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Abstract— As part of a microfactory concept, a micromanip-
ulation station is made up of two independant microsystems
having each one two degrees of freedom (rotation and linear
motions). That allows the station to manipulate microparts with
a high range of dimensions, from10µm to some millimeters
(2mm). This paper presents one of these microsystems called
TRING-module.

I. I NTRODUCTION

In microassembly and microproducts fabrication, the use of
small production systems, called microfactories, present many
advantages relatively to the use of conventional production
systems[1]: technical aspects (accuracy, etc.), economic as-
pects (low costs of investment and production, etc.), human
problems (portability and easyness for learning, etc.) and en-
vironmental aspects (energy saving, etc.). For microfactories,
the robots and strategies used are studyed differently regarding
those of classical factories. The actuator articulations are
realised by deformable materials while new micromanipula-
tion strategies are employed to master the adhesion effects.
In general, a microfactory is composed of one or several
micromanipulation stations inside of which one or more
microsystems and microrobots work to accomplish a task.

In the microfactory concept at our laboratory[2][3], a
micromanipulation station is made up of two independant
microsystems, called TRING-module, having each one two
degrees of freedom (rotation and linear motions) (Fig. 1). That
allows the station to manipulate microparts with a high range
of dimensions, from10µm to some millimeters (2mm). This
paper presents the principle and the experimental results of
the TRING-module.

II. PRESENTATION OF THETRING-MODULE

When designing the TRING-module, the specifications
were the followings[4]:

• the microsystem must have two degrees of freedom
(DoF) : linear and angular motions,

end-effector

2DoF microsystem

Fig. 1. A micromanipulation station is composed of two independant 2dof
microsystems called TRING-module.

• the desired precision must be better than1µm,
• in each motion, a very high stroke must be possible :

more than5cm in the linear motion and360◦ in the
angular one,

• finally, as the microsystem is dedicated to a microfactory,
it must have an adequate size. For example, if the range
of the linear motion is about5cm, the total dimensions
of the microsystem and its support should be inferior to
10cm ∗ 10cm ∗ 10cm.

To fulfill these requirements, we have proposed the use of a
stick-slip microactuator presented in[5]. The main advantage
of this actuator is the possibility to have more degrees of
freedom within one small bulk material[6].

Besides the dimensions, weight is the main criteria of
the design because the torque that the microactuators can
deliver to move the microsystem is very limited. The body
of the microsystem is then made of aluminium because of
the rigidity and the lightness that it offers. So, the load of
the whole microsystem is about100mN . As the dimensions
are small and the shape is complex, the body was fabricated



with electro-erosion technology.Fig. 2shows the microsystem
positioned on the glass tube[4].

Fig. 2. Photo of the microsystem on the glass tube.

III. E XPERIMENTS

In this section, we present the results of experiments for
each motion : linear and angular. Two characteristics have
been identified: small displacement characteristic and long
distance characteristic. The small displacement characteristic
concerns the step (resolution) that the TRING-module is able
to perform. It has been carried out with an optical sensor with
10nm of resolution. For the angular measurement, we use the
principle shown in thesee Fig. 3such astg(θ) = θ = m

R were
θ represents the angular displacement of the microsystem,m
is the tangential displacement andR is the radius. Another
optical sensor and a capacitive sensor with high ranges were
used to characterize respectively the linear and the angular
motion in large distance.
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Fig. 3. Principle of measurement of the angular motion in small displace-
ments.

A. Step measurements

The Fig. 4 shows the displacement of the microsystem in
linear motion when applying a sawtooth voltage with±150V

of amplitude. We conclude that the step is sub-micrometric
and is nearly constant during the displacement. However,
according to the applied frequency, it changes a little. At
100Hz, the amplitude of a step is around100nm. We observe
that the amplitude of the step is170nm for a frequency of
15kHz. We also remark the existence of vibrations during
the stick. It is due to the application of the voltage step (from
+150V to −150V ) during the slip mode. On the other hand,
the measurement of angular motion shows that the step is
about 0.05 · 10−4rad. In the two cases (linear and angular
motions), the amplitudes of the steps are small enough to be
compatible with our requirements.
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Fig. 4. Measurement of the steps in linear motion : voltageU = 150V
and frequencyf = 100Hz.

B. High stroke experiments

Here, we present the speed performances of the
microsystem according to different values of voltage
and frequency.

1) Linear motion: Our first measurements in large stroke
were to check if the tube defect affects the displacement
linearity of the microsystem. TheFig. 5-a shows that the
motion of the microsystem along the tube is linear for
different frequencies whenU = 150V . Similarly, for different
voltage whenf = 10kHz, the motion is quasi-linear along
the tube (seeFig. 5-b). We conclude that the design is robust
relatively to the defect of the tube.

We deduce fromFig. 6-athe speed performances according
to the applied voltage. The maximal voltage supported by the
microactuators is160V . However, between40V and 60V ,
dysfunctions appear. Below40V , the microsystem can’t move.
From the figure, we can assume that the speed is nearly linear
vsthe voltage. The spectrum of the speed is shown inFig. 6-b.
We see that at the frequencies8.5kHz, 14.5kHz, 16kHz and
17.5kHz, there are local minimum. In fact, these frequencies
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Fig. 5. The linear displacement of the microsystem along the tube is nearly
linear. That means that the adaptable spring compensates efficiently the defect
of the tube.

correspond to natural frequencies of the microactuator and/or
the tube. The curve may be divided into two parts.

• The first part is the linear part, from100Hz up to
12kHz. Except the local minimum, this part may be
interesting for closed-loop control using frequency as
input.

• The second part is above12kHz : saturation and loss
of speed appear. This means that above a certain value
of frequency, the slope of the voltage is too high and
the strain acceleration of the microactuator may generate
a force which exceeds the stiction. Some stick phase
doesn’t appear during the motion.

We notice that the minimum frequency which let the mi-
crosystem move is about0.5Hz for a voltage ofU = 150V .

2) Angular motion: Fig. 7-a shows that the microsystem
has a linear displacement around the glass tube even if it
presents minor defect of circularity.Fig. 7-b presents the
spectrum of the average speed. Similarly to linear motion,
we see the diminution of the speed at about8.5kHz.
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Fig. 6. Performances on speed of the microsystem in linear motion. a :
speedvs voltages. b : spectrum of the speed.

IV. CONCLUSION

In this paper, the design and the development of a mi-
crosystem with two degrees of freedom were presented. The
microsystem uses piezoelectric microactuators in stick-slip
mode. The steps amplitude varies according to the frequency
and the amplitude of the voltages. The maximal step value is
170nm in linear motion and0.05 · 10−4rad in angular mo-
tion. These values are obtained when the frequency is about
13kHz. At this frequency, the maximal speeds are obtained
(2.8mm/s in linear motion and0.22rad/s in angular motion).
The results obtained fulfill the requirements for the system.
The next work is to use two microsystems in cooperation on
a tube (seeFig. 1) in order to manipulate microparts. After
that, closed loop control (force and position) will be studied.

ACKNOWLEDGMENT

Particular thanks to Dr Jean-Marc Breguet and team from
the ‘Laboratoire des Systèmes Robotiques’ of the Swiss
Federal Institute of Technology Lausanne (LSRO - EPFL) for
providing us the microactuators and many precious advises.
This work is partially supported by the EUPASS-project
(http://www.eupass.org/).



0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
θ [rad]

t [s]
(a)

(b)

U150V

f10kHz

0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25
θ [rad/s]

f [Hz]

U=150V

.

Fig. 7. Characteristic of the angular motion. a : angular displacement of
the microsystem forU = 150V andf = 10kHz. b : spectrum of the speed
for U = 150V .
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