
HAL Id: hal-00264402
https://hal.science/hal-00264402

Preprint submitted on 17 Mar 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling chains of operations on a batching machine
with disjoint sets of operation compatibility

Nadia Brauner, Guyslain Naves

To cite this version:
Nadia Brauner, Guyslain Naves. Scheduling chains of operations on a batching machine with disjoint
sets of operation compatibility. 2008. �hal-00264402�

https://hal.science/hal-00264402
https://hal.archives-ouvertes.fr

Scheduling chains of operations on a batching machine with

disjoint sets of operation compatibility

Nadia Brauner, Guyslain Naves

March 17, 2008

Abstract

We consider a scheduling problem that arises from an industrial application in chemical

experimentations, where a single machine can process a fixed number of compatible jobs

simultaneously. The precedence graph is restricted to be a disjoint union of chains, and

the compatibility constraints are given by a partition of the tasks. Nevertheless, with these

restrictions we prove the NP-completeness of the problem when the machine has a capacity

of two, implying the difficulties for greater capacities. We also present a short proof for

an infinite capacity. Our results also show the NP-completeness of the D-Supersequence

problem, even when there are only two kinds of strings. We show polynomiality results when

the number of chains in the precedence graph is fixed or when each chain has only two jobs.

1 A scheduling problem

This study started with an industrial project that we carried out with the Institut Français
du Pétrole (IFP) (see [6] for a detailed description). Lengthy and costly chemical experiments
had to be conducted. The problems of scheduling those experiments had many features that
could be addressed by the classical scheduling approaches, for instance, scheduling with machine
unavailability or parallel machine scheduling minimizing the total processing time. But we were
also faced with a new aspect.

At an intermediate step of the experimentations, we were confronted with the scheduling of chains
of operations coming from the different experimentations: we have a set of tasks Ti given as a
sequence of ordered experiments or operations of various lengths (i.e., the precedence graph is a
chain). The machines are so-called batch machines, i.e., machines that can handle simultaneously
several operations [1]. We call operations batch-compatible if they can be put in the same batch.
Moreover, we consider that the batch compatibility constraint partitions the operations in disjoint
sets. Indeed, in our application, two operations are batch-compatible if they have exactly the
same length which is then also the length of the batch. So in the scheduling context, the problem
is to schedule operations on a batch machine with precedence constraints as chains and disjoint
sets of batch compatibility. The objective is to minimize the makespan, i.e., to finish the most
rapidly all operations.

Example 1 The following example is composed of two tasks with respective sequences of duration
of the operations (the arrows indicate the precedence constraints):

T1 : 21 → 5 → 14 and T2 : 5 → 14 → 21

A possible schedule of length 61 on a single batch machine with capacity 2 is:

1

T 21
1 T 5

1 T 5
2 T 14

1 T 14
2 T 21

2

where the operations of length 5 and 14 are grouped in batches and the operations of length 21
are scheduled alone. An optimal schedule of length 59 is:

T 5
2 T 14

2 T 21
1 T 21

2 T 5
1 T 14

1

�

In the classical classification of scheduling problems [4] as (resource, task, objective), our problem
can be described as follows:

• m parallel batch-machines Mj of capacity Bj (p-batch machine, i.e. the duration of the
batch is the length of the largest operation);

• n tasks Ti composed of sets of operations with precedence graphs as chains (each task is a
chain) and batch compatibility constraints on the operations (as disjoint sets of operations);

• the objective is Cmax.

A survey on scheduling problems with batches can be found in [8]. In this paper, we consider a
single batch machine (m = 1) of capacity B. Some complexity results for this problem are given in
[2]. Following the classical scheduling notations, we denote it by B1|chains; comp; B > n|Cmax
for the infinite-capacity case and B1|chains; comp; B = c|Cmax for the fixed-capacity case. In
Section 2 we study the case B = ∞ and Section 3 deals with B = 2.

There is an interesting analogy of this type of problems with the minimal common supersequence
problems and with problems in genetics (sequence alignment) where we have the same structure
[5]. This analogy helps propose solution methods and complexity results. Task Ti can be defined
as a string (or a chain) on the alphabet Σ of the operations, w : Σ → N gives the duration of
each operation, and two operations correspond to the same letter if they can be put into the same
batch. T j

i denotes the jth operation of task Ti.

Theorem 1 For a fixed number of tasks n, the scheduling problem is polynomial.

Proof. We note prefj(Ti) the sequence of the first j operations of Ti, for all i and j ≤ |Ti|.
We use a simple dynamic programming algorithm. Let Opt[j1, . . . , jn], with ji ≤ |Ti| for all
i, denote the optimal solution for the problem prefj1(T1), . . . , prefjn

(Tn). We give an inductive
definition of Opt[j1, . . . , jn] for all values of j1, . . . , jn, with the order for the induction being
a1, . . . , an ≤ b1, . . . , bn if and only if a1 ≤ b1, . . . , an ≤ bn. For all a ∈ Σ, we say that u ∈ 2[1,n]

is a-compatible with (j1, . . . , jn) if

∀i ∈ [1, n], ui = 1 ⇒ (ji 6= 0 ∧ T ji

i = a)

and 1 ≤
∑n

i=1 ui ≤ B. Then the inductive equations are:

Opt[0, . . . , 0] = 0

Opt[j1, . . . , jn] = min
a∈Σ

u a-compatible with
(j1,...,jn)

w(a) + Opt(j1 − u1, . . . , jn − un)

Thus there exists a polynomial-time algorithm that solves this problem. �

2

2 Infinite-capacity batch machine

This section deals with the case B = ∞. Note that if each letter appears at most B times then,
we can consider that B = ∞. Consider the following problem from computer science theory:

Minimal Common Supersequence

Instance. Finite alphabet Σ where each letter has a positive weight, finite set R of strings from
Σ∗ and a positive integer K.
Question. Is there a string w ∈ Σ∗ with total weight less than K (where the weight of a string
is the sum of the weights of its letters) and each string x ∈ R is a subsequence of w, i.e. one can
get x by taking away letters from w.

This decision problem is equivalent to the decision version of the infinite capacity batch machine
problem we consider: as mentioned before, the operations are the letters of Σ, the weight of a
letter is the duration of the corresponding operation and the tasks are the strings of R. The
solution w gives a feasible scheduling of the operations and its weight is the makespan.

Example 1 (Cont.)

T1 = abc, T2 = bca, w(a) = 21, w(b) = 5, w(c) = 14

This problem is also equivalent to the classical sequence alignment problem in genetics with the
score S of an alignment at a position defined as:

S(

α
︷ ︸︸ ︷
p, p . . . p,

n−α
︷ ︸︸ ︷

−,− . . .−) = (α − 1)p with p ∈ σ

See [5] for more details on this problem.

Theorem 1 states that this problem is solvable in polynomial time if the number of sequences |R|
is a constant. If all weights are equal to 1, this problem is known as the Shortest Common

Supersequence (problem [SR8] in [3]). It is NP-complete even for two-letter alphabets (i.e.
|Σ| = 2) [9], or if all strings of R are of length 2. This last result contradicts [3] and therefore,
we prove it in the following Proposition (also proved in [10]).

Proposition 1 The Shortest Common Supersequence problem is NP-complete even if all
chains are of length 2, i.e., ∀x ∈ R, one has |x| = 2.

Proof. We reduce from Stable Set. Let G = (V, E) be an undirected graph, we build the set
of words upon the alphabet V defined by {uv, vu | {u, v} ∈ E}. Then, it is easy to see that the
length of the shortest supersequence is 2|V | − α(G), with α(G) the maximum cardinality of the
stable sets of G (the vertices of the stable set correspond exactly to the letters that are scheduled
in a single batch). �

The reduction can be improved in such a way that each word is of length at most 2 and every
letter appears at most three times [10].

3 Two-capacity machine

In this section, we consider the case B = 2. Figure 1 is an example of four chains or tasks for
the case where each letter has a weight of 1 and the letters indicate the compatibility constraint.
For this example, an optimal solution is cbdebcde.

3

T1 : b c d e
T2 : c b e d
T3 : b d c e
T4 : c d e b

the tasks

b c d e
c b e d

b d c e
c d e b

an optimal solution

Figure 1: An example with 4 chains.

We shall consider several interesting sub-problems that are related to problems already studied
in the literature: one chain contains half of the letters (section 3.1), each letter appears at most
once in a chain (section 3.2) and the length of the chains are bounded (section 3.3).

3.1 Disjoint supersequences

In this section, we study the D-Supersequence problem which is a special case of B1|chains; comp; B =
2|Cmax where one of the chains contains half of all the operations and all durations are equal
to 1.

The following notations are from [7]. Consider two strings T = (t1t2 . . . tt) and S = (s1s2 . . . ss)
on a same alphabet Σ. An embedding f of T in S is a strong growing function from [1, t] to [1, s]
such that ti and sf(i) are the same letter for all i ∈ [1, t]. Let R = {S1, S2, . . . Sk} be a set (or a
multiset) of strings. An embedding of R in S is a k-tuple (f1, f2 . . . fk) where fi is an embedding
of Si in S. An embedding is disjoint if, for all i 6= j ∈ [1, k] and li ∈ [1, |Si|] and lj ∈ [1, |Sj |], we
have fi(li) 6= fj(lj). A string S is a d-supersequence of a set of strings R if there exists a disjoint
embedding of R in S. Consider the following decision problem:

D-Supersequence

Instance. A string S over a finite alphabet Σ and a set R of strings over the same alphabet Σ.
Question. Is S a d-supersequence of R ?

As mentioned earlier, this problem is a special case of the 2-capacity scheduling problem we
consider. This problem is easier than our scheduling problem, for we only want to know if there
is a “perfect” scheduling and not a scheduling that is better than the objective. We shall give
negative results even for a two letter alphabet using a preliminary lemma.

Lemma 1 d-supersequence is NP-complete.

Proof. We reduce from 3-Sat. Let C = {C1, . . . , Cp} be a set of clauses of size 3 over variables
in X = {x1, . . . , xn}. We can suppose that each variable appears exactly three times in C, two
times positively and one time negatively. The set of letters is Σ = {b1, . . . , bn}∪ {c1, . . . , cp}. For
each xi ∈ X , there are j < k and l such that xi ∈ Cj , xi ∈ Ck and xi ∈ Cl, we note c1+

i := cj

and c2+
i := ck, and c−i := cl.

For each variable, we build three words, all these words giving R:

r3i−2 := bic
1+
i c2+

i

r3i−1 := bic
2+
i

r3i := bic
−

i

We define S:

b1b2 . . . bnc1c2 . . . cpb1b1b2b2 . . . bnbnc1 . . . c1c2 . . . c2 . . . cp . . . cp

4

We use as many ci in S as there are in R. Now, we prove that C is satisfiable if and only if S is
a d-supersequence of R.
Suppose that C is satisfiable. We take a solution, and for each clause Ck, choose a variable that
makes the clause satisfied. Then, for each variable xi, there are five cases:

• either xi was taken twice (thus positively), then we define f3i−2(1) = i, f3i−2(2) is the index
of the first c1+

i in S and f3i−2(3) of the first c2+
i ,

• or xi was taken once, for the clause encoded by c1+
i , then f3i−2(1) = i and f3i−2(2) is the

index of the first c1+
i in S,

• or xi was taken once, for the clause encoded by c2+
i , then f3i−1(1) = i and f3i−1(2) is the

index of the first c2+
i ,

• or xi was taken once, for the clause encoded by c−i , then f3i(1) = i and f3i−1(2) is the index
of the first c−i ,

• or xi was not taken, f3i−2(1) = i, and we do nothing.

It is straightforward to construct the rest of the solution, as the first n+p letters of S are already
embedded, and the others do not create any difficulty.
Reciprocally, a solution of the d-supersequence problem gives us a solution for the satisfiability
problem: if f3i−2(1) ≤ n or f3i−1(1) ≤ n then set xi to true, else to false, and each clause will be
satisfied. This Karp reduction can be computed in polynomial time, and the problem is trivially
in NP, thus NP-complete. �

Lemma 2 D-Supersequence is NP-complete, even if R = {S1, S2, . . . Sk} contains only one
single chain with multiplicity k, i.e. S1 = S2 = . . . Sk.

Proof. We reduce from D-Supersequence. Let S, R = {S1, S2, . . . Sk} be an instance of
D-Supersequence. We introduce k new letters α0, α1, . . . , αk−1. We define a new instance
(S′, SR) of our problem by (where SR is taken with multiplicity k):

B = αk
0(S1.α1)

k−1.(S2.α2)
k−2 . . . (Sk−1.αk−1)

1

E = (α1.S2)
1.(α2.S3)

2 . . . (αk−1.Sk)k−1

S′ = B.S.E

SR = α0.S1.α1.S2.α2 . . . Sk

We note that the letters of B must be matched with α0 in the first word SR, α0.S1.α1 in the
second, . . . α0.S1.α1 . . . αk−1 in the last word, up to a permutation of the words, as the αi are
new letters. Moreover, the letters of E are matched with α1.S2 . . . αk in the first word, . . . , αk

in the last word. Thus, the letters of S must be matched with the word S1, . . . Sk, proving the
reduction. �

The following theorem proves that, even for a 2-letter alphabet, deciding whether a string is a
disjoint supersequence of k times another one is an NP-complete problem.

Theorem 2 d-supersequence is NP-complete even if |Σ| = 2 and R = {S1, S2, . . . Sk} contains
only one single chain with multiplicity k

5

Proof. We reduce from the preceding problem (Lemma 2): we give an encoding of the letters
of Σ = {a0, . . . , an}. let ϕ : Σ⋆ → {0, 1}⋆ be the morphism defined by ϕ(ai) = 01i012n+1. It can
be computed in polynomial time, thus we only have to show that this encoding ϕ preserves the
existence of a solution. Trivially, if there is a solution for the initial problem, there is one for the
encoding. Reciprocally, it suffices to show that the encoding of the first letter of S is embedded
exactly by the encoding of a letter of R. To see this, remark that before reading the encoding of
the second letter of S, we need to read at least 2n + 1 times ‘1’ but only twice ‘0’, and this is
possible only by reading twice ‘0’ on the same word of ϕ(R). Thus the encoding is correct. �

3.2 Each letter at most once in a chain

In the practical problem of scheduling experiments, each duration appears at most once for each
task. In this section, we consider the corresponding case where a letter cannot appear more than
once in each chain.

Theorem 3 The scheduling problem B1|chains; comp; B = 2|Cmax is NP-complete even if each
type of operation appears at most once in each chain (all letters are different in one chain).

Proof. We reduce from the general case, which is NP-complete (Theorem 2). As long as there
is a chain C with a letter, say a, that appears at least twice, we do the following operation:
replace the second a of C by αβ, where α and β are two new letters, and add a word αaβ. This
is trivially correct. It gives a polynomial Karp reduction, and the problem being in NP, the proof
is complete. �

We now consider the case where the number of letters, |Σ|, is a constant. For this case, the total
number of different chains is fixed. Therefore, an instance can be described by the ‘types’ of chain
and a multiplicity for each type. We prove that this problem is easily solvable using the following
lemma.

Lemma 3 Let I be a multiset of n words w1, . . . , wn ∈ Σ⋆ with multiplicity i1, . . . in respectively.
We note |Σ| = m. Suppose that each letter appears at most once in each word of I. If there
is some 1 ≤ k ≤ n such that ik ≥ (3m.m!)m, then the minimum number of letters that are not
matched on the scheduling of I is equal to this minimum on the scheduling of I ∪ {wk, wk}.

Proof. First, we show that the maximum number of distinct words in I is less than 3m!.
Indeed, the number of words w of length j such that each letter appears at most once in w is
exactly

(
m
j

)
j!. Thus, the number of different words in I verifies

n ≤
m∑

j=1

(
m

j

)

j! =
m∑

j=1

m!

(m − j)!
≤ m!e < 3m!

Note that it is easy to match all the letters of two identical words. We prove the lemma by
induction on m. If m < 2, it is obvious.

Let m be an integer, suppose the lemma is true for all ranks m′ < m. We prove it for rank
m. Let I be a multiset as in the lemma, w.l.o.g. k = 1. Let Σ1 = {a ∈ Σ : a ∈ w1} and
Σ1 = {a ∈ Σ : a /∈ w1}, and m′ = |Σ1| ≤ m − 1. We define a morphism ϕ upon words by
ϕ(a) = a if a ∈ Σ1, ϕ(a) = ǫ otherwise, i.e. it erases all letters of Σ1. For all j ∈ 2 . . . n, we pose
i′j = min({ij} ∪ {l ∈ N : l ≡ ij [2] ∧ l ≥ (3m′.m′!)m′

}), i.e. if ij is greater than (3m′.m′!)m′

, then

i′j is the smallest integer having the same parity as ij and still greater than (3m′.m′!)m′

.

Let I ′ be the multiset of words w2, . . . , wn with multiplicity i′2, . . . i
′

n respectively, and I ′′ the
multiset of the same words with multiplicity i2, . . . in. By induction hypothesis, the minimum

6

number of letters of Σ1 not matched on the scheduling of ϕ(I ′) is equal to this minimum on
ϕ(I ′′). Let S be an optimal scheduling for ϕ(I ′). We can interpret S as a scheduling upon
I ′ that minimizes the number of letters of Σ1 that are not matched (the letters of Σ1 are not
matched). Now, we can match the words of I ′′ \ I ′ perfectly, as ij and i′j have the same parity for
all j. Thus, we obtain a scheduling S′ of the words w2, . . . , wn of I that minimizes the number
of letters of Σ1 that are not matched. Moreover, for each letter a ∈ Σ1, a appears at most
∑n

j=2 i′j ≤ (n − 1)(3(m − 1)(m − 1)!)m−1 times not matched.

Now, given two occurrences of w1 = u1 . . . ul, we can easily match all the letters of these two
occurrences except two identical letters, say up. These two identical letters can be match with
any letter of I without violating the precedence constraints, as we can suppose that in the two
occurrences, u1, . . . , up−1 are done at the beginning of the scheduling, and up+1, . . . , ul at the
end. Thus, with 2m.3m!(3(m−1)(m−1)!)m−1 words w1 we can free 2.3m!(3(m−1)(m−1)!)m−1

occurrences for each letter in Σ1 that can be matched with the letters not matched in S′. Thus,
we obtain a scheduling S′′ such that the number of Σ1 letters that are not matched is minimum,
and there is at most one occurrence of each letter of Σ1 that is not matched, depending on the
parity of the number of occurrences of this letter. Observe that, for m ≥ 2,

2m.3m!(3(m− 1)(m − 1)!)m−1 ≤ (3m.m!)m

Adding two occurrences of w1 changes neither the minimum over Σ1 nor the parity of the number
of occurrences of the letters of Σ1, thus does not change the minimum number of letters not
matched. �

The next theorem follows easily.

Theorem 4 The scheduling problem B1|chains; comp; B = 2|Cmax is polynomial when there is
a fixed number of different operations, and each duration for the operations appears at most once
in each task (all letters are different in one chain).

Proof. Whenever the number m of operations is fixed, then the number of different words
that have at most one of each letters is fixed. By Lemma 3, for each word of the instance, if
this word appears more than the fixed bound (3m.m!)m, then we can reduce it to (3m.m!)m

or (3m.m!)m + 1, depending on the parity, without affecting the total loss due to operations
scheduled alone. Then we have a fixed number of different tasks, and each tasks has a bounded
multiplicity. Hence, the number of instance of the problem is then fixed. Thus, the time of the
algorithm is just the time of bounding the multiplicities, which can be done in linear-time. �

3.3 Bounded chain lengths

In this section, we consider the special case where the lengths of the chains are bounded. Propo-
sition 2 considers the case of 3-length chains and the number of occurrences of each letter in the
strings, the orbit, is smaller than 2. Notice that the shortest common supersequence problem
with the orbit of the letters smaller than a given C is a special case of the scheduling problem
B1|chains; comp; B = C|Cmax. The shortest common supersequence problem with bounded
orbits for the letters has already been studied in [10]. Proposition 2 is equivalent to a theorem in
[10] (where it is denoted by “case n = 3, r = 2”). We present a simple proof.

Proposition 2 [10] The scheduling problem B1|chains; comp; B = 2|Cmax is NP-complete even
if each operation appears at most two times, and the length of each chain is at most three and all
durations are equal to 1.

7

Proof. We reduce from Stable Set. Let G = (V, E) be an undirected graph. We can suppose
that each vertex of G has a degree at least 2. Then, we replace each edge {u, v} by two opposite
arcs (u, v) and (v, u), giving the set of arcs A
The alphabet is given by Σ = A ∪

⋃

v∈V {v0, . . . , v2d(v)−2}, where d(v) is the degree of v in the
initial graph. For each vertex v, if a1, . . . , ak are the arcs entering v, k = d(v), and a′

1, . . . , a
′

k are
the arcs leaving v, we add the set of words (see Figure 2):

a1v0

a2v0v1

a3v1v2

. . .

akvk−2vk−1

vk−1vka′

k

. . .

v2k−4v2k−3a
′

3

v2k−3v2k−2a
′

2

v2k−2a
′

1

We prove that it gives a polynomial Karp reduction: given a stable set S of G, for each v ∈ V \S,
we schedule the two occurrences of vd(v)−1 in two different batches. Remark that removing the
two occurrences of vd(v)−1 allows us to schedule all the letters a1, . . . , ad(v), a′

1, . . . , a
′

d(v) and
v0 . . . v2d(v)−2 by pairs. Then, for the nodes in S, all the letters corresponding to arcs are already
scheduled, thus the remaining letters can be easily scheduled.
Reciprocally, for the same reason, we can suppose that the only letters that are not scheduled by
pairs in a solution of our problem are of the form vd(v)−1 for v ∈ V ′ ⊂ V . Then, S = V \ V ′ is a
stable set of G. For otherwise, there would be an edge uv ∈ E such that the letters of the words
introduced by u and v are all scheduled by pairs, which is not possible. �

e1

e
2

e
3

e4

e5

r

u

s

t

a1r0

a2r0r1

r1r2a
′

2

r2a
′

1

a′

1s0

a′

4s0s1

a′

3s1s2

s2s3a3

s3s4a4

s4a1

a′

2u0

a4u0u1

a′

5u1u2

u2u3a5

u3u4a
′

4

u4a2

a3t0
a5t0t1
t1t2a

′

5

t2a
′

3

Figure 2: Example of the reduction

In the following part, we deal with the case where all chains are of length at most two.

Definition 1 We call an obstruction a set of k letters a1, . . . , ak verifying:

(i) each letter appears in at most two chains;

(ii) there exists k chains C1, . . . , Ck of length 2 such that for all 1 ≤ i ≤ k − 1, ai is the last
operation of Ci and the first of Ci+1, and ak is the first operation of a1 and the last of Ck.

Obviously, for each obstruction, there is at least one type of operation that must be done in two
different batches. Moreover, for each letter that appears an odd number of times, at least one of
the occurrences of this letter must be done isolated. The next theorem shows that these are the
only two cases for which an operation must be scheduled alone.

8

Theorem 5 In an optimal schedule of B1|chains; comp; B = 2|Cmax where each chain is of
length at most two, the number of operation that are done alone, is exactly two times the number
of obstructions plus the number of operations that appear an odd number of times.

Proof. Because of the preceding remarks, one inequality is already proved, thus we must show
that there exists a scheduling with at most this number of operations done alone.

First, we schedule the tasks that appear in obstructions, by choosing for each obstruction one of
the letters, the one with minimal weight, and by doing it in two different batches, every other
type of operation of the obstruction can then be done in a single batch.

Next, let M be any maximal matching upon the remaining letters, the number of operations not
matched is exactly the number of letters that appear an odd number of times. This matching can
violate some constraints of precedence. Let GM be the digraph whose vertices are the couples
of M , and there is an arc from m1 to m2 if m1 contains an operation that precedes one of the
operations of m2. Note that the degree of each vertex of GM is at most 2, thus GM is the union
of some paths and some cycles. Now, choose M such that the number of directed cycles of GM

is minimum. Suppose that there is a cycle in GM .

Let C = {m1 = {a1, b1}, . . . , mn = {an, bn}} be the vertex set of one of these cycles, such that
a1b2, a2b3, . . . , anb1 are chains of the problem. Suppose that ai and aj are batch-compatible, then
by replacing mi and mj by {ai, aj} and {bi, bj}, we have reduced the number of directed cycles
in M without changing the maximality of M . Now suppose that the ai are distinct. Note that
at least one of the letters of a1, . . . , an has at least three occurrences in the scheduling problem,
otherwise C would be an obstruction, w.l.o.g. a1 has at least 2 other batch-compatible operations.
One of these operations is not in C, call it c1. If c1 is not matched, then replace m1 by {a1, c1} if
c1 is the first operation of its chain, {b1, c1} otherwise. We have reduced the number of directed
cycle of GM by one. Suppose now that c1 is matched with d1 and that c1 and d1 appear at the
first (resp. last) position of their respective tasks. Then, we replace m1 and {c1, d1} in M by
m′ = {a1, c1} and m′′ = {b1, d1}, giving M ′. Now, m′ has an in-degree of 0 (resp. m′′ has an
out-degree of 0) in GM ′ , thus is not in the vertex set of any directed cycle of GM ′ , proving that
we have again reduced the number of directed cycle.
Finally, suppose that c1 appears at the first position of its task, and d1 at the last. Then, we
replace m1 and {c1, d1} by m′ = {a1, c1} and m′′ = {b1, d1}. m′ has an in-degree of 0 and m′′

has an out-degree of 0, thus the number of directed cycle is reduced by at least one.
We have proved that GM is acyclic, then by taking any topological ordering of the couples of M ,
we obtain a scheduling that respects the precedence constraints and that reaches our bound. �

It follows:

Corollary 1 The scheduling problem B1|chains; comp; B = 2|Cmax is polynomial when the
length of each chain is at most two.

4 Conclusion

In this paper, we have considered a scheduling problem where the tasks are composed of ordered
operations (chains of operations) to be scheduled on a batch machine with compatibility con-
straints. An analogy is made with supersequence problems where the tasks are the chains and
the operations are the letters. The capacity of the machine indicates the maximum number of
letters that can be matched and the duration of the operations is the weight of the letters.

Table 1 summarizes the results presented in this paper. The first column describes constraints on
the chains (|x| ≤ c means that all chains are of length less than c; ‘each letter once’ means that a

9

chain contains each letter at most once). The second column describes constraints on the number
of chains (constant or not). The third column concerns the capacity B of the batch machine.
The fourth column indicates whether the durations of all operations are equal or not and NP-C
means ‘’NP-Complete”.

chains n B |Σ| durations
- constant - - - polynomial (Theorem 1)
- - ∞ 2 = 1 NP-C [9]

|x| ≤ 2 - ∞ - = 1 NP-C (Proposition 1) [10]
half op. in T1; T2 = . . . = Tn - 2 2 = 1 NP-C (Theorem 2)

each letter once - 2 - = 1 NP-C (Theorem 3)
each letter once - 2 cst - polynomial (Theorem 4)

|x| ≤ 3 - 2 - =1 NP-C (Proposition 2)
|x| ≤ 2 - 2 - - polynomial (Corollary 1)

Table 1: Known results

Acknowledgments. The authors are grateful to András Sebő for several useful discussions
regarding the topic of this paper.

References

[1] M. Boudhar and G. Finke. Scheduling on a batch machine with job compatibilities. Belgian
Journal of Operations Research, Statistics and Computer Science - JORBEL, 40(1-2):69–80,
2000.

[2] P. Brucker, A. Gladky, J.A. Hoogeveen, M.Y. Kovalyov, C.N. Potts, T. Tautenhahn, and
S.L. van de Velde. Scheduling a batching machine. Journal of Scheduling, 1:31–54, 1998.

[3] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, San Francisco, CA, 1979.

[4] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G Rinnooy Kan. Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Math-
ematics, 4:287–326, 1979.

[5] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge Univ Pr, 1997.

[6] V. Lebacque, N. Brauner, B. Celse, G. Finke, and C. Rapine. Planification d’expériences
dans l’industrie chimique. In Colloque IPI 2006, Allevard, France, 2006.

[7] M. Middendorf. Supersequences, runs, and CD grammar systems. Theoretical Computer
Science, Topics in Computer Science, 6:101–114, 1994.

[8] Chris N. Potts and Mikhail Y. Kovalyov. Scheduling with batching: A review. European
Journal of Operational Research, 120(2):228–249, 2000.

[9] K.-J. Raiha and E. Ukkonen. The shortest common supersequence problem over binary
alphabet is NP-complete. Theoretical Computer Science, 16:187–198, 1981.

[10] V.G. Timkovsky. Complexity of common subsequence and supersequence problems and
related problems. Cybernetics, 25:565–580, 1990. English Translation from Kibernetika.

10

