Park and Haddad [9] have defined this
weighting for multidimensional signals across an m-channel

wavelet coder. However, this approximation has been only
computed on canonical sampling grids (in image or video
coding, for instance) and never exploited, to our knowl-
edge, in the domain of mesh processing.

Therefore, in the next section, we propose to derive the
formulation of the weighted MSE for a triangular mesh
geometry. Moreover, as our work is focused only on
wavelet transforms based on lifting schemes, we attempt

to express the weighting only in a function of the prediction
and update operators (contrary to all the previous works
which have formulated the weighting in function of the
coefficients of the low pass and high pass synthesis filters).

3 MSE APPROXIMATION ON A TRIANGULAR EDGE

LATTICE

Let us first introduce some global notations useful for the
understanding of the rest of the paper.
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Fig. 2. Proposed geometry coder.

Fig. 1. Multilevel decomposition of a semiregular mesh.



3.1 Notations

Let us define a sampled signal s as a sequence of real-

valued numbers indexed by a finite set K:

s ¼ fsðkÞ 2 IR j k 2 Kg; ð4Þ

where K ¼ �ZZd with � an invertible d � d matrix permit-

ting to obtain data sampled on lattices other than the

canonical lattice ZZd, for instance, the triangular edge lattice

used in the rest of the paper.
A sublattice of K can be obtained by DZZd, where D is a

dilation matrix d � d. The determinant of D is an integer

m 2 ZZ. Then, the lattice ZZd can be written as a sum of

sublattices

ZZd ¼
[m�1

j¼0

DZZd þ tj
� �

; ð5Þ

with tj 2 ZZd the shift related to the jth coset. Hence, we can

define a coset si as the set of elements of the signal s

corresponding to the sublattice L ¼ DZZd þ ti, and given by

siðLÞ ¼ fsðDkþ tiÞjk 2 ZZdg: ð6Þ

Note that siðLÞ is a sequence of real-valued numbers indexed

by ZZd and not by L [13].
According to the definition of a sublattice, an m-channel

filter bank fgig on a lattice K can be formulated according to

the polyphase notation as:

GiðzÞ ¼
Xm�1

j¼0

z�tj Gi;jðzDÞ for i 2 0; . . . ;m� 1f g; ð7Þ

with Gi;jðzÞ the i; jth polyphase component of the synthesis

filters, defined by

Gi;jðzÞ ¼
X

k2ZZd

gi Dkþ tj
� �

z�k; ð8Þ

z�tj the shift related to the jth coset given by

z�tj ¼
Yd
n¼1

z�tj nð Þ
n ; ð9Þ

and

zD ¼ fzd1 ; zd2 ; . . . ; zddg: ð10Þ

The vector dj is the jth column vector of the matrix D, and

zdj is given by:

zdj ¼
Yd
n¼1

zdj nð Þ
n : ð11Þ

3.2 Challenge

A semiregular mesh is based on a triangular edge lattice
[13] (see Fig. 3). A wavelet transform for meshes corre-
sponds consequently to a 4-channel filter bank. Hence, the
geometry of a semiregular mesh M is transformed into four
cosets fxi; i ¼ 0; . . . ; 3g on account of an analysis filter bank
fhi; i ¼ 0; . . . ; 3g and a downsampling # D (see Fig. 4).

The cosets are then quantized. Assuming that quantiza-
tion error is an additive noise1 [16], [15], the quantization
error "i between the ith coset xi and its quantized value x̂xi is
given by:

"i ¼ ðxi � x̂ixiÞ: ð12Þ

An upsampling " D followed by a synthesis wavelet
transform gi provides the geometry of the reconstructed
mesh M̂M. The challenge is thus to obtain the MSE relative to
the reconstructed mesh geometry according to the quanti-
zation error of each subband and the knowledge of the
synthesis filters.

3.3 MSE of the Quantized Mesh Geometry

In order to simplify the derivation, we propose to follow a
deterministic approach, unlike the previous works of [7],
[8], [9], [10], [11] which follow a statistical approach. So, let
us consider the geometry of the source mesh M as a
realization of a stationary and ergodic random process [16].
The total quantization error " can thus be considered as a
deterministic quantity defined by

" ¼ f" kð Þ ¼ M kð Þ � M̂M kð Þ
� �

2 IR j k 2 Kg;

with K being the sampling grid. K is given by K ¼ �ZZ2 with
� an invertible matrix permitting to obtain the data sampled
on the triangular edge lattice instead of the canonical lattice
ZZ2. However, we can assume � is the identity, since this
matrix influences only the choice of the neighbors for the
filters [13]. The MSE relative to the reconstructed mesh
geometry can be written as:

�2
" ¼

1

Ns
r"ð0Þ½ �; ð13Þ

where r"ðtÞ is the autocorrelation function of ", 0 is the null
vector of dimension 2, and Ns is the number of samples of
the input signal. The energy of the signal ", denoted r"ð0Þ,
can be developed by using the deterministic correlation
function
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Fig. 3. Downsampling grid of the triangular edge lattice.

Fig. 4. Principle of a 4-channel wavelet coder.

1. We prefer using the “additive noise” model because some assump-
tions relative to the “gain-plus-additive noise” model proposed by Jayant
[14] and used by Park and Haddad have often been controversial [15].



REðzÞ ¼ EðzÞ Eðz�1Þ; ð14Þ

with EðzÞ the z-transform of the reconstruction error ", and

z ¼ z1; z2ð Þ. According to Fig. 4, EðzÞ can be formulated in a

function of the error of each coset xi [17]:

EðzÞ ¼
X3

i¼0

GiðzÞ EiðzDÞ; ð15Þ

with EiðzÞ and GiðzÞ, respectively, the z-transform of the

reconstruction "i related to the coset xi and of the synthesis

filter gi. D is the dilation matrix defined in Section 3.1. By

assuming there is no cross-correlation between errors "iðkÞ
and "iðk0Þ (for all k 6¼ k0) [16], [15], we can write

EiðzDÞEjðz�DÞ ¼ �i;j REiðzDÞ

with REiðzÞ the z-transform of the autocorrelation function

of the recontruction error "i, and �i;j the Krönecker symbol

defined by

�i;j ¼
1 if i ¼ j;
0 if i 6¼ j:

�

Hence, (14) and (15) provide:

REðzÞ ¼
X3

i¼0

RGi
ðzÞREiðzDÞ: ð16Þ

Applying the inverse z-transform on (16) yields the

formulation of the autocorrelation function of the recon-

struction error:

r"ðtÞ ¼
X3

i¼0

X
�

rgið�Þ r"iðDt� �Þ: ð17Þ

The energy r"ð0Þ of the signal " is then given by:

r"ð0Þ ¼
X3

i¼0

X
�

rgið�Þ r"ið��Þ: ð18Þ

By assuming that the quantization error samplings are

uncorrelated [16], r"ið��Þ ¼ 0 if � 6¼ 0 and, consequently,

r"ð0Þ ¼
X3

i¼0

rgið0Þr"ið0Þ: ð19Þ

Now, the problem is to deal with rgið0Þ and r"ið0Þ. In the

Appendix, we show that the energy rgið0Þ of the synthesis

filter can be developed in

rgið0Þ ¼
X3

j¼0

X
k2ZZ2

gi Dkþ tj
� �2

; ð20Þ

with gi Dkþ tj
� �

¼ gi;j kð Þ the coefficient k of the jth poly-

phase component of the synthesis filter i. In parallel, by

assuming that the quantization error samplings are uncorre-

lated [16], the energy r"ið0Þ of the quantization error is:

r"ið0Þ ¼
X

k2ZZ2

"iðkÞ2 ¼ Nsi�
2
"i
; ð21Þ

where �2
"i

stands for the MSE of the coset xi and Nsi the

number of samples of xi.

3.4 Solution for a One-Level Decomposition

Finally, by merging (20), (21), and (19) in (13), we obtain an
expression of the MSE relative to the reconstructed mesh
geometry:

�2
" ¼

X3

i¼0

Nsi

Ns
wi�

2
"i

with wi ¼
X3

j¼0

X
k2ZZ2

gi;j kð Þ2; ð22Þ

where gi;j kð Þ represents the coefficient k of the jth polyphase
component of the synthesis filter i. We stress that the weights
wi depend only on the polyphase matrix components of the
synthesis filters. Now, in case of lifting schemes, the
polyphase components depend only on the predictive and
update operators (see the next section). We finally obtain an
approximation specific to the lifting schemes, as expected.

3.5 Solution for an N-Level Decomposition

Wavelet coders generally exploit several levels of decom-
position by applying several times the wavelet transform on
the coset of lowest frequency. For example, the z-transform
of the reconstruction error " according to a two-level
decomposition (see Fig. 5) can be written as:

EðzÞ ¼ G0ðzÞ �
XM�1

l¼0

GlðzDÞ Ei;jðzD
2Þ

þ
XM�1

l¼1

GlðzÞ Ei;jðzD
2Þ;

ð23Þ

where Ei;jðzÞ stands for the z-transform of the quantization
error "i;j related to the coset ði; jÞ, with i the level of
decomposition and j the channel index. By the same way as
for the one-level decomposition, the MSE on a triangular
edge lattice across a two-level wavelet coder can be
simplified in:

�2
" ¼

Ns0;0

Ns
w0 �

X3

l¼0

Ns1;l

Ns0;0

wl�
2
"1;l

� �

þ
X3

l¼1

Ns0;l

Ns
wl�

2
"0;l

� �
;

ð24Þ

where Nsi;j is the number of samples of the i; jth coset. Thus,
it is easy to generalize (24) to an N-level decomposition:

�2
" ¼

NsN�1;0

Ns
WN�1;0�

2
"N�1;0

þ
XN�1

i¼0

X3

l¼1

Nsi;l

Ns
Wi;l�

2
"i;l
; ð25Þ

where Wi;l represent the weights relative to the coset ði; jÞ,
with i the level of decomposition and j the channel index.2
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Fig. 5. A 4-channel wavelet coder with two levels of decomposition.

2. ðN � 1Þ corresponds to the lowest decomposition level. Hence, the
index ðN � 1; 0Þ is relative to the low frequency subband of the mesh
geometry.



These weights depend on the weights fwig defined for a
one-level decomposition. They are given by

Wi;l ¼ ðw0Þi wl: ð26Þ

4 COMPUTATION OF WEIGHTS FOR THE

BUTTERFLY-BASED LIFTING SCHEME

In this paper, we only focus on the Butterfly-based lifting
schemes [13] since our coding algorithm uses these filters.
However, the proposed weighting can obviously be applied
to any lifting scheme for semiregular meshes.3

There generally exist two different versions for the
Butterfly-based lifting scheme: the lifted version (a predic-
tion step and an update step) and the unlifted version (only
a prediction step). The prediction and update operator
filters of the lifted Butterfly scheme are presented in Fig. 6
[13]. The description of this lifting scheme can be found in
[20].

As stated before, only the polyphase components are
needed to compute the weights. We so consider the
polyphase matrix of a 4-channel lifting scheme [13], given by

G ¼

1 p1 p2 p3

�u1 1� u1p1 �u1p2 �u1p3

�u2 �u2p1 1� u2p2 �u2p3

�u3 �u3p1 �u3p2 1� u3p3

0
BB@

1
CCA; ð27Þ

with pi and ui the prediction and update operators
associated to the ith coset. Hence, identifying this matrix
with the operators pi and ui of any 4-channel lifting scheme
and using the formulation (22) allows to compute the
corresponding weights wi.

The weights for the lifted Butterfly-based transform,
computed by substituting the z-transform of the prediction
and update operators in each component of the polyphase
matrix given by (27), are:

w0 ¼ 169
256 ’ 0:66015625

w1 ¼ 1727
2048 ’ 0:843261715

w2 ¼ 1727
2048 ’ 0:843261715

w3 ¼ 1727
2048 ’ 0:843261715:

8>>>>>>>><
>>>>>>>>:

ð28Þ

Similarly, the weights for the unlifted Butterfly-based trans-
form are:

w0 ¼ 169
256 ’ 0:66015625

w1 ¼ 1
w2 ¼ 1
w3 ¼ 1:

8>><
>>: ð29Þ

4.1 Complexity Reduction

As said previously, using this MSE approximation leads to
faster distortion computations during the bit allocation
since we do not have to apply the synthesis filters before. In
the specific case of the Butterfly-based lifting scheme, the
complexity is the following:

. Eight multiplications and eight additions per sample
coordinate during the prediction stage, i.e., for the
high frequency subbands x1, x2, and x3. In other
words, 48 arithmetic operations (a:o:) per wavelet
coefficient.

. Six multiplications and six additions per sample
coordinate during the update stage, i.e., for the low
frequency coset x0. In other words, 36 a:o: per low
frequency coefficient.

Thus, the complexity ClbðNÞ for a N-level decomposition of
the lifted version of the Butterfly-based scheme is

XN�1

i¼0

36�Nsi;0 þ 36�
Xi�1

l¼0

Nsl;0 þ 48�
X3

l¼1

Nsi;l

" #
a:o: ð30Þ

In parallel, the complexity CubðNÞ for a N-level decomposi-
tion of the unlifted version of the butterfly-based scheme
(only a prediction step) is

XN�1

i¼0

48�
X3

l¼1

Nsi;l

" #
a:o: ð31Þ

As we use an iterative algorithm to solve the optimization
problem (like in [6], for instance), the distortion is computed
several times during the allocation process. The convergence
of our algorithm is generally reached in approximately five
iterations (the maximal number of iterations we observe is
10). Thus, given I the number of iterations, the whole
complexity reduction relative to the use of the weigthed
MSE is given by I � ClbðNÞ for the lifted version of the
butterfly-based scheme, and by I � CubðNÞ for the unlifted
one. For instance, the synthesis for the lifted version takes
about 0:5 second on a Pentium III 1GHz with 512 Mbytes,
involving a significant average time cost reduction of
2.5 seconds for the allocation process (for five iterations).
Furthermore, as explained in [6], exploiting this MSE
approximation allows us to develop a model-based algorithm
for the allocation process as well. Combining the MSE
approximation with a model-based algorithm finally leads
to a more significant time cost reduction. As an example, the
allocation is finally processed in less than 0.4 second for
instance on a Pentium III 1GHz with 512 Mbytes RAM.

5 SIMULATION RESULTS

In order to evaluate the coding gain when using the
weighted MSE as distortion criterion during the bit
allocation, we experiment the compression algorithm
presented in Section 2 (see Fig. 2) according to two cases:
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3. After this work was finished, we noticed that two Loop-based lifting
schemes were proposed in [18], [19]. The framework given here is sufficient
to compute the corresponding weightings.

Fig. 6. Neighborhood used to design the prediction operator p1 (left) and

the update operator u1 (right) of the lifted Butterfly scheme related to the

coset x1. The operators related to the cosets x2 and x3 are obtained by

the same way, but rotated according to their orientation.



. the distortion criterion is the MSE approximation
with the weighting obtained in Section 3 and

. the distortion criterion is a so-called ”naı̈ve”
weighted MSE. In that case, the weights depend
only on the resolution levels and, thus, are defined
by inverse powers of 2.

Moreover, to show that the weighting can be exploited for
any kind of semiregular meshes (independently of the
remeshing method) and for any scheme, we propose two
versions of our coder:

. the first version, named the MAPS coder, deals with
meshes issued from the remesher MAPS [21] and
includes the lifted Butterfly scheme, and

. the second version, named the NORMAL coder, deals
with Normal Meshes [22] and includes the unlifted
Butterfly scheme.

Then, we compare the quality of the meshes obtained after
decompression, quantized at the same given bitrate. Figs. 7a,
7b, 7c, and 7d show, respectively, the corresponding curve
PSNR/bitrate for the models BUNNY, VENUS, RABBIT, and
HORSE encoded with the proposed MAPS coder. As
numerous papers about wavelet geometry coders [3], [4],
[23], the PSNR is given by

PSNR ¼ 20 log10

peak

dS

� �
;

where peak is the bounding box diagonal of the original
object, and ds is the Root MSE between the original irregular
mesh and the reconstructed semiregular one (computed with
MESH [24]). The bitrate is reported with respect to the
number of vertices in the original irregular mesh (b=iv). In
addition, Figs. 8a, 8b, 8c, and 8c show, respectively, the curves
PSNR/bitrate for the models SKULL, HORSE, RABBIT, and
VENUS, encoded with the proposed NORMAL coder.

Theoretically the quantization error assumptions used
during derivation in Section 3 are only valid for high
bitrates [16], and we could expect that the coding gain is
limited for low bitrates. However, compared to the “naı̈ve”
proposed coder, we globally observe that using the
weighted MSE significantly improves the coding perfor-
mances for any model, any version of the lifting scheme,
and at any bitrate. Note that the gain reaches more than
3:4 dB on the Normal mesh SKULL and 2:7 dB on the MAPS
mesh VENUS at low bitrates.

Also, Fig. 9 provides the visual benefits by showing the
distribution of the local reconstruction error on several
models. The colour corresponds to the magnitude of the
distance point-surface (see Fig. 9a) between the original
irregular mesh and the reconstructed semiregular one
(computed with MESH [24]). We globally observe that, for
one specific bitrate, the quality of the reconstructed meshes
is always higher when the weighted MSE is exploited
during the allocation process.

In order to evaluate the performances of our algorithm
when using the proposed MSE approximation as distortion
criterion of the bit allocation, we also compare our algorithms
with some state-of-the-art coders. To be coherent, we
obviously compare our MAPS coder with the zerotree coder
for MAPS meshes named PGC [3], exploiting the lifted
version of the Butterfly-based transform. On the other hand,
we compare our Normal coder with the zerotree coder named
for Normal meshes NMC [4] and with EQMC [23], both
exploiting the unlifted version of the Butterfly-based trans-
form. The curves PSNR/bitrate (see Fig. 7 and Fig. 8) show

that, for MAPS meshes, the proposed coder provides better
results (up to 3:5 dB) or, in the worst case, similar results. In
parallel, our Normal coder always outperforms the state-of-
the-art coders NMC and EQMC (up to more than 3:5 dB
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Fig. 7. PSNR curves for meshes encoded with the MAPS coder (lifted
Butterfly-based transform). (a) BUNNY, (b) VENUS, (c) RABBIT, and
(d) HORSE.



compared to NMC). Notice that without the proposed
weighting, our coders generally provide worse results than
the state-of-the-art coders, showing definitively the interest of
using the weighted MSE.

6 CONCLUSIONS

In this paper, we proposed a weighted MSE relative to the

triangular mesh geometry. The final objective was to propose

an efficient model-based bit allocation process optimizing the

performances of a wavelet-based geometry coder for semi-

regular meshes. We have particularly shown that the weights

can depend only on the polyphase components of the

synthesis filters, which is very useful in case of lifting

schemes. Experimentally, we observe that using this MSE

approximation as distortion criterion of a bit allocation

process significantly improves the coding performances of a

wavelet coder (for any kind of semiregular meshes, any

bitrate, and any lifting scheme), so that the proposed

algorithms outperform the relative state-of-the-art coders.
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Fig. 8. PSNR curves for meshes encoded with the NORMAL coder
(unlifted Butterfly-based transform). (a) SKULL, (b) HORSE, (c) RABBIT,
and (d) VENUS.

Fig. 9. Distribution of the reconstruction error on different models (at its
finest resolution) according to the distortion criterion. (a) Error scale. The
warmer colors correspond to the higher errors. (b) Naive MSE: 2:0 b/iv,
PSNR ¼ 69:58 dB. (c) Weighted MSE: 2:0 b/iv, PSNR ¼ 70:92 dB.
(d) Naive MSE: 2:0 b/iv, PSNR ¼ 69:15 dB. (e) Weighted MSE: 2:2 b/iv,
PSNR ¼ 70:65 dB. (f) Naive MSE: 2:2 b/iv, PSNR ¼ 54:9 dB. (g) Weighted
MSE: 1:69 b/iv), PSNR ¼ 57:54 dB.



APPENDIX

Energy of the Synthesis Filter

The energy of the synthesis filter rgið0Þ is given by:

rgið0Þ ¼
1

2�j

I
�

GiðzÞGiðz�1Þ z�1 dz: ð32Þ

According to (7), a synthesis filter bank fgig on a triangular
edge lattice can be formulated according to the polyphase
notation:

GiðzÞ ¼
X3

j¼0

z�tj Gi;jðzDÞ for i 2 0; . . . ; 3f g; ð33Þ

with Gi;jðzÞ the i; jth polyphase component of the synthesis
filters, defined by

Gi;jðzÞ ¼
X

k2ZZ2

gi Dkþ tj
� �

z�k; ð34Þ

and z�tj the shift relative to the jth coset. By exploiting (33)
and (34), (32) can be developed in:

rgið0Þ ¼
1

2�j

X3

u¼0

X3

v¼0

X
k2ZZ2

X
k02ZZ2

gi Dkþ tuð Þ

gi Dkþ tvð Þ
I

�

zð�DkþDk0�tuþtv�1Þdz:

ð35Þ

Using the Cauchy theorem, that is,

1

2�j

I
�

zl�1dz ¼ 1 if l ¼ 0;
0 else;

�

the integral operator of (35) is equal to 1 if

�DkþDk0 � tu þ tv ¼ 0 ð36Þ

is satisfied. The dilation matrix D being invertible, this
condition becomes ð�kþ k0Þ � ðD�1tu �D�1tvÞ ¼ 0. From
[13], we know that D�1tj is restricted to the unit hypercube,
that is, ½0; 1Þ2. On the other hand, k 2 ZZ2. These two
remarks yield that

ð�kþ k0Þ 2 ZZ2

ðD�1tu �D�1tvÞ 2 ð�1; 1Þ2:

�
ð37Þ

As ZZd \ ð�1; 1Þ2 ¼ 0, we have to solve separately ð�kþ
k0Þ ¼ 0 and ðD�1tu �D�1tvÞ ¼ 0 to satisfy (36). Conse-
quently, the set of solutions is k ¼ k0 and u ¼ v. Finally, the
energy of the synthesis filter rgið0Þ is given by

rgið0Þ ¼
X3

j¼0

X
k2ZZ2

gi Dkþ tj
� �2

; ð38Þ

with gi Dkþ tj
� �

¼ gi;j kð Þ the coefficient k of the jth poly-
phase component of the synthesis filter i.
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