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Abstract

Boussinesq’s hypothesis is at the heart of eddy viscosity models, which are used in many different fields to

model turbulent flows. In its present time formulation, this hypothesis corresponds to an alignment between

Reynolds stress and mean strain tensors. We begin with historical remarks on Boussinesq’s results and recall

that he introduced a local averaging twenty years before Reynolds, but using an approach that prevented him

from discovering Reynolds’ stress tensor. We then introduce an indicator that characterizes the validity of this

hypothesis. For experimental and numerical databases, when the tensors are known, this can be used to directly

estimate the validity of this hypothesis. We show, using several different databases, that this hypothesis is almost

never verified. We address in conclusion the analogy with kinetic theory, and the reason why this analogy cannot

be applied in general for turbulent flows.

Résumé

A propos de l’hypothèse de viscosité turbulente de Boussinesq : rappels historiques et évaluation

directe. L’hypothèse de Boussinesq est au coeur des modèles de viscosité, utilisés dans un grand nombre de

contextes pour modéliser des écoulements turbulents. Dans sa formulation moderne, cette hypothèse correspond

à un alignement entre tenseur de contrainte de Reynolds et tenseur de déformation moyen. Nous rappelons le

contexte historique de l’énoncé de cette hypothèse, en soulignant que Boussinesq avait introduit une moyenne

locale vingt ans avant Reynolds, mais en effectuant une erreur qui l’a privé de la mise en évidence du tenseur de

Reynolds. Nous introduisons ensuite un indicateur, compris entre 0 et 1, indiquant le degré de validité de cette

hypothèse. Pour des bases de données expérimentales et numériques, lorsque les différents tenseurs sont connus,

ceci permet de tester directement, “a priori”, cette hypothèse. Nous montrons ainsi, utilisant différentes bases

de données d’écoulements turbulents, que l’hypothèse n’est presque jamais vérifiée. Nous discutons en conclusion

de la théorie cinétique des gaz et de la raison pour laquelle cette analogie est discutable pour les écoulements

turbulents.
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Version française abrégée

Le “problème de la turbulence” touche un grand nombre de domaines, incluant l’ingénierie automobile,
chimique, la combustion, l’aéronautique, la météorologie, l’océanologie, l’hydrologie, l’hydraulique fluviale,
etc. Ces domaines sont à fort potentiel industriel et environnemental, et demandent souvent des réponses
pratiques et quantitatives, faisant appel à des modèles. Parmi les différentes familles de modèles existant,
beaucoup utilisent une moyenne de Reynolds, qui font intervenir les fluctuations instantannées à petites
échelles via le tenseur de Reynolds. La modélisation intervient ici, et permet de fournir, via une hypothèse,
une “fermeture” exprimant le tenseur de Reynolds en fonction de quantités moyennes. La fermeture la
plus courante, fournissant le tenseur de Reynolds en fonction du champ de vitesse moyen, est celle qui est
utilisée dans les modèles de viscosité turbulente, souvent appelée “hypothèse de Boussinesq”. Il semble
ici paradoxal de constater que la “moyenne de Reynolds” date d’une publication de 1895, tandis que
l’“hypothèse de Boussinesq” permettant d’exprimer le tenseur de Reynolds est largement antérieure : la
publication date de 1877, mais il s’agit d’un compte-rendu d’une séance de l’Académie des Sciences de
1872. Comment se fait-il que Boussinesq ait proposé en 1872 une fermeture pour une équation qui n’a
été établie plus de 20 ans plus tard ?

La réalité historique est un peu plus complexe que ce qui transparait dans les citations dans les ouvrages
actuels sur la turbulence ; nous pensons donc utile de revenir ici sur la publication originale de Boussinesq,
disponible par exemple sur le site Gallica (http ://gallica.bnf.fr). Dans sa publication de 1877, Boussinesq
effectue déjà une moyenne locale de l’écoulement, qu’il suppose stationnaire. Il considère les “composantes,
suivant les axes, des actions exercées” à travers des plans. Il effectue alors un raisonnement qui est analogue
à celui qui est utilisé en théorie cinétique, mais cette-fois ci pour les vitesses turbulentes : il obtient ainsi une
équation de transport pour le champ moyen analogue à l’équation définie pour les valeurs instantanées.
Boussinesq note bien que l’expression moyennée qu’il obtient obéit toujours aux équations de Navier-
Stokes, mais qu’il faut remplacer le coefficient de viscosité par un nombre beaucoup plus grand, qu’il
note ǫ, qui n’est plus une constante et qui dépend “encore et surtout de l’intensité de l’agitation moyenne
qui s’y trouve produite”. Il donne ensuite pour ce coefficient une expression qui préfigure le modèle de
longueur de mélange formalisé plus tard par Prandtl. En utilisant les termes actuels, on peut constater
que Boussinesq a effectué à la fois (de façon simultanée) une moyenne des équations de Navier-Stokes, et
l’introduction d’une modélisation tensorielle de type viscosité turbulente, en utilisant une analogie avec la
théorie cinétique. Plus tard, Reynolds a été plus précis, utilisant le même cheminement, mais fournissant
de façon explicite les équations moyennées ; mais il ne mentionna pas les contributions de Boussinesq.

Dans une seconde partie, nous considérons l’hypothèse de Boussinesq formulée en utilisant les nota-
tions actuelles. Nous rappelons qu’elle correspond à un alignement entre deux tenseurs. Pour quantifier
cette hypothèse, nous introduisons un indicateur qui est construit à partir d’un produit scalaire entre
tenseurs. Cet indicateur est compris entre 0 et 1, et vaut 1 lorsque l’hypothèse est vérifiée. Pour pouvoir
estimer cet indicateur, il faut disposer de toutes les composantes du tenseur de Reynolds et du tenseur
de déformation moyen. Dans une troisième partie, nous choisissons des bases de données turbulentes
permettant d’estimer cet indicateur. Nous utilisons des données de simulation numérique directe (DNS),
des données de simulation à grande échelle (LES), et des données expérimentales. Les résultats obtenus
à partir de ces bases de données vont tous dans le même sens : l’hypothèse de Boussinesq, qui est à la
base de nombreux modèles de viscosité turbulente, est rarement vérifiée. Le problème essentiel de cette
fermeture est qu’elle repose sur une analogie avec la théorie cinétique, analogie dont nous rappelons la
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réfutation sur des bases théoriques dans la dernière partie. Nous rappelons que puisque la turbulence plei-
nement développée produit des statistiques fortement non gaussiennes, il est probable que les parcours
individuels des élements de fluide fluctuent à un point tel que la prise en compte de leur effet collectif
dans l’estimation de la contrainte moyenne, ne peut se résumer à un gradient local. Nous mentionnons
dans ce contexte d’autres propositions qui ont été faites, telles que les modèles K-ǫ non-linéaires, ou les
modèles reposant sur d’autres équations constitutives non-linéaires possédant des effets de mémoire.

1. Introduction

The “turbulence problem” is present in many fields, including car industry, chemical engineering,
combustion studies, aeronautics, meteorology, oceanography, hydrology, fluvial hydraulics, etc. These
fields have a strong industrial and environmental potential, and often need practical and quantitative
answers. As well known, turbulence is one of the last subjects of classical physics which is still not solved.
This is why in engineering sciences, or in environmental studies, turbulence models are used [1,2,3,4,5].
Among the different existing models, many introduce Reynolds averaging [6]. In the original publication,
Reynolds average correspond to average Navier-Stokes equations on boxes of intermediate size. In more
recent formulations, the “Reynolds averages” that are estimated correspond to an ensemble average [7].
The objectives of these approaches is to discretize the modeled equations on a grid of adequate size, so
that the processing time will not be too large. This is a way to decrease the number of degrees of freedom.
Thus the idea is not to use a theory to provide an instantaneous turbulent solution, but to provide a mean
numerical solution on a rough grid, using a model. The important point is the non-linearity of Navier-
Stokes equations: the averaged equations are not closed and are expressed using small-scale instantaneous
fluctuations, through the Reynolds tensor [6]. The introduction of a model is then necessary to close the
equations, and provide, through an appropriate hypothesis, a “closure” expressing the Reynolds stress
tensor using averaged quantities.

2. Boussinesq and Reynolds: historical remarks

The main closure, which provides the Reynolds stress tensor using the gradient of the mean velocity
field, is used in turbulent viscosity models; it is often denoted “Boussinesq’s hypothesis” (see some com-
ments in [8], pp. 222-3). It seems here paradoxical to mention that for “Reynolds averages” a publication
of 1895 is cited [6], whereas for “Boussinesq’s hypothesis” which provides an expression for the Reynolds
stress tensor, a publication of 1877 is cited, which is much earlier. This publication is in fact a report of
a meeting of the French Academy of Science that was held during 1872. How is it possible that Joseph
Boussinesq proposed in 1872 a closure for an equation that would be written more than 20 years later?
Historical facts are somewhat more complex than what is usually mentioned in present time turbulence
text books. We therefore think here that it is useful to go back to Boussinesq’s original publication, which
can be found in French at Gallica’s web site (http://gallica.bnf.fr).

In his 1877 publication, Boussinesq performs already a local average of the flow, which is assumed
stationary. He first considers temporal averages, done “during a rather short time τ” (p. 24). Soon after
this, he assumes that velocity components are not correlated. He notes u1, v1, w1 the components of the
instantaneous velocity of an element of fluid, and u = u1 its temporal average. He then introduces the
acceleration u′

1 (Equation (2) page 28):

u′

1 =
du1

dt
+ u1

du1

dx
+ v1

du1

dy
+ w1

du1

dz
(1)
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We see here that he was not using the partial derivative notations. He then writes for the averaged
acceleration u′ = u′

1 (Equation (3) page 29):

u′ =
du

dt
+ u

du

dx
+ v

du

dy
+ w

du

dz
(2)

corresponding to the assumption u1∂xv1 = u1∂xv1, and also to u1∂xu1 = u1∂xu1. He states further that
there are some special situations (page 31): “when a group of molecules go up, we have at the same time
w1 > 0 et du1

dz
> 0, whereas we have w1 < 0 et du1

dz
< 0 when the same group goes down. The product

w1
du1

dz
is positive in both cases.” He deduces from this that equation (2) is wrong in those cases, but he

concludes “we see that this happens only in a relatively limited region and almost always negligible”. In
fact, the real situation is the opposite: here Boussinesq did not notice the apparition, through a temporal
average of transport equations, of the tensor that will later be called Reynolds tensor. It is surprising
in fact to discover that a few lines later, he implicitly introduces such a tensor when he considers the
“components among the axes, of actions exerted” through planes of the fluid element. The average of the
normal components of these actions are denoted N1, N2 and N3, and of the tangential components T1,
T2 and T3. We recognise here the different components of the tensor −uiuj , but this identification is not
mentioned by Boussinesq. Through an approach which is similar to the one done in kinetic theory, but here
for turbulent velocities, he performs a development in Taylor’s series and obtains the different components
of the “mean actions exerted through fixed planes” (page 42). Those are expressed as (equation (12) page
46):

N1 = −p + 2ǫ
du

dx
; N2 = −p + 2ǫ

dv

dy
; N3 = −p + 2ǫ

dw

dz

T1 = ǫ

(

dv

dz
+

dw

dy

)

; T2 = ǫ

(

dw

dx
+

du

dz

)

; T3 = ǫ

(

du

dy
+

dv

dx

)

(3)

In this equation, p is the pressure exerted on an element of fluid by the surrounding, given by (page 46):

−
1

3
(N1 + N2 + N3) = p −

2

3
ǫ

(

du

dx
+

dv

dy
+

dw

dz

)

(4)

We see here that for incompressible flows, and using usual present time notations, we have p = 2

3
K, where

K is the kinetic energy, written as 2K = −(N1 + N2 + N3). The equation (3) given by Boussinesq is in
fact a tensorial closure providing stresses on the form:

−
2

3
Kδij + ǫ

(

dui

dxj

+
duj

dxi

)

(5)

Boussinesq remarks that the average expression he obtains still obeys Navier-Stokes equations, where the
viscosity coefficient is replaced by a number which is much larger, denoted ǫ. This is no more a constant,
and depends “mainly on the mean agitation which is produced”. An expression is proposed by Boussinesq
for ǫ:

ǫ = ρgΛhu0 (6)

where ρg is the weight of a volume unity, Λ is a scalar, slowly varying with h and u0, which are respectively
a characteristic length and velocity. This relation for ǫ which is now denoted as “turbulent viscosity”, or
“effective viscosity”, is already a mixing length formulation, as developed later by Prandtl [10].

We thus see that, despite an error in the beginning concerning the correlations of velocity components,
“Boussinesq’s hypothesis” was originally explicitly mentioned as a tensorial relation, with a justification
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linked to mixing length arguments. Using present day vocabulary, we see that Boussinesq performed
simultaneously an average of Navier-Stokes equations and a tensorial closure of the eddy-viscosity type,
using an analogy to kinetic theory.

Boussinesq thought that he solved the turbulence problem; he did not realize his mistake in the average
of Navier-Stokes equations, neither did he notice that he was assuming a strong hypothesis when he
performed his analogy with kinetic theory. In the same volume, the 1877 contribution of Boussinesq is
introduced by Saint Venant (a 22 pp. introduction) [11]. The latter writes that Boussinesq solved a “true
enigma”. Much later, in his posthumous speech on Boussinesq’s achievements, the President of the French
Academy of Sciences Emile Picard mention his results as if they were exact results: “It is a remarkable
result due to Boussinesq, that Navier’s equations are still valid, but introducing, instead of real molecular
velocities, their local averages.” ([12], p. 78). On the other hand, it is surprising to notice that Boussinesq
does not cite the 1895 work of Reynolds in his 1897 book. In this paper, Reynolds undertook the same
averaging approach, but with a more rigourous line, introducing the stress tensor. There is a citation
default in both cases, since Reynolds did not cite the 1877 results of Boussinesq on local averages.

Let us note here that neither Boussinesq nor Reynolds seem to have used the word “turbulence” in their
publications: Boussinesq [13,9,16] used “tumultuous movements”, “eddy agitations”, “movements theory”,
“liquid eddy theory” (in French, “mouvements tumultueux”, “agitation tourbillonnaire”, “théorie des
remous”, “théorie des tourbillons liquides”, “force vive”), whereas Reynolds [14,6] used “sinuous paths”,
“sinuous motion”, “irregular eddies”, “sinuous or relative disturbance”. The word turbulence seems to
have been introduced in the field of fluid mechanics for the first time by William Thomson (later Lord
Kelvin) in 1887 [15]. This word was not adopted by Boussinesq or Reynolds in their works posterior to
1887 (see the title of Boussinesq, 1897: Theory of tumultuous and whirling liquid flows [16]); none of them
did cite Kelvin in their 1890s publications [6,16]. The word turbulence was adopted in the field only later,
in the beginning of the XXth century, in particular through the works of Prandtl.

3. Direct test of Boussinesq’s hypothesis

We come back here to turbulent viscosity models. Reynolds averaging of Navier Stokes equations is
written using the Reynolds stress tensor < uiuj >, where (ui) is the fluctuating velocity, (Ui) the mean
velocity, and < . > represents ensemble averaging. To achieve closure of the mean equations, it is necessary
to express the Reynolds tensor from the mean velocity, and other mean quantities. Among the latter is
the mean kinetic energy K = 1

2
< uiui >. We introduce also the traceless stress tensor, also sometimes

called anisotropic stress tensor: R =< uiuj > − 2

3
KI where bold notation is used for tensors, and I is the

unit tensor. We also introduce the mean velocity gradient tensor A = ∂Ui/∂xj and its symmetric part,
giving the mean strain tensor:

S =
1

2

(

∂Uj

∂xi

+
∂Ui

∂xj

)

(7)

whose trace vanishes for incompressible flows. Boussinesq’s hypothesis corresponds then to a closure
hypothesis with the following linear constitutive equation:

R = −2νT S (8)

where νT is a scalar coefficient called turbulent viscosity (sometimes called “effective viscosity”). This
equation is a linear relation between stress and strain tensors, and is analogous to the linear constitutive
equation for Newtonian flows: Rν = −2νS, where Rν is the viscous stress tensor and ν the viscosity.
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In Equation (8), the eddy-viscosity is written for the classical K − ǫ model [17] using two independent
turbulent quantities such as K and the dissipation ǫ: νT = CµK2/ǫ, where Cµ is a non-dimensional
quantity (in some recent models it is no more constant). Closure is achieved with transport equations for
K and ǫ. Here we do not consider transport equations.

The main hypothesis of equation (8) is here the fact that the 2 tensors are proportional. This pro-
portionality can be easily tested when the two tensors R and S are known. For this, we introduce an
inner product (or “contracted product”) between matrices that writes A : B = {AtB} = AijBij , where
{.} is the trace. The associated norm is the following: ‖A‖2 = A : A. For symmetric tensors, one has
A : B = {AB} and ‖A‖2 = {A2}. This can be used to introduce an indicator ρRS which is defined
through an inner product between tensors [18]:

ρRS =
|R : S|

‖R‖‖S‖
(9)

which is analogous to the cosine of the angle between vectors. The ratio ρRS is thus a number between 0
and 1, which characterizes the validity of Boussinesqs hypothesis: it is 1 when this hypothesis is valid, and
the less it is valid, the more this number is close to 0 (this corresponds to “perpendicular” tensors). Pushing
further the analogy with an angle between vectors, one can consider that alignment is approximatively
verified for angles smaller than π/6, corresponding to a value of ρRS larger than 0.86. This indicator is thus
a direct indicator of the validity of the basic hypothesis of all linear eddy viscosity models. To estimate this
number, one needs to have access to all the components of the Reynolds stress and mean strain tensors in
order to estimate the invariants {RS}, {R2} and {S2}. The stress tensor is often completely or partially
given in turbulent databases through turbulence intensity components and the various shear stress terms;
the strain tensor is less often available, since it involves derivatives in all directions, whose estimation
requires the data base to be provided on a fine enough grid. Nevertheless, except for complex 3D flows,
available databases correspond to simplified geometries possessing symmetries, so that many components
of the Reynolds stress and mean strain tensors vanish; this is the case for most of the databases tested
here, corresponding to 2D mean flows and an axisymmetric jet flow.

This indicator is applied below to numerical and experimental databases.

4. Application of the indicator to numerical and experimental databases

4.1. Direct numerical simulation data of simple flows

The DNS data analyzed here correspond to simple shear flows possessing only one non-zero velocity
gradient Some of these data bases have been studied in details elsewhere [19]. The first database (denoted
CO in the following) corresponds to a turbulent plane Couette flow at a Reynolds number Re = 1300
with a friction Reynolds number Reτ = 82 [20]. The second database (denoted CF87 in the following)
corresponds to a turbulent channel flow at a Reynolds number Re = 3250 corresponding to a friction
Reynolds number of Reτ = 180 [21], and the third (denoted CF99) is the same flow at larger Reynolds
number: Re = 104 corresponding to a friction Reynolds number of Reτ = 590 [22]. The fourth database
(denoted BL in the following) is a turbulent boundary layer on a flat plate, with zero pressure gradient,
with a Reynolds number of Re = 2 105 or based on the momentum thickness θ, Reθ = 1410 [23]. The
last DNS database corresponds to an annular pipe flow (denoted AP) with a bulk Reynolds number of
Re = 2800 (based on bulk velocity and δ, the half-width of the annular gap) or friction Reynolds number
Reτ = 180 [24]. The inner diameter is denoted Ri and the outer is Ro = 2Ri. The adimensional radial
distance r = (d − Ri)/δ is then a number between 0 and 2.
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Figure 1. Normal stresses for DNS databases.

Figure 2. Plot of ρRS(y+) for DNS databases: (1) total

stress (turbulent+viscous stress) and (2) turbulent stress

only.

The DNS test cases chosen correspond to a panel of Reynolds numbers going from 103 to 105, with
friction Reynolds numbers from 82 to 1410. The friction Reynolds numbers above are defined using the
friction velocity uτ =

√

τw/ρ, where τw is the modulus of the wall shear stress. In the following, most
quantities are non-dimensionalized, using uτ or u2

τ ; the distance to the wall is expressed as usual in wall
units (also a local Reynolds number) y+ = yuτ/ν, (except for the AP database where natural coordinate
is kept in order to visualise in the same graph the behaviour near the two walls). For these shear flows, only
1D profiles are necessary. All the profiles of the Reynolds stress tensors are usually provided. Furthermore,
the only non-zero gradient is a = U ′(y) whose knowledge provides the mean strain tensor:

S =
a

2











0 1 0

1 0 0

0 0 0











(10)

Figure 1 represents the normalized normal stresses for the data sets, showing that the anisotropy of
the stresses is pronounced. It is well-known (see e.g. [25,26]) that since normal stresses are not identical
(corresponding to anisotropy), Boussinesq’s hypothesis cannot be valid. Indeed, the anisotropic stress
tensor is here:

R =













−
2

3
K + 〈u2〉 〈uv〉 0

〈uv〉 −
2

3
K + 〈v2〉 0

0 0 −
2

3
K + 〈w2〉













(11)

and for the latter to be proportional to S, it would be necessary that diagonal terms vanish.
Many authors have mentioned that Boussinesq’s hypothesis is not correct for simple shear flows; our

contribution in this context is here to use the representation of the indicator ρRS(y+) to quantify the
degree of validity of Boussinesq’s hypothesis (Figure 2). In this figure, we have represented the total stress
and the turbulent stress alone. Very close to the wall, the viscous stress is dominant as expected, and
the total stress is aligned to the strain tensor. Moreover, this figure directly shows that the viscous term
has an influence on the total stress until a distance of y+ = 20, but the alignment is bad for for y+ > 2.
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Figure 3. Plot of ρRS(r) for the DNS database AP: total
stress (continuous line) and turbulent stress alone (dotted

line).
Figure 4. Plot of the shear stress for the AP DNS database.

Globally, for the total stress, the alignment, corresponding to the validity of Boussinesq’s hypothesis, is
bad for 3 < y+ < 70, (corresponding roughly to the buffer layer). There is a local minimum at about the
same position for all data bases, y+ = 10.5 ± 0.5. The different curves superpose rather well: the data
bases have approximatively the same behaviour, indicating a possible universality in the failure of this
linear constitutive relation near the walls.

The annular pipe flow presents some interesting non-symmetry effects (between inner and outer cylin-
ders). For this database ρRS is shown in real instead of wall units in Figure 3. For this flow, this ratio has
an interesting shape. Boussinesqs hypothesis is never valid (except very close to the walls for the total
stress), but it is the worse at the position r0 = 0.87 corresponding to an asymmetric center position,
which is closer to the inner cylinder than the outer one. As shown in Figure 4, this position corresponds
to the annulation of the mean velocity gradient tensor. The shear stress also vanishes at this position,
whereas normal stresses are not isotropic, so that R is not vanishing, but is diagonal, whereas the mean
strain tensor is vanishing:

R(r0) =











−0.19 0 0

0 0.10 0

0 0 0.09











; S(r0) = 0 (12)

The different turbulent values at this position correspond then to the non-validity of Boussinesq’s hypoth-
esis and also of any polynomial non-linear constitutive equation such as used in non-linear K-ǫ models,
as discussed below.

4.2. LES data

The LES (Large Eddy Simulation) data considered here correspond to the flow over a square cylinder,
with a Reynolds number of Re = 22000. This geometry was used as a test case in a workshop on LES
of flows past bluff bodies held in 1995 in Germany (see a report in [27]). The data analyzed here were
provided by the university of Surrey, UK. The mesh size is 257 × 241 × 64; the mean flow is 2D and
averages are taken over time (56 different time sections) and the spanwise dimension (64 values). This
provides 64 × 56 = 3584 samples which were used to compute mean quantities and second moments
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Figure 5. Streamlines of the flow past a square cylinder es-
timated from LES data.

Figure 6. A map of ρRS for the LES database. The inflow

region is not plotted. The isoline corresponds to an “an-
gle” of π/4. Only the region inside this isoline corresponds

approximatively to Boussinesq’s hypothesis.

such as all components of the Reynolds stress tensor. Figure 5 shows the streamlines of the mean flow.
Gradients were estimated using a second order finite difference scheme, giving access to all components
of the mean strain and vorticity tensors.

This database has been used elsewhere to check the kinetic energy transport equation [28]. Figure 6
represents ρRS estimated for the whole region: light regions indicate validity of Boussinesq’s hypothesis
(value close to 1). An isoline represents the value ρ = cos π/4 ≈ 0.71, corresponding to a roughly valid
linear hypothesis. The region inside this isoline is not of wide extension. Since the tensors are very small
in the inflow region, the alignment ratio is not plotted to avoid unnecessary scatter. Contrary to previous
examples, this corresponds to a complex flow, with mixing and recirculation regions. A LES database has
been chosen since DNS is not yet possible for such flow. The result shown here confirms previous results
obtained for simple shear flows.

4.3. Experimental data

We consider also here an experimental database, corresponding to a double annular turbulent jet flow,
generated by a confined double annular burner in cold conditions. Two dimensional LDV measurements
have been performed on 5515 grid points close to the nozzle exit, where the flow is characterized by
vortices, recirculation, high mixing rate. At each measurement position, statistics have been computed
on 3000 to 16000 particles. The resulting mean flow field is axisymmetric within 2 p.cent. The non-
zero components of the mean velocity gradient tensor have been computed on the fine grid, so that the
above procedure can be applied to test Boussinesq’s hypothesis with the indicator ρRS computed at each
grid position. The data base is available online (http://stro9.vub.ac.be/expdata); a complete description
is given in [29]. Figure 7 below shows the streamlines of the flow analyzed. Figure 8 shows a map of
ρRS . Validity of Boussinesq’s hypothesis are represented by white regions, which are of relatively limited
extension. Despite important noise due to the experimental nature of the database, we can say that
Boussinesq’s hypothesis is not validated for such complex flow.
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Figure 7. Streamlines of the double annular jet flow esti-
mated from experimental data, showing recirculation and

mixing regions.

Figure 8. A map of ρRS for the experimental double annu-

lar jet data. Only white regions correspond to validity of
Boussinesq’s hypothesis.

5. Discussion and conclusion

The results obtained using numerical (DNS or LES) or experimental data are very consistent in pointing
the non-validity of Boussinesq’s hypothesis, which is at the heart of many turbulent viscosity models.
However, viscosity turbulence models such as K-ǫ model are widely used for many applications, and
seem to provide satisfactory predictions. This may be seen as a contradiction. We must note in fact
that these models predict rather closely only simple flows, and only as far as mean fields are concerned
(mean velocities, streamflows). For example, in simple shear flows the shear stress is dominant in mean
transport equations, so that the failure of the linear constitutive equation does not have important
consequences for the final result. But predictions for second order moments (Reynolds stresses, kinetic
energy, dissipation) are not satisfactotry, even for simple flows. And for complex flows, having high mixing
rates, recirculation regions, stagnation lines, the predictions of these models can be qualitatively wrong,
even for first moments (see [3] for more comments). The inaccuracies come from the transport equations
and the linear constitutive equation.

The main limitation of this linear closure is the fact that it rests on an analogy with kinetic theory,
analogy that can be criticised on theorical grounds, as discussed below (see also discussion in [1,3,5]).

5.1. Kinetic theory and scale separation

Eddy-viscosity turbulence models are the subject of thousands of papers, yet only a very small number
of them discuss the basic theoretical weaknesses of Boussinesq and the gradient diffusion hypothesis when
applied to turbulent flows (see e.g. [33,34,35,36,37,38]). As already implicitly assumed by Boussinesq, the
basis of such modelling is an analogy with kinetic theory, where the viscous stress is expressed using the
gradient of the mean field (see also the comments in [3] ou [5]). The simple situation where molecules
have a mean velocity of the form (U(y), 0, 0) is often taken as an illustrative example: the gradients are in
fact an approximation of the finite difference quantity U(y + ℓm)−U(y − ℓm), where ℓm is the mean-free
path of molecules. Since this distance is very small compared to the scale of variation of U , the following
approximation is clearly justified:

U(y + ℓm) − U(y − ℓm) = 2ℓm

∂U

∂y
(13)
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For turbulent flows the same construction is implicitely assumed, taking for ℓm the mean free path of
fluid elements, i.e. the turbulent mixing length introduced by Prandtl. For this, the hypotheses below
must be realised:
– each element of fluid possesses a turbulent lagrangian free path ℓ, which is a random variable whose

distribution is peaked around a mean value ℓm, the turbulent mixing length;
– the turbulent mixing length is small compared to the scale of variation of mean quantities.
The free path of an element of fluid in the Lagrangian framework can be defined with the Lagrangian
autocorrelation function. Indeed, for each Lagrangian trajectory a characteristic time (the integral of the
autocorrelation function) can be estimated, providing a characteristic length, which is the mixing length
associated to the trajectory. But the second hypothesis above is less justified: since fully turbulent flows
possess high non-gaussian variability, it is likely that individual free paths take a whole range of values so
that their collective effect in the computation of the stress cannot resume in just one difference such as
given in (13). Furthermore, their mean is interpreted as the turbulent mixing length, which is generally
not small compared to the scale of variation of the mean velocity, so that the separation of scales does
not hold in general for turbulent flows [1].

5.2. Nonlinear developments of Boussinesq’s hypothesis

Since Pope [30], it is recognized that invariant theory (and especially results obtained in the fifties by
Rivlin and Spencer, see [31]) can be used in the framework of turbulence modeling to represent the stress
tensor as a development into a tensor basis composed of no more than 10 basis tensors. This provides the
following general development:

R =
10
∑

i=1

aiTi (14)

where the coefficients ai are scalar invariants of the flow, which are scalar fields having values independent
of the system of reference, corresponding to traces of different tensor products [31]. In nonlinear eddy-
viscosity turbulence models (see e.g. [32,25,26]), a nonlinear constitutive relation such as (14) is used,
with a tensorial basis Ti that can be expressed on the form of products of the mean strain tensor S and
of the mean vorticity tensor W. Most of these models are polynomials, of degree 2 or 3. These models
generalise models of the K-ǫ family and are often called nonlinear K-ǫ models [3]. These nonlinear
generalizations of Boussinesq’s hypothesis help to overcome the clear limitations of the linear framework,
but in a too superficial way, since they still provide closure using gradients of mean quantities; using
DNS data of an annular pipe flow, we have shown above that, at a near central position, a nonlinear
polynomial constitutive equation is not adequate since the strain and vorticity tensors vanish, whereas
the anisotropic stress does not. This example shows that such non-linear constitutive equation cannot
represent a full and consistent answer to the closure problem. The development of a new approach, more
deeply connected to the multiscale and long-range correlated nature of fully developed turbulence seems
desirable, providing in particular a turbulent constitutive relation of a new type. An interesting direction
for further research is provided by non-local models, that take into account the history of turbulence:
several models have already been proposed [34,36,38,35,39], and an explicit expression for the kernel of the
non-local model has recently been proposed and tested on simple flows [40]. Direct analysis of DNS data,
using a Lagrangian approach to follow elements of fluid, could also be a good way to better understand
the mechanism inside the formation of the turbulent stress [37,41], and improve the recent proposal of
Hamba [40].

Turbulence models have important engineering applications, and thus in this framework, having models
whose predictions are only partly in agreement with reality is better than having no agreement at all.
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To this aim, available turbulence models possess several tuning parameters, that are determined using a

posteriori validation. This type of validation is often restricted to mean profiles, and the comparison is
qualitative. Depending on the type of application considered, such qualitative prediction may be enough;
it is nevertheless certainly better to be able to provide good quantitative predictions for second and
higher moments. Indeed, depending on the application foreseen, fluxes and even extreme and rare events
can be important (e.g. for building structures able to resist strong winds); furthermore, fully developed
turbulence develops intermittent fluctuations and contains long-range correlations (see reviews in [8,3]).
Such effects are not considered in classical eddy-viscosity models, and thus are not predicted. It is in
this respect that direct a priori tests are useful, in order to better assess the source of the weaknesses of
available models, to be able to cure these weaknesses and develop new turbulence models.
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