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Semi-classical analysis and passive imaging

Yves Colin de Verdière ∗

March 17, 2008

Abstract

Passive imaging is a new technique which has been proved to be very
efficient, for example in seismology: the correlation of the noisy fields,
computed from the fields recorded at different points, is strongly related
to the Green function of the wave propagation. The aim of this paper
is to provide a mathematical context for this approach and to show, in
particular, how the methods of semi-classical analysis can be be used in
order to find the asymptotic behaviour of the correlations.

Introduction

Passive imaging is a way to solve inverse problems: it has been successful in
seismology and acoustics [5, 6, 17, 22, 23, 28, 29, 31, 4]. The method is as
follows: let us assume that we have a medium X (a smooth manifold) and a
smooth, deterministic (no randomness in it), linear wave equation in X. We hope
to recover (part of) the geometry of X from the wave propagation. We assume
that there is somewhere in X a source of noise f(x, t) which is a stationary
random field. This source generates, by the (linear) wave propagation, a field
u(x, t) = (uα(x, t))α=1,··· ,N . This field u is recorded at different points A, B, · · ·
on long time intervals. We want to get some information on the propagation of
waves from B to A in X from the correlation matrix1

CA,B(τ) = lim
T→+∞

1

T

∫ T

0

u(A, t) ⊗ u(B, t − τ)⋆dt

(equivalently

Cαβ
A,B(τ) = lim

T→+∞

1

T

∫ T

0

uα(A, t)uβ(B, t − τ)dt )

∗Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin
d’Hères Cedex (France); http://www-fourier.ujf-grenoble.fr/∼ycolver/

1For every matrix (aij), we write (aij)
⋆ := (aji).
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which can be computed numerically from the fields recorded at A and B. It
turns out that CA,B(τ) is closely related to the deterministic Green’s function of
the wave equation in X. It means that one can hope to recover, using Fourier
analysis, the propagation speeds of waves between A and B as a function of the
frequency, or, more precisely, the so-called dispersion relation.

If the wave dynamics is time reversal symmetric, the correlation admits also
a symmetry by change of τ into −τ ; this observation has been used for clock
synchronisation, see [20].

The goal of this paper is to give precise formulae for CA,B(τ) in the high
frequency limit assuming a rapid decay of the correlations of the source f outside
the diagonal. More precisely, we have two small parameters, one of them entering
into the decorrelation distance of the source noise, the other one in the high
frequency propagation (the ray method). The fact that both are of the same
order of magnitude is crucial for the method.

Let us also mention on the technical side that, rather than using mode de-
compositions, we prefer to work directly with the dynamics; in other words, we
need really a time dependent rather than a stationary approach. Mode decompo-
sitions are often useful, but they are of no much help for general operators with
no particular symmetry.

For clarity, we will first discuss the non-physical case of a first order wave
equation like the Schrödinger equation, then the case of a more usual wave equa-
tions (acoustics, elasticity).

The main result says that, for τ > 0, CA,B(τ) is close to the Schwartz kernel
of Ω(τ) ◦ Π where Π is a suitable pseudo-differential operator (a ΨDO), whose
principal symbol can be explicitly computed, and Ω(τ) is the (semi-)group of the
(damped) wave propagation. This closeness is in general only in the L2 sense, but
can be pointwise if the attenuation time is small enough. It implies that we can
recover the dispersion relation, i.e. the classical dynamics, from the knowledge
of all two-points correlations.

In order to make the paper readable by a large set of people, we have tried to
make it self-contained by including sections on pseudo-differential operators and
on random fields.

• In Section 1, we start with a quite general setting and discuss a basic formula
for the correlation (Equation (5)).

• Section 2 is devoted to exact formulae in the case of an homogeneous white
noise.

• In Section 3, we discuss the important property of time reversal symmetry
which plays a prominent part in the applications and is also useful as a
numerical test.

• In Section 4, we introduce a large family of anisotropic random fields and
show the relation between their power spectra and the Wigner measures.
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• Section 5 contains the main result expressing the correlation in the case of
a Schrödinger wave equation in the semi-classical limit. We show moreover
that pointwise estimates hold for the correlation if the attenuation time is
small enough.

• Section 6 does the same in case of wave equations.

• In Section 7, we discuss shortly the case where the source noise is located
on a submanifold.

• In Section 8, we focus on the case of seismology and discuss the remarkable
fact that the correlation of the noise created by surface waves is enough to
image the inner crust of the earth.

• Section 9 is a about a quite independent issue relative to correlations of
scattered waves.

• Finally, there are four appendices:

– Appendix A on pseudo-differential operators,

– Appendix B on classical dynamics, dispersion relation and generating
functions,

– Appendix C on Egorov Theorem for long times,

– Appendix D on time averages versus ensemble averages, i.e. ergodicity
of the source field.

Acknowledgement: I would like to thank Michel Campillo and his colleagues
from LGIT for discussions and collaborations.

1 A general formula for the correlation

1.1 The model

We will first consider the following damped wave equation:

du

dt
+ Ĥu = f (1)

• X is a smooth manifold of dimension d with a smooth measure |dx|

• u(x, t), x ∈ X, t ∈ R is the field (scalar or vector valued) with values in
CN (or RN).
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• The linear operator Ĥ is the Hamiltonian, acting on H = L2(X, CN ). It
satisfies some attenuation property: if we define the semi-group Ω(t) =
exp(−tĤ), t ≥ 0, there exists Tatt > 0, called the attenuation time, so that
we have an operator norm estimate ‖Ω(t)‖ = 0(e−t/Tatt).

• The source f is a stationary random field on X × R with values in CN (or
RN) whose matrix valued correlation kernel is given by2

〈〈f(x, s) ⊗ f⋆(y, s′)〉〉 = K(x, y, s − s′) . (2)

We will usually assume that K(x, y, t) vanishes for large t, say |t| ≥ t0 > 0.

We will assume that f is Gaussian only in order to check ergodicity: en-
semble averages can then be replaced by time averages (see Appendix D).

1.2 Examples

1.2.1 Schrödinger equation

Let X be a smooth Riemannian manifold with Laplace-Beltrami operator ∆. Let
us give a : X → R a smooth non negative function, V a smooth real valued
function on X, ~ a non negative constant, and K̂ = −~2∆ + V (x), and take:

~

i
(ut + a(x)u) + K̂u = g .

It is a particular case of Equation (1) where Ĥ = i
~
K̂ + a(x) and f = i

~
g. Let

us note for future use that, if ~ → 0, the principal symbol of our equation is
ω +‖ξ‖2 +V (x) and a(x) is only a sub-principal term entering into the transport
equation, but not in the classical dynamics. The attenuation time can be taken
as Tatt = 1/ infx∈X a(x).

1.2.2 Wave equations

Let us start with
utt + 2aut − ∆u = f, (3)

(a is a positive smooth function and ∆ is the Laplace-Beltrami operator of a
Riemannian metric on X) which corresponds to Equation (1) with

u =

(
u
ut

)
, f :=

(
0
f

)
.

and

Ĥ =

(
0 −Id

−∆ 2a

)
.

2The expectation value (ensemble average) of a random variable f will be denoted 〈〈f〉〉
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1.2.3 Pseudo-differential equations

We can assume that the dynamics is generated by a (matrix of) pseudo-differential
operator(s) (ΨDO’s, see Appendix A). Our equation looks then like:

ε

i
ut + Ĥεu = f

with
Ĥε = Opε(H0 + εH1) .

This allows to include

• An effective surface Hamiltonian associated to stratified media (included in
the H0 term) [8]. They are usually ΨDO’s with a non trivial dispersion
relation, namely the (group) speed |∂H0/∂ξ| is not constant.

• Frequency dependent damping included in H1: this is usually the case for
seismic waves.

1.3 The correlation

Definition 1 Let us define, for t ≥ 0, Ω(t) := exp(−tĤ) and the propagator P
by the formula:

(Ω(t)v)(x) =

∫

X

P (t, x, y)v(y)|dy| .

The propagator P satisfies
∫

X

P (t, x, y)P (s, y, z)|dy| = P (t + s, x, z)

which comes from: Ω(t + s) = Ω(t) ◦ Ω(s). The causal solution of Equation (1)
is then given by

u(x, t) =

∫ ∞

0

ds

∫

X

P (s, x, y)f(t− s, y)|dy| .

Physicists would define the correlation as the following limit:

CA,B(τ) := lim
T→+∞

1

T

∫ T

0

u(A, t) ⊗ u(B, t − τ)⋆dt .

We will see in Appendix D, that under some mild assumptions (f Gaussian...),
this limit exists almost surely and is equal to the expectation value

CA,B(τ) = 〈〈u(A, 0) ⊗ u(B,−τ)⋆〉〉 . (4)

We will take Formula (4) as a definition.
We get by a simple calculation:
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Theorem 1 If P is defined as in Definition 1 and K by Equation (2), we have,
for τ > 0:

CA,B(τ) =

∫ ∞

0

ds

∫ s+τ

−∞

dσ

∫

X×X

|dx||dy|P (s + τ − σ, A, x)K(x, y, σ)P ⋆(s, B, y)

(5)
and CA,B(−τ) = CB,A(τ)⋆.

Equation (5) can be written for τ > t0 as follows3:

CA,B(τ) = [Ω(τ)Π](A, B) (6)

with

Π =

∫ ∞

0

Ω(s)LΩ⋆(s)ds (7)

and

L =

∫

|t|≤t0

Ω(−t)K̂(t)dt .

If we assume that K(x, y, σ) = L(x, y)δ(σ), we get the simpler formula

L = L̂ .

These equalities hold between operators on L2(X, CN), hence as distributions
on X×X. If K̂(t) is Hilbert-Schmidt, the equality holds in L2(X×X) and hence
almost everywhere.

2 Exact formulae for white noises

2.1 Vector valued white noise

Let us assume that L(x, y) = δ(x − y)Id meaning that f is a vector valued white
noise on X × R. We get, for τ > 0,

Π =

∫ ∞

0

Ω(s)Ω⋆(s)ds

and, assuming Ĥ = iÂ+1/Tatt, with Â self-adjoint, the following simple formula:

CA,B(τ) =
Tatt

2
P (τ, A, B) ,

which is an exact relation between the correlation and the propagator P of the
wave equation without attenuation.

3If R is an operator we will denote by [R](x, y) its Schwartz kernel; L̂ is the integral operator
whose kernel is L(x, y)
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2.2 Twisted white noise

This section was motivated by a question of Philippe Roux.

Definition 2 A twisted white noise is a random field given by f = L0w with w
a white noise as defined in Section 2.1 and L0 ∈ L(CN , CN). Its correlation is
δ(x − y)δ(s − s′)K0 with K0 = L0L

⋆
0.

We have then
CA,B(τ) = [Ω(τ)Π](A, B)

with

Π =

∫ ∞

0

Ω(s)K0Ω
⋆(s)ds .

In the particular case of the scalar wave equation with a constant damping a
and the dynamics described in Section 2.3 by Equation (8), we get using a gauge
transform where

Ω(t) = e−at

(
eitQ 0
0 e−itQ

)

Π =
1

2a
K0,diag + R

where K0,diag is the diagonal part of K0 and R is going to vanish in the high
frequency limit4.

2.3 Wave equations

Let us take the case of a scalar wave equation with constant damping; the closest
results were derived in [30, 19].

We will consider the wave equation (3) with

• a > 0 is a constant damping coefficient

• ∆ a Riemannian laplacian in some Riemannian manifold X, possibly with
boundary:

∆ = gij(x)∂ij + bi(x)∂i

which is self-adjoint with respect to |dx| and appropriate boundary condi-
tions; in fact we could replace the Laplacian by any self-adjoint operator
on X!

• f = f(x, t) the source of the noise which will be assumed to be a scalar
white noise (homogeneous diffuse field):

〈〈f(x, s)f(y, s′)〉〉 = δ(s − s′)δ(x − y)

4R is a pseudo-differential operator of degree −1: R = Opε=1(r) with r ∈ Σ−1
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Let us compute the “causal solution”, i.e. the solution given by u = Gf with
G linear and satisfying u(., t) = 0 if f(., s) vanishes for s ≤ t.

We introduce the vector

u =

(
u

∂tu + au

)

which satisfies:

∂tu + au + Ĥu =

(
0
f

)
(8)

with

Ĥ = −
(

0 Id
∆ + a2 0

)

In order to get a readable expression, it is convenient to introduce Q =√
−(∆ + a2). We get then easily:

u(x, t) =

∫ ∞

0

ds

∫

X

e−as

[
sin sQ

Q

]
(x, y)f(y, t− s)|dy|

where sin sQ is defined from the spectral decomposition of Q (any choice of the
square root gives the same result for sin sQ

Q
). The meaning of the brackets is

“Schwartz kernel of”. We define

Ga(t, x, y) = Y (t)

[
e−at sin tQ

Q

]
(x, y)

with Y the Heaviside function. We will call Ga the (causal) Green function. We
can rewrite:

u(x, t) =

∫

R

ds

∫

X

Ga(t − s, x, y)f(y, s)|dy| .

Let us assume now that f is an homogeneous white noise and compute the
correlation CA,B(τ).

We get quite easily, using

sin α sin β =
1

2
(cos(α − β) − cos(α + β)) :

CA,B(τ) =
e−a|τ |

4a

[
(Q2 + a2)−1

(
cos τQ +

a sin |τ |Q
Q

)]
(A, B) . (9)

Taking the τ derivative, we get the simpler formula:

d

dτ
CA,B(τ) =

{
−1
4a

Ga(τ, A, B) for τ > 0
1
4a

Ga(−τ, A, B) for τ < 0
(10)
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The Fourier transform of CA,B(τ) is:

∫

R

e−iτωCA,B(τ)dτ =
−1

2aω

[
ℑ
(
(ω2 + 2iaω + ∆)−1

)]
(A, B) .

Low frequency filtering: from Equation (9), we see for each eigenmode ∆uj =
ω2

j uj a prefactor, which in the limit of large τ is ≈ e|τ |(rj−a) for ω2
j = a2− r2

j < a2.
This acts as low frequency filter as observed in [19].

3 Time reversal symmetry

Definition 3 1. A dispersion relation {D(x, ξ, ω) = 0} ⊂ T ⋆(X×R) is said to
be time reversal symmetric (TRS) if it is invariant by α : (x, ξ) → (x,−ξ).

2. A linear wave equation (with no attenuation!) is said to be time reversal
symmetric (TRS) if for any solution u(x, t) the field u(x,−t) is also a
solution. It implies that the eigenmodes of the Hamiltonian can be chosen
to be real-valued.

Remark 1 If the wave equation Qu = 0 satisfies 2., the associated dispersion
relation (the determinant of the principal symbol) satisfies 1.

Example 3.1 • Schrödinger equations without magnetic fields

• Acoustic and elastic wave equations.

Lemma 1 If D is TRS and γ(t) = (x(t), ξ(t), ω0) is a solution of Hamilton’s
equations, α(γ(−t)) = (x(−t),−ξ(−t), ω0) too.

We have the following:

Proposition 1 The correlation satisfies the general identity:

CA,B(τ) = C⋆
B,A(−τ)

and, in case of a white noise and a time reversible wave dynamics modified by a
constant attenuation (as in Section 2.1):

CA,B(−τ) = CA,B(τ) . (11)

Approximations of Equation (11) turn out to be important in applications to
clocks synchronisation as in [19].
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4 Random fields and pseudo-differential opera-

tors

4.1 Goal

Our aim in this section is to build quite general random fields with correlation
distances given by a small parameter ε. It seems to be natural for that purpose to
use ε−pseudo-differential operators. We will see how to compute the generalised
power spectrum using Wigner measures.

4.2 White noises

Let (H, 〈.|.〉) be an Hilbert space. There exists a canonical Gaussian random
field on it, called the white noise and denoted by wH (or simply w if there is no
possible confusion). This random field is defined by the properties that:

• For all ~e ∈ H,
〈〈〈w|~e〉〉〉 = 0

• For all ~e, ~f ∈ H,

〈〈〈w|~e〉〈w|~f〉〉〉 = 〈~e|~f〉

Unfortunately, w is not a random vector in H unless dimH < ∞5 , but only
a random Schwartz distribution.

We have nevertheless the following useful:

Proposition 2 If A is an Hilbert-Schmidt operator on H, the random field Aw
is almost surely in H.

Proof.–

〈〈〈Aw|Aw〉〉〉 = 〈〈〈A⋆Aw|w〉〉〉 = Trace(A⋆A) which is finite, by defi-
nition, exactly for Hilbert-Schmidt operators.

�

5If w were a vector in H, we would have w =
∑〈w|~ej〉~ej for any orthonormal basis (~ej)

and we see that
〈〈‖w‖2〉〉 =

∑
〈〈〈w|~ej〉2〉〉 = dimH .
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4.3 Examples

Example 4.1 Stationary noise on the real line: let us take a random field on the
real line which is given by the convolution product of the scalar white noise w with
a fixed smooth compactly supported function F : f = F ⋆w. Then f is stationary:
it means that the correlation kernel K(t, t′) = 〈〈f(t)f(t′)〉〉 is a function of t − t′.

On the level of Fourier transforms f̂ = F̂ ŵ, 〈〈f̂(ω)f̂(ω′)〉〉 = |F̂ |2(ω)δ(ω−ω′) and
the positive function |F̂ |2(ω) is usually called the power spectrum of the stationary
noise.

Example 4.2 If X is a d-dimensional bounded domain. Let us denote the Sobolev
spaces on X by Hs(X). If Q : L2(X) → Hs(X) with s > d/2, Qw is in L2(X).

Example 4.3 Brownian motions: if X = R, w is the derivative of the Brownian
motion: if b(t) =

∫ t

0
w(s)ds, b : [0, +∞[→ R is the Brownian motion which is in

L2([0, T ]) for all finite T .

Example 4.4 If X is a smooth compact manifold or domain and Q is smoothing,
meaning that Q is given by an integral smooth kernel

Qf(x) =

∫

X

[Q](x, y)f(y)|dy| ,

F = Qw is a random smooth function. Its correlation kernel

C(x, y) := 〈〈F (x)F (y)〉〉

is given by:

[QQ⋆](x, y) =

∫

X

[Q](x, z)[Q](y, z)|dz| .

Example 4.5 Random vector fields: let us consider H = L2(X, RN). For exam-
ple, in the case of elasticity, X is a 3D domain and N = 3. The fields here are
just fields of infinitesimal deformations (vector fields).

4.4 Modelling the noise using pseudo-differential opera-

tors

The main goal of the present section is to build natural random fields which are
non homogeneous with small distances of correlation of the order of ε → 0. The
noise is non homogeneous in X, but could also be non isotropic w.r. to directions.
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4.4.1 Noises from pseudo-differential operators

It is therefore natural to take for noise on a manifold Z the image of an homo-
geneous white noise by a pseudo-differential operator N of smooth compactly
supported symbol n(z, ζ). The correlation C(z, z′) will then be given as the
Schwartz kernel of NN⋆ which is a ΨDO of principal symbol |n|2. We have

C(z, z′) ∼ ε−dk

(
z,

z′ − z

ε

)
,

where k(z, .) is the Fourier transform with respect to ζ of |n|2(z, ζ), the “power
spectrum” of the noise at the point z.

This construction gives smooth random fields which can be localised in some
very small domains of the manifold Z, which are non isotropic and which have
small distance of correlations. Moreover it will allow to use techniques of mi-
crolocal analysis with the small parameter given by ε.

4.4.2 Power spectrum and Wigner measures

Definition 4 If f = (fε) is a suitable family of functions on Z, the Wigner
measures W ǫ

f of f are the signed measures on the phase space T ⋆Z defined by

∫
adW ǫ

f := 〈Opε(a)fε|fε〉 .

The measures dW ε
f are the phase space densities of energy of the functions fε.

We now define:

Definition 5 The power spectrum of the random field f = (fε) is the phase
space density P ε

f defined by:
P ε

f = 〈〈W ε
f 〉〉 :

the power spectrum of a random field is the average of its Wigner measure.

Proposition 3 The power spectrum P of fε = Op(n)w, satisfies:

P ε
f ∼ (2πε)−d|n|2(x, ξ)|dxdξ| .

Proof.–

Let us put N = Op(n), we have

〈Op(a)Nw|Nw〉 = 〈N⋆Op(a)Nw|w〉

and 〈〈〈Aw|w〉〉〉 = trace(A). We get

〈〈
∫

adW ε
f 〉〉 = trace(N⋆Op(a)N)

12



which can be evaluated using the ΨDO calculus as

〈〈
∫

adW ε
f 〉〉 ∼ (2πε)−d

∫
a|n|2dxdξ .

�

4.4.3 Space-time noises

If Z = X ×R is the space-time, we will take our noise as before f = Lw; we will
assume the noise homogeneous in time, the symbol l of L is assumed to be given
by l(x, ξ, ω).

In this case, the correlation is given by:

K(x, y; t) = [LL⋆](x, y; 0, t) (12)

which is the Schwartz kernel of a ΨDO of principal symbol ll⋆(x, ξ; ω).

5 High frequency limit of the correlation: ”Schrödinger

equations”

The main result is easier to derive in the case of a scalar field governed by a
wave equation which gives the first order time derivative of the field: it is a
generalisation of the Schrödinger equation.

5.1 Assumptions

Let us start with the semi-classical Schrödinger like equation

ε

i
ut + Ĥu =

ε

i
f

where

• Ĥ is admissible (Definition 11 in Appendix C): Ĥ is an ε−pseudo-
differential operator:

Ĥ := Op(H0 + εH1)

with

– The principal symbol H0(x, ξ) : T ⋆X → R, which gives the classical
(“rays”) dynamics, is elliptic of degree m.

– The sub-principal symbol H1(x, ξ) admits some positivity property
which controls the attenuation: there exists k > 0, such that

h1 := ℑH1 ≤ −k .

13



• The random field f is given by f = Op(l(x, ξ, ω))w with w the white noise
on X×R and with l smooth, compactly supported w.r. to (x, ξ) and whose
Fourier transform w.r. to ω is compactly supported. The power spectrum
of f is (2πε)−(d+1)|l|2(x, ξ, ω).

The previous assumptions will be used everywhere inside Section 5.

5.2 Subprincipal symbols and attenuation

Lemma 2 Under the assumptions of Section 5.1, we have, for all t ≥ 0, the
estimate

‖Ω(t)‖ = O(e−t/Tatt)

with ‖.‖ the operator norm in L2(X), any Tatt > 1/k and ε small enough.

Proof.–

d

dt
〈v(t)|v(t)〉 = 2ℜ〈v(t)| − iĤ1(t)v(t)〉

and we use G̊arding inequality (see [10]): if a ≥ 0, Opε(a) ≥ −C for
any C > 0 and ε small enough.

�

5.3 Main result

We get the main result:

Theorem 2 With the assumptions of Section 5.1, the correlation is given, for
τ > 0, by

CA,B(τ) = [Ω(τ) ◦ Π)](A, B)

where Π = Op(π) + R, π ≡∑∞
j=0 εjπj, with6:

π0(x, ξ) =

∫ TEhrenfest

0

exp

(
2

∫ 0

−t

h1(Φs(x, ξ))ds

)
|l|2 (Φ−t(x, ξ),−H0(x, ξ)) dt .

and R the remainder term is small. More precisely:

1. Let us consider CA,B(τ) as the Schwartz kernel of an operator Ĉ(τ). This
operator is Hilbert-Schmidt 7 with an Hilbert-Schmidt norm of the order of
ε−d. We have

‖R̂‖H−S = O(εα−d) ,

with some α > 0.
6The Ehrenfest time TEhrenfest is given by Definition 10.7 in Appendix C
7An Hilbert-Schmidt operator A is an operator whose Schwartz kernel [A](x, y) is in L2(X×

X) and the Hilbert-Schmidt norm ‖A‖H−S of A is the L2 norm of [A].
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2. For any N, k, there exists CN,k so that, if Tatt ≤ CN,kTEhrenfest/| log ε|, we
have:

‖[Ω(τ)R](A, B)‖Ck(X×X) = O(εN) .

The proof of Theorem 2 will be given in Section 5.4.

5.4 Proof of Theorem 2

We split the integral Π = Π1 + Π2 with Π1 :=
∫ Tγ

0
Ω(t)AΩ⋆(t)dt and Π2 =∫∞

Tγ
Ω(t)AΩ⋆(t)dt. The operator Π1 is estimated using Theorem 5. The Hilbert-

Schmidt norm of Π2 is bounded by

∫ ∞

Tγ

e−2t/Tatt‖A‖H−Sdt .

The Schwartz kernel of Π1 is the kernel of a ΨDO while the kernel of Π2

is estimated as follows: it is enough to estimate, for any l ∈ N, the Sobolev
H−ml → Hml norm of Ω⋆(t)AΩ(t). This is done using the same trick than in
Section 10.9.

5.5 Applications

From Appendix B, we know that, under some genericity assumption, the Green’s
function admits a WKB representation. The correlation admits also a WKB
expansion which is obtained by changing the amplitude, but not the phase.

Assuming still τ > 0, we see that the correlation CA,B(τ) is close to the kernel
of a Fourier integral operator associated to the canonical transformation Φτ . It
is given as a sum over all classical trajectories γ from B to A in time τ of Cauchy
data (B, ξB) with H0(B, ξB) = −ω for which the backward trajectories crosses
the support of the power spectrum ll⋆(., ., ω). If γ is such a trajectory and B and
A are non conjugated along it, this contribution is given by the well known Van
Vleck formula8 multiplied by π(B, ξB).

Corollary 1 Let K be the support of l(x, ξ,−H0(x, ξ)) and K∞ the smallest
closed set of T ⋆X invariant by the Hamiltonian flow of H0 and containing K.
The Hamiltonian H0 restricted to K∞ can be recovered from the knowledge of
Ĉ(τ) for 0 < |τ | ≤ τ0.

In particular, if there exists (x, ξ) with H0(x, ξ) = E and l(x, ξ,−E) 6= 0 and
if Φt is ergodic on H−1

0 (E), then we can recover the flow Φt on H−1
0 (E).

8The Van Vleck formula expresses the propagator P (τ, A, B) as a sum of pγ =
(2πiε)−d/2aγ(ε)exp(iS(γ)/ε) with aγ(ε) a formal power series in ε with a first term explic-
itly computable
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6 High frequency limit of the correlation: wave

equations

6.1 General wave equations

We want to derive results similar to those of Theorem 2 in the case of wave
equations. For that, we introduce a matrix version of what is done in Section 5:

ε

i
ut + Ĥu =

ε

i
f (13)

where

• Ĥ is a matrix of ε−pseudo-differential operators:

Ĥ := Op(H0 + εH1)

with

– The principal symbol H0(x, ξ) : T ⋆X → Herm(CN), elliptic of de-
gree 1. The eigenvalues of H0(x, ξ) are λ1(x, ξ) ≤ λj(x, ξ) ≤ λN(x, ξ);
the corresponding eigenspaces Ej(x, ξ) ⊂ CN are called the polarisa-
tions.

– The sub-principal symbol H1(x, ξ) admits some positivity property
which controls the attenuation: there exists k > 0, such that the
quadratic forms

h1;x,ξ(v) := ℑ〈H1(x, ξ)v|v〉
restricted to the polarisation bundles are ≤ −k‖v‖2 with k > 0.

• The random field f is given by f = Op(l(x, ξ, ω))w:

– w = (w1, · · · , wN) are independent white noises on X × R

– the matrix l is smooth, compactly supported w.r. to (x, ξ) and its
Fourier transform w.r. to ω is compactly supported. The power spec-
trum of f is (2πε)−(d+1)ll⋆(x, ξ, ω).

Example 6.1
utt + 2aut − ∆u = f

where a > 0 and −∆ is the Laplace-Beltrami operator on a smooth complete
Riemannian manifold X. We take

u =

(
ε
√
−∆u

−iεut

)

16



and

Ĥ =

(
0 −ε

√
−∆

ε
√
−∆ 2iεa(x)

)

and

H0 =

(
0 −‖ξ‖
‖ξ‖ 0

)
, H1 =

(
0 0
0 −2ia

)
.

6.2 Normal forms

Let us choose z0 = (x0, ξ0) ∈ T ⋆X be so that λ1(z0) < λ2(z0) < · · · < λN(z0).
Then using a ΨDO gauge transform, we can reduce Ĥ to

Ĥnormal ≡ Diag
(
Op(λj + ελ1

j + · · · )
)

(14)

near z0, with
λ1

j(x, ξ) = πjH1πj + iKj ,

where K is anti-Hermitian. This is done for example in the paper [12], see also
[25].

6.3 The main result

We will use two Assumptions:

1. No mode conversions in the frequency window: We will assume that
we work in a frequency window [a, b] ⊂ R so that for any (x, ξ) and for any
1 ≤ j ≤ N so that λj(x, ξ) ∈ I, we have, for k 6= j, λk(x, ξ) 6= λj(x, ξ).

2. Support of l: we will assume that l(x, ξ, ω) vanishes if ω /∈ I and also if
ω ∈ I and (x, ξ) is close to B.

Theorem 3 With the two previous Assumptions, the correlations Cj,k
A,B(τ) are

given

• If j = k, as in Theorem 2 with H0 = λj

• If j 6= k, Cj,k
A,B(τ) = O(ε∞)

In particular, for the elastic wave equation, the correlation between S-waves and
P-waves vanishes.
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7 Source of the noise on a submanifold

We want to discuss the case where the source noise is located on a submanifold
Y of the manifold X. We will assume that our dynamics is in a normal form
as in Section 6.2, Equation (14). In this case, the non-diagonal part of the
correlation may not vanish. If we consider Cj,k

A,B(τ) with τ > 0, the following
pairs of rays (γj, γk) contribute in a non trivial way: there exists tY < 0 with
y0 = γj(tY ) = γk(tY ) ∈ Y , γj(0) = B, γk(τ) = A and the restrictions of the
momenta of both trajectories to the tangent space Ty0

Y cöincide.
This result could be useful as a way to get informations on the source noise:

for example, in the case of seismology, is the source of oceanic noise located on
the coast or in the middle of the ocean.

B = γj(0)

A = γk(τ)

y0

Y

Figure 1: Rays involved in the correlation Cj,k
A,B(τ)

8 Using surface waves in order to image the in-

ner crust

8.1 Correlation at the boundary

This is specific to the case of seismology. The part of the Green’s function which
enters into the correlations is dominated by the surface waves contributions. The
earth crust acts as a wave guide and the surface waves are driven by effective
Hamiltonians given by a vertical Sturm-Liouville equation. Solving an inverse
spectral problem for these Sturm-Liouville equation allows imaging of the crust.
Details are given in [8]. The inverse spectral problem is solved in [9].
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8.2 The model

We work locally in X = {(x, z) ∈ R
d−1 × R | z ≤ 0}. We will consider the very

simple case of an acoustic wave equation near the origin of X:
{

utt − div(n gradu) = 0
u(x, 0) = 0

(15)

with
n(x, z) = N(x, z,

z

ε
)

and N(x, z, Z) : Rd−1 × R− × R− → R+ a non negative function which is inde-
pendent of Z for Z ≤ Z0 < 0. We will assume that N is smooth.

We plan to see that Equation (15) admits, as ε → 0, asymptotic solutions of
frequency of order ε−1 located near the boundary. Moreover these solutions are
determined by solving an effective pseudo-differential equation on the boundary
∂X = Rd−1 × {0}. We will assume that

0 < inf
Z≤0

N(x, 0, Z) < N(x, 0,−∞) .

Physically, it means that the propagation speed at some points very close
to the boundary is smaller than inside the medium. This kind of assumption
is usually satisfied in seismology where the speed of elastic waves into surface
sediments layers is smaller than the speed inside the rocks below the sediments.
As a consequence, the crust will act as a wave guide.

8.3 A Sturm-Liouville operator:

let us consider, for each (x, ξ) ∈ T ⋆∂X, the self-adjoint differential operator Lx,ξ

on the half line Z ≤ 0, with Dirichlet boundary condition at Z = 0, defined by:

Lx,ξv := − d

dZ
(N(x, 0, Z)

dv

dZ
) + N(x, 0, Z)|ξ|2v . (16)

The spectrum of Lx,ξ consists of a finite discrete spectrum and a continuous
spectrum [N(x, 0, Z0)|ξ|2, +∞[. Lx,ξ admits, for ξ large enough, a non empty
discrete spectrum of simple eigenvalues

inf
Z

N(x, 0, Z)|ξ|2 < λ1(x, ξ) < · · · < λj(x, ξ) < · · · < λk(x, ξ) < N(x, 0, Z0)|ξ|2 ,

which depend smoothly of (x, ξ). In order to see that, we can interpret |ξ|−2Lx,ξ

as a semi-classical Schrödinger type operator with an effective Planck constant
|ξ|−1 and a principal symbol

px(Z, ζ) = N(x, 0, Z)(ζ2 + 1)

which admits a well near (Z, ζ) = (0, 0). We should however take care of the fact
that the number k depends on (x, ξ) and goes to ∞ as ξ does.

19



8.4 WKB solutions of the stationary wave equation:

we want to build the effective surface Hamiltonians which describe the surface
waves. Let us start with the:

Lemma 3 Let us consider the operator Ĥ defined by:

Ĥu := −ε2div(n gradu) (17)

acting on functions on X vanishing at z = 0 (Dirichlet boundary conditions).
Let us choose λ(x, ξ) an eigenvalue of Lx,ξ depending smoothly of (x, ξ) ∈ U ,

where U is a bounded open set of T ⋆∂X, and ϕ(x, ξ, .) a normalised associated
eigenfunction. There exists:

• An asymptotic expansion

Φε =
∞∑

m=0

ϕm(x, ξ,
z

ε
)εm

with ϕ0 = ϕ and the ϕm(x, ξ, .)’s are smoothly dependent of (x, ξ) with
values in the domain of Lx,ξ. The ϕm

′s (m ≥ 1) are unique if they are
assumed to be orthogonal to ϕ.

• A symbol

aε(x, ξ) =
∞∑

m=0

am(x, ξ)εm

with a0 = λ

such that we have the following identity of formal power series in ε:

Ĥ
(
Φε(x, ξ,

z

ε
)ei〈x|ξ〉/ε

)
= aε(x, ξ)Φε(x, ξ,

z

ε
)ei〈x|ξ〉/ε . (18)

8.5 Interpretation: effective dynamics

Lemma 3 can be reformulated as saying that the effective surface wave equations
are, for each eigenvalue λj(x, ξ) of Lx,ξ, of the form

ε2utt + Op(aε(x, ξ))u = 0 .

9 Random scattered waves

In this last independent section, we will revisit what was may be the starting
point of this story by Keiiti Aki in the fifties: he wanted to measure the speed of
propagation of seismic plane waves by averaging over the incidence directions. It
turns out that we get nice formulae even for non homogeneous media.
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9.1 Introduction

Let us consider the propagation of waves outside a compact domain D in the
Euclidian space Rd. Let us put Ω = Rd\D. We can assume for example Neumann
boundary conditions. We will denote by ∆Ω the previous self-adjoint operator.
So our stationary wave equation is the Helmoltz equation ∆Ωf + k2f = 0 with
the boundary conditions. We consider a bounded interval I = [E−, E+] ⊂]0, +∞[
and the Hilbert subspace HI of L2(Ω) which is the image of the spectral projector
PI of our Laplace operator ∆Ω.

Let us compute the integral kernel ΠI(x, y) of PI defined by:

PIf(x) =

∫

Ω

ΠI(x, y)f(y)|dy|

into 2 different ways:

1. From general spectral theory

2. From scattering theory.

Taking the derivatives of ΠI(x, y) w.r. to E+, we get a simple general and ex-
act relation between the correlation of scattered waves and the Green’s function
confirming the calculations from [21] in the case where D is a disk.

9.2 ΠI(x, y) from spectral theory

Using the resolvent kernel (Green’s function) G(k, x, y) = [(k2 + ∆Ω)−1](x, y) for
ℑk > 0 and the Stone formula, we have:

ΠI(x, y) = −2

π
ℑ
(∫ k+

k−

G(k + i0, x, y)kdk

)

Taking the derivative w.r. to k+ of Π[E−,k2](x, y), we get

d

dk
Π[E−,k2](x, y) =

−2k

π
ℑ(G(k + i0, x, y)) . (19)

9.3 Short review of scattering theory

They are many references for scattering theory: for example [18].
Let us define the plane waves

e0(x,k) = ei<k|x> .

We are looking for solutions

e(x,k) = e0(x,k) + es(x,k)
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of the Helmoltz equation in Ω where es, the scattered wave satisfies the so-called
Sommerfeld radiation condition:

es(x,k) =
eik|x|

|x|(d−1)/2

(
e∞(

x

|x| ,k) + O(
1

|x|)
)

, x → ∞ .

The complex function e∞(x̂,k) is usually called the scattering amplitude.
It is known that the previous problem admits an unique solution. In more

physical terms, e(x,k) is the wave generated by the full scattering process from
the plane wave e0(x,k). Moreover we have a generalised Fourier transform:

f(x) = (2π)−d

∫

Rd

f̂(k)e(x,k)|dk|

with

f̂(k) =

∫

Rd

e(y,k)f(y)|dy| .

From the previous generalised Fourier transform, we can get the kernel of any
function Φ(−∆Ω) as follows:

[Φ(−∆Ω)](x, y) = (2π)−d

∫

Rd

Φ(k2)e(x,k)e(y,k)|dk| . (20)

9.4 ΠI(x, y) from scattering theory

Using Equation (20) with Φ = 1I the characteristic functions of some bounded
interval I, we get:

ΠI(x, y) = (2π)−d

∫

E−≤k2≤E+

e(x,k)e(y,k)|dk| .

Using polar coordinates and defining |dσ| as the usual measure on the unit (d −
1)−dimensional sphere, we get:

ΠI(x, y) = (2π)−d

∫

E−≤k2≤E+

∫

k2=E

e(x,k)e(y,k)kd−1dk|dσ| .

We will denote by σd−1 the total volume of the unit sphere in Rd: σ0 = 2, σ1 =
2π, σ2 = 4π, · · · .

Taking the same derivative as before, we get:

d

dk
Π[E−,k2](x, y) =

kd−1

(2π)d

∫

k2=E

e(x,k)e(y,k)|dσ| .

This integral can be interpreted, using the correlation Cscatt
E (x, y) of random

scattered waves of energy E defined by

Cscatt
E (x, y) =

1

σd−1

∫

k2=E

e(x,k)e(y,k)|dσ|,
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as
d

dk
Π[E−,k2](x, y) =

kd−1σd−1

(2π)d
Cscatt

E (x, y) . (21)

9.5 Correlation of scattered plane waves and Green’s func-
tion: the scalar case

From Equations (19) and (21), we get:

kd−1σd−1

(2π)d
Cscatt

E (x, y) = −2k

π
ℑ(G(k + i0, x, y)) .

Hence

Cscatt
E (x, y) =

−2d+1πd−1

kd−2σd−1
ℑ(G(k + i0, x, y)) .

For later use, we put

γd(k) =
2d+1πd−1

kd−2σd−1
. (22)

9.6 The case of elastic waves

We will consider the vectorial stationary elastic wave equation in the domain Ω:

Ĥu− ω2u = 0,

with symmetric boundary conditions, where

Ĥu = −a ∆u − b grad divu .

where a and b are constant:

a =
µ

ρ
, b =

λ + µ

ρ

with λ, µ the Lamé’s coefficients and ρ the density of the medium.

• The case Ω = Rd

We want to derive the spectral decomposition of Ĥ from the Fourier inver-
sion formula. Let us choose, for k 6= 0, by k̂, k̂1, · · · , k̂d−1 an orthonormal
basis of Rd with k̂ = k

k
such that these vectors depends in a measurable

way of k. Let us introduce P k

P = k̂k̂⋆ the orthogonal projector onto k̂

and P k

S =
∑d−1

j=1 k̂jk̂
⋆
j so that PP + PS = Id. Those projectors correspond

respectively to the polarisations of P− and S−waves.
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We have

ΠI(x, y) = (2π)−d
∫

ω2∈I
ωd−1dω

(
(a + b)−d/2

∫
k2=ω2/(a+b)2

eik(x−y)P k

P dσ+

a−d/2
∫

k2=ω2/a2 eik(x−y)P k

S dσ
)

.

using the plane waves
eO

P (x,k) = eikxk̂

and
eO

S,j(x,k) = eikxk̂j

we get the formula:

ΠI(x, y) = (2π)−d
∫

ω2∈I
ωd−1dω

(
(a + b)−d/2

∫
k2=ω2/(a+b)2

eO
P (x,k)(eO

P (y,k))⋆dσ+

a−d/2
∑d−1

j=1

∫
k2=ω2/a2 eO

S,j(x,k)(eO
S,j(y,k))⋆dσ

)
.

• Scattered plane waves

There exists scattered plane waves

eP (x,k) = eO
P (x,k) + es

P (x,k)

eS,j(x,k) = eO
S,j(x,k) + es

S,j(x,k)

satisfying the Sommerfeld condition and from which we can deduce the
spectral decomposition of Ĥ .

• Correlations of scattered plane waves and Green’s function

Following the same path as for scalar waves, we get an identity which holds
now for the full Green’s tensor ℑG(ω + iO, x, y):

ℑG(ω + iO, x, y) = −γd(ω)
(
(a + b)−d/2

∫
k2=ω2/(a+b)2

eP (x,k)(eP (y,k))⋆dσ +

a−d/2
∑d−1

j=1

∫
k2=ω2/a2 eS,j(x,k)(eS,j(y,k))⋆dσ

)
,

with γd(ω) defined by Equation (22).

This formula expresses the fact that the correlation of scattered plane waves,
randomised with the appropriate weights, is proportional to the Green’s
tensor.
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10 Appendix A: a review about pseudo-differential

operators

10.1 Basic calculus

We will define the pseudo-differential operators (ΨDO’s) on Rd. ΨDO’s on man-
ifolds are defined locally by the same formulæ. More details can be found in
[7, 10, 11, 27].

Definition 6 (Classical symbols) • The space Σk of symbols of degree k
is the space of smooth functions p : T ⋆Rd → C which satisfy

∀α, β, |Dα
xDβ

ξ p(x, ξ)| ≤ Cα,β(1 + |ξ|)k−|β| .

• A classical symbol of degree m and order l is a family of functions

pε : T ⋆
R

d → C

which admits an asymptotic expansion

pε ∼
∞∑

j=0

εj+lpj(x, ξ)

with pj ∈ Σm−j. We will denote this space by Sm,l
class.

Definition 7 (Pseudo-differential operators) An ε-pseudo-differential oper-
ator P (a ΨDO) of degree m and order l on Rd is given locally by the kernel

[P ](z, z′) = (2πε)−d

∫

Rd

ei〈z−z′|ζ〉/εpε

(
z + z′

2
, ζ

)
|dζ |

where pε(z, ζ), the so-called (total) symbol of P , is in Sm,l
class.

We will denote P = Op(pε).
The kernel of P is then given by:

[P ](z, z′) = ε−dp̃

(
z + z′

2
,
z′ − z

ε

)
(23)

with p̃ the partial Fourier transform of pε(z, ζ) w.r. to ζ . Very often, one is only
able to compute the symbol p0 which is called the principal symbol of P .

The most basic fact about ΨDO’s is the fact they can be composed: if P =
Op(p) and Q = Op(q), we have PQ = Op (pq + O(ε)). The composition formula
for the total symbol is given by the Moyal ⋆-product Op(a) ◦ Op(b) = Op(a ⋆ b)
with

a ⋆ b ≡ ab +
ε

2i
{a, b} +

∞∑

j=2

εjPj(a, b)

where

25



• {a, b} is the Poisson bracket

• Pj(a, b) is a bi-linear bi-differential operator, homogeneous of degree j with
respect to a and b.

The Moyal bracket of a and b

{{a, b}} ∼= −i
∞∑

j=1

εj{a, b}j

gives the symbol of the commutator of 2 pseudo-differential operators in terms
of their symbols. {., .}1 is the Poisson bracket.

10.2 The symbols Sm,l
δ

In order to formulate the Egorov Theorem for long times, we will need more
sophisticated classes of symbols.

Definition 8 (Sm,l
δ ) For any real numbers m, l and any δ with 0 ≤ δ < 1

2
, a

symbol a ∈ Sm,l
δ is a smooth function on T ⋆X depending on ε which satisfies

∀α ∈ N
2d, ∃Cα > 0, ∀(x, ξ) ∈ T ⋆X, |Dαa(x, ξ)| ≤ Cαεl−δ|α|〈ξ〉m ,

where 〈ξ〉 := 1 + ‖ξ‖.

We have Sm,l
class ⊂ Sm,l

0 .

We can associate to a ∈ Sm,l
δ a pseudo-differential operator Op(a) using for-

mula (23). Such operators obey a nice pseudo-differential calculus, see [10, 13]:

if, for j = 1, 2, aj ∈ S
mj ,lj
δj

, Aj := Op(aj) and δ := max(δ1, δ2), we have

A1◦A2 = Op(a1⋆a2) with a1⋆a2 ∈ Sm1+m2,l1+l2
δ and admits the asymptotic expan-

sion given by the Moyal ⋆−product. We have Pj(a1, a2) ∈ S
m1+m2,l1+l2−j(δ1+δ2)
δ .

In particular [A1, A2] = ε
i
Op ({a1, a2}) + Op(b) with b ∈ S

m1+m2,l1+l2+2(1−δ1−δ2)
δ .

10.3 Asymptotic expansions

The basic tool in order to find a ΨDO is an inductive construction based on
the realisation of any asymptotic expansion: given a sequence aj ∈ S

m,lj
δ with

l1 < l2 < · · · < lj < · · · and lj → +∞ as j → ∞, there exists a ∈ Sm,l1
δ such that

a ∼=
∞∑

j=1

aj

meaning that

∀l, a −
l−1∑

j=1

aj ∈ Sm,ll
δ .
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Such an a is uniquely defined modulo a remainder term r which lies in Sm,∞
δ . The

corresponding ΨDO Op(a) is well defined modulo O(ε∞). This implies, if m ≤ 0
and a compactly supported in x, that the L2 → L2 norm of Op(r) is O(ε∞).

10.4 Some Lemmas

Lemma 4 Let us consider the operator L given by

L :=
1

2πε

∫ ∫
Ω(−t)eitω/εOpx(L(x, ξ, ω))dωdt

with L ∈ Σ−∞(X × R) with a with an ω Fourier transform compactly supported.
Then L is a ΨDO of principal symbol l0(x, ξ) = L(x, ξ,−H0(x, ξ)).

he proof is a simple corollary of

Lemma 5 If A = Op(a) with a compactly supported, the operator B = exp(itĤ)A
is a ΨDO of principal symbol b = exp(itH0)a.

which itself is a consequence of the functional calculus for ΨDO’s.

Appendix B: asymptotics of the Green function

and classical dynamics

10.5 The scalar case

To the Hamiltonian H0 : T ⋆X → R, we associate the (ray) dynamics defined by

dxj

dt
=

∂H0

∂ξj

,
dξj

dt
= −∂H0

∂xj

. (24)

Let us denote by φt the flow of the Hamiltonian vector field XH0
defined in

Equation (24). If x0, y0 ∈ X and φt(y0, η0) = (x0, ξ0), we say that x0 and y0 are
not conjugate along the ray γ(s) = φs(y0, η0), 0 ≤ s ≤ t, if δη → dφt(0, δη) is
invertible at the point (y0, η0). In this case the action S(t, x0, y0) is defined by
S(t, x0, y0) =

∫
γ
ξdx−H0(x, ξ)dt. S(t, ., .) is a generating function of φt meaning

that φt(y,−∂S/∂y) = (x, ∂S/∂x) for (y, η) close to (y0, η0).
The action S is useful in order to describe a WKB expansion of the propagator

P (t, x, y) for (x, y) close to (x0, y0): P (t, x, y) is a sum of contributions Pγ(t, x, y)
of rays going from y to x in the time t. Assuming that x and y are not conjugate
along γ, we have

Pγ(t, x, y) ≡ (2πiε)−d/2

(
∞∑

j=0

εjaj,γ(t, x, y)

)
eiS(t,x,y)/ε .
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10.6 The matrix case

If we start with a dispersion relation

det(ωId −H0(x, ξ)) = D(x, ξ, ω) = 0

of degree N , we can (at least outside a mode conversion set, rewrite

D(x, ξ, ω) = ΠM
j=0(ω − λj(x, ξ))dj

which gives M ray dynamics λj associated to different polarisations

Pj = ker (H0(x, ξ) − λj(x, ξ)Id) .

Appendix C: long time Egorov Theorem

The main reference for this part is [3]. They get only an operator norm result,
while, under some ellipticity assumption, we get a pointwise result.

10.7 Ehrenfest time

Definition 9 (Ehrenfest time) Let X be a smooth manifold of dimension d.
Let us consider a smooth proper Hamiltonian H0 on T ⋆X. We fix also some
compact interval I.

• The Liapounov exponent ΛI = Λ ∈ [0, +∞[ is the infimum of the real num-
bers λ for which the differential of the Hamiltonian flow Φt of H0 satisfies
the following uniform estimate:

∃C > 0, ∀z ∈ T ⋆X with H0(z) ∈ I, ∀t ≥ 0, ‖dΦt(z)‖ ≤ Ceλt .

• Let us denote by ε > 0 the semi-classical parameter. The Ehrenfest time,
TEhrenfest ∈]0, +∞] is defined as

TEhrenfest := | log ε|/Λ .

We will assume in what follows that TEhrenfest is finite. For any time smaller than
TEhrenfest, any cell of diameter ε is not expanded to the whole phase space. We
will need a smaller time:

Definition 10 Let us give 0 < γ << 1
2
. The time Tγ is defined as

Tγ :=

(
1

2
− γ

)
TEhrenfest .

The previous definition will be used via the

Lemma 6 Assume that we have a flow Φt on a compact manifold X with a
Liapounov exponent Λ, then we have the following uniform estimates

∀α, |DαΦt(z)| = O+(eΛ|t|) .
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10.8 Egorov theorem

Definition 11 An admissible Hamiltonian of degree m is Ĥ := Op(H0 + εH1)
with

• H0 ∈ Σm a real valued function which is elliptic:

∃C > 0, ∀(x, ξ) ∈ T ⋆X , H0(x, ξ) ≥ C〈ξ〉m .

• H1 ∈ Σm−1 and h1 = ℑH1 ≤ −k with k ≥ 0.

Example 10.1 A typical admissible Hamiltonian is the Schrödinger operator
Ĥ = −ε2∆ + V (x) with V (x) ≥ 0.

We define the dynamics, for t ≥ 0, by:

Ω(t) = exp(−itĤ/ε) .

Theorem 4 (Egorov Theorem) Let us give Ĥ an admissible Hamiltonian and
A(0) = Op(a) with a ∈ C∞

o (H−1
0 (I)). Then the operator A(t) = Ω(t)A(0)Ω⋆(t)

is, for t fixed, a pseudo-differential operator whose symbol a(t) ≡ ∑∞
j=0 εjaj(t)

belongs to S−∞,0
0 and satisfies

a0(t)(z) = exp

(
2

∫ 0

−t

h1(Φs(z))ds

)
a(Φ−t(z)) . (25)

Let us remark that the previous result is a priori uniform only in a fixed interval
t ∈ [0, T0] independent of ε.

Let us describe the inductive construction of the whole symbol a(t) in terms
of the Moyal brackets. We compute

d

ds
Ω(t − s)B(s)Ω⋆(t − s) = Ω(t − s)

(
B′(s) +

i

ε
(ĤB(s) − B(s)Ĥ⋆)

)
Ω⋆(t − s) .

If d
ds

Ω(t − s)B(s)Ω⋆(t − s) ≡ 0 with B(0) = A(0) as formal powers series in
ε, we have B(t) = Ω(t)A(0)Ω⋆(t) modulo a smoothing operator, hence Egorov
Theorem.

We get the following equations by looking at the εj term:

d

dt
bj + {H0, bj}1 − 2h1bj = cj ,

with c0 = 0 and, for j ≥ 1, cj =
∑j−1

k=0 Pk,j(bk) where the Pk,j’s are linear
differential operators constructed by using the Moyal products with H0 and H1.
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10.9 Long time Egorov Theorem

We want to extend Egorov Theorem to times going to infinity with ε. From
Lemma 6, we get

Lemma 7 Uniformly, for t ∈ [0, Tγ(ε)], a0(t) belongs to S−∞,0
δ with δ = 1

2
−γ < 1

2

and the constants in the estimates of the derivatives of the symbol are uniform in
t.

The main result is:

Theorem 5 (Long time Egorov Theorem) Let us give Ĥ admissible (Sec-
tion 10.8) and a ∈ C∞

o (T ⋆X), for any t with t ∈ [0, Tγ] and with uniform symbol
estimates w.r. to t, the operator A(t) := Ω(t)AΩ⋆(t) is a pseudo-differential
operator whose total symbol is given as in the classical Egorov Theorem 4 by

A(t) ≡ Op

(
∞∑

j=0

εjaj(t)

)

where εjaj(t) ∈ S
−∞,j(1−2δ)
δ .

More precisely, for any M and k, there exists N so that if RN (t) = A(t) −
Op
(∑N

j=0 εjaj(t)
)
, the Ck norm of the kernel of RN (t) satisfies, uniformly for

t ∈ [0, Tγ], the bound
‖[RN(t)]‖Ck(X×X) = O(εM) .

Remark 2 The long time Egorov Theorem was first proved by Bambusi, Graffi
and Paul [1] and improved by Bouzouina and Robert [3].

Our estimate of the remainder term is better than the one given in [3] which

is only an L2 operator norm. We need the ellipticity of Ĥ0.

Proof.–

In [3], it is proved that, for any M ′, there exists N so that:

d

ds
Ω(t − s)Op

(
N∑

j=0

εjaj(s)

)
Ω⋆(t − s) = Ω(t − s)Op(rN (s))Ω⋆(t − s)

with rN(s) ∈ S−∞,M ′

δ uniformly in [0, Tγ]. It is then enough to use

ellipticity in the following way: we introduce P := Ĥ + C whith C
large enough. We get

P lΩ(t−s)Op

(
N∑

j=0

εjaj(s)

)
Ω⋆(t−s)(P ⋆)l = Ω(t−s)P lOp

(
N∑

j=0

εjaj(s)

)
(P ⋆)lΩ⋆(t−s)
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and the derivative

d

ds

(
P lΩ(t − s)Op

(
N∑

j=0

εjaj(s)

)
Ω⋆(t − s)(P ⋆)l

)
= Ω(t−s)P lOp(rN(s))(P ⋆)lΩ⋆(t−s) .

Defining qN by P lOp(rN(s))(P ⋆)l = Op(qN ), the product rules of

ΨDO’s imply that qN belongs to S−∞,M ′

δ . Ellipticity of Ĥ implies
that the Sobolev norms ‖.‖lm satisfy:

‖f‖lm ≍ ε−lm‖P lf‖L2 .

So we get the estimate of the H−ml → Hml norm:

‖ d

ds
Ω(t − s)Op

(
N∑

j=0

εjaj(s)

)
Ω⋆(t − s)‖−lm,lm = O(εM ′−2lm) .

�

10.10 Integrals with two dynamics

Lemma 8 Let us assume that we have two Hamiltonians Ĥ± = Op(H0,± +
εH1,±) satisfying the Assumptions of Section 5.1. Let us define the operator
J :=

∫∞

0
Ω+(t + τ)Op(a)Ω⋆

−(t)dt, with a ∈ C∞
o (T ⋆X). If we assume that, for

z ∈ Support(a), H0,+(z) 6= H0,−(z) (no mode conversions in the support of a),
then

J = εΩ+(τ)K ,

with K a ΨDO of principal symbol k0 = −ia/(H0,+ − H0,−).
In particular, if a vanishes in some neighbourhood of B, [J ](A, B) = 0(ε∞).

Proof.–

There exists some ΨDO K so that A = −i(Ĥ+K −KĤ−). J can be
rewritten as

J = ε

∫ ∞

0

d

dt

(
Ω+(t + τ)KΩ⋆

−(t)
)
dt .

Integration by part gives the result.

�
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11 Appendix D: time average versus ensemble

average

This section is inspired from [2]. Let us define

CT (τ, A, B) :=
1

T

∫ T

0

u(A, t) ⊗ u(B, t − τ)dt ,

we have

Theorem 6 Let us assume that f(., t) = Kw(., t) where w(x, t) is a (Gaussian)
white noise on X × R and K : H → H. Then

1. If K is Hilbert-Schmidt, CT (τ, A, B) → 〈〈C(τ, A, B)〉〉, as T → ∞, almost
surely for almost every pair (A, B).

2. If K is smoothing and Ĥ elliptic, CT (τ, A, B) → 〈〈C(τ, A, B)〉〉, as T → ∞,
almost surely in the C∞(X × X) topology.

Proof.–

1. We will assume w.l.o.g. that u is scalar valued and real and use
the following classical identity: if f = (f1, f2, f3, f4) : Ω → R

4 is a
Gaussian random variable,

〈〈f1f2f3f4〉〉 = 〈〈f1f2〉〉〈〈f3f4〉〉+ 〈〈f1f3〉〉〈〈f2f4〉〉+ 〈〈f1f4〉〉〈〈f2f3〉〉 . (26)

We have

〈〈‖CT (τ)‖2
H−S〉〉 =

1

T 2

∫ T

0

dt

∫ T

0

dt′
∫

X×X

dAdB〈〈u(A, t)u(B, t−τ)u(A, t′)u(B, t′−τ)〉〉 .

We apply the identity (26) and get:

〈〈‖CT (τ)‖2
H−S〉〉 = ‖〈〈CT (τ)〉〉‖2

H−S+
1

T 2

∫ T

0

dt

∫ T

0

dt′
∫

X×X

dAdB(II+III) ,

with
II = 〈〈u(A, t)u(A, t′)〉〉〈〈u(B, t − τ)u(B, t′ − τ)〉〉

and
III = 〈〈u(A, t)u(B, t′ − τ)〉〉〈〈u(A, t − τ)u(B, t′)〉〉 .

For example, we have

〈〈u(A, t)u(B, t′−τ)〉〉 = [

∫ ∞

0

ds

∫ ∞

0

ds′Ω(s)KK⋆Ω⋆(s′)δ(t−s = t′−s′−τ)](A, B)
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whose L2 norm is estimated as O(exp(−|t − t′|)). Using Cauchy-
Schwarz inequality and the fact that a product of two Hilbert-Schmidt
operators is trace class, we get

| 1

T 2

∫ T

0

dt

∫ T

0

dt′
∫

X×X

dAdB(II + III)| = O(1/T ) .

Standards argument involving Tchebichev inequality allow to con-
clude.

2. The second assertion is proved in a similar way using the trick
of Section 5.4.

�
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[12] C. Emmrich & A. Weinstein. Geometry of the Transport Equation in Mul-
ticomponent WKB Approximation. Commun. Math. Phys. 176:701–711
(1996).

[13] L. Evans & M. Zworski. Lectures on semi-classical analysis (Version 0.2).
Available at http://math.berkeley.edu/∼zworski/

[14] I.M. Gelfand & N.Y. Vilenkin. Les distributions IV : applications de l’analyse
harmonique. Dunod (Paris), 1967.
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