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Abstract

Let X = {X(t), t ∈ R
N} be a Gaussian random field with values in R

d defined by

X(t) =
(

X1(t), . . . ,Xd(t)
)

,

where X1, . . . ,Xd are independent copies of a centered Gaussian random field X0. Under
certain general conditions on X0, we study the hitting probabilities of X and determine
the Hausdorff dimension of the inverse image X−1(F ), where F ⊆ R

d is a non-random
Borel set.

The class of Gaussian random fields that satisfy our conditions includes not only frac-
tional Brownian motion, the Brownian sheet, but also such anisotropic fields as fractional
Brownian sheets, solutions to stochastic heat equation driven by space-time white noise
and the operator-scaling Gaussian random fields with stationary increments constructed
in [4].

Running head: Inverse Images of Anisotropic Gaussian Random Fields

2000 AMS Classification numbers: 60G60; 60G15; 60G17; 28A80.

Key words: Gaussian random fields; anisotropy; fractional Brownian sheet; stochastic
heat equation; hitting probability; Hausdorff dimension; inverse image.

1 Introduction

In recent years, several classes of anisotropic Gaussian random fields have arisen naturally
in the studies of random fields, stochastic partial differential equations as well as in many
applied areas including image processing, hydrology, geostatistics and spatial statistics (see
[23] and the references therein for more information).

Typical examples of anisotropic Gaussian random fields are fractional Brownian sheets
and the solution to the stochastic heat equation. It has been known that the sample path
properties such as fractal dimensions of these anisotropic Gaussian random fields can be
very different from those of isotropic ones such as Lévy’s fractional Brownian motion; see,
for example, [1, 5, 6, 16, 21]. Recently, Xiao [23] studied systematically the analytic and
geometric properties of anisotropic Gaussian random fields under certain general conditions,
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with the aim of characterizing their anisotropic nature by a multiparameter index H =
(H1, . . . , HN ) ∈ (0, 1)N . This index is often related to the operator-self-similarity or multi-
self-similarity of the Gaussian random field under study.

Let X = {X(t), t ∈ R
N} be a Gaussian random field with values in R

d defined on a
probability space (Ω,F , P) by

X(t) =
(

X1(t), . . . , Xd(t)
)

. (1.1)

We will call X an (N, d)-Gaussian random field. For any Borel set F ⊆ R
d, its inverse image

under X is defined by
X−1(F ) =

{

t ∈ R
N : X(t) ∈ F

}

.

In particular, if F = {x} (x ∈ R
d), then X−1({x}) is the level set of X.

In the studies of random fields, it is interesting to consider the following questions:

(i) Given a non-random Borel set F ⊆ R
d, when is it non-polar for X in the sense that

P{X−1(F ) 6= ∅} > 0?

(ii) If P
{

X−1(F ) 6= ∅
}

> 0, what is the Hausdorff dimension of the inverse image X−1(F )?

In this paper, we will use dim
H

to denote Hausdorff dimension, and refer to [8] and [11] for
its definition and basic properties.

Question (i) is an important question in potential theory of random fields and complete
answer has only been known for a few types of random fields with certain Markovian struc-
tures. Of particular significance is the result due to Khoshnevisan and Shi [14], who proved
that if W = {W (t), t ∈ R

N
+} is the (N, d)-Brownian sheet, then for every Borel set F ⊆ R

d,

P
{

W−1(F ) ∩ (0,∞)N 6= ∅
}

> 0 ⇐⇒ Cd−2N (F ) > 0. (1.2)

Here and in the sequel, Cα denotes the Bessel-Riesz capacity of order α defined by

Cα(F ) =

[

inf
µ∈P(F )

∫

Rd

∫

Rd

fα(‖x − y‖)µ(dx)µ(dy)

]−1

, (1.3)

where P(F ) is the family of probability measures carried by F and the function fα : (0,∞) →
(0,∞) is defined by

fα(r) =







r−α if α > 0,
log

(

e
r∧1

)

if α = 0,
1 if α < 0.

(1.4)

Dalang and Nualart [7] extended the methods of Khoshnevisan and Shi [14] and proved similar
results for the solution of a system of d nonlinear hyperbolic stochastic partial differential
equations with two variables.

For random fields with general dependence structures, it is more difficult to establish
results of the type (1.2). Some sufficient conditions and necessary conditions for P

{

X−1(F ) 6=
∅

}

> 0 have been established by Testard [18] and Xiao [22] for fractional Brownian motion,
by Dalang, Khoshnevisan and Nualart [5, 6] for the solutions to non-linear stochastic heat
equations with additive and multiplicative noises, and by Xiao [23] for a large class of Gaussian
random fields satisfying Conditions (C1) and (C2) (see Section 2 for the precise assumptions).
Our Theorem 2.1 unifies and, in some cases, strengthens the results in the aforementioned
works.
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The main objective of this paper is to determine the Hausdorff dimension of the inverse
image X−1(F ) for Gaussian random fields satisfying Conditions (C1) and (C2). The analo-
gous problem for Lévy processes can be solved by applying potential theory of Lévy processes
and a subordination technique, see Hawkes [9], Khoshnevisan and Xiao [13] for more details.
However, when X is a non-Markovian process or a Gaussian random field and F ⊆ R

d is a
general Borel set, few results on the geometric properties of X−1(F ) are available. Testard
[18] obtained an upper bound for dim

H
X−1(F ) when X = {X(t), t ∈ R

N} is a fractional
Brownian motion of index α ∈ (0, 1), which is a centered Gaussian random field with values
in R

d and covariance function given by

E
[

Xi(s)Xj(t)
]

=
1

2
δij

(

‖s‖2α + ‖t‖2α − ‖s − t‖2α
)

, ∀s, t ∈ R
N , (1.5)

where ‖ · ‖ denotes the Euclidean norm in R
N and δij = 1 if i = j and 0 otherwise. Monrad

and Pitt [17] proved that, if N > αd, then almost surely

dim
H
X−1(F ) = N − αd + αdim

H
F for all Borel sets F ⊆ R

d. (1.6)

Note that the exceptional null event on which (1.6) does not hold is independent of F , so such
a result is called an uniform Hausdorff dimension result. The method of Monrad and Pitt
[17] relies on rather strong conditions such as N > αd and the strong local nondeterminism
of fractional Brownian motion. In Theorems 2.3 and 2.4 below, we determine dim

H
X−1(F )

for much more general Gaussian random fields. We should also point out that, compared
with the isotropic case, the anisotropic nature of X induces far richer fractal structure into
X−1(F ).

The rest of this paper is organized as follows. In Section 2, we provide the general as-
sumptions on the Gaussian random fields under investigation and state our main results (i.e.,
Theorems 2.1 and 2.3). Their proofs are given in Section 3. In Section 4 we apply our results
to solutions of nonlinear stochastic heat equations considered by Dalang, Khoshnevisan and
Nualart [5].

Throughout this paper we will use c to denote an unspecified positive and finite constant
which may not be the same in each occurrence. More specific constants in Section i are
numbered as c

i,1
, c

i,2
, . . ..

Acknowledgment The authors are grateful to F. Baudoin and A. Estrade since this work
was partially supported by ANR grants ANR-05-BLAN-0017 and ANR-06-BLAN-0289. The
research of Y. Xiao is also supported partial by NSF grant DMS-0706728.

This paper was finished while Y. Xiao was visiting the Statistical & Applied Mathemat-
ical Sciences Institute (SAMSI). He thanks the staff of SAMSI for their support and the
good working conditions. The authors are indebted to Kenneth Falconer for stimulating
discussions.

2 Main results

Let (H1, . . . , HN ) ∈ (0, 1)N be a fixed vector and, for a, b ∈ R
N with aj < bj (j = 1, . . . , N),

let I = [a, b] :=
∏N

j=1[aj , bj ] ⊆ R
N denote an interval (or a rectangle). For simplicity, we set

I = [ε0, 1]N , where ε0 ∈ (0, 1) is a fixed constant. By doing so, there is no loss of generality
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because, for a given concrete Gaussian random field, the σ-stability of Hausdorff dimension
(cf. [8]) will make it clear when one can replace [ε0, 1]N by [0, 1]N in Theorems 2.3 and 2.4.

Let X = {X(t), t ∈ R
N} be an (N, d)-Gaussian random field defined by (1.1). Throughout

this paper we assume that the coordinate processes X1, . . . , Xd are independent copies of a
real-valued, centered Gaussian random field X0 = {X0(t), t ∈ R

N}. We assume that X0

satisfies the following general conditions:

(C1) There exist positive and finite constants c
2,1 , c

2,2 and c
2,3 such that E[X0(t)

2] ≥ c
2,1

for all t ∈ I and

c
2,2

N
∑

j=1

|sj − tj |
2Hj ≤ E

[

(

X0(s) − X0(t)
)2

]

≤ c
2,3

N
∑

j=1

|sj − tj |
2Hj , ∀ s, t ∈ I. (2.1)

(C2) There exists a constant c
2,4 > 0 such that for all s, t ∈ I,

Var
(

X0(t)
∣

∣X0(s)
)

≥ c
2,4

N
∑

j=1

|sj − tj |
2Hj . (2.2)

Here Var(X0(t)|X0(s)) denotes the conditional variance of X0(t) given X0(s).

It will be helpful to note that both (2.1) and (2.2) can be expressed in terms of the
following metric ρ on R

N :

ρ(s, t) =
N

∑

j=1

|sj − tj |
Hj , ∀ s, t ∈ R

N , (2.3)

since there exist positive constants c
2,5 and c

2,6 such that

c
2,5

N
∑

j=1

|sj − tj |
2Hj ≤ ρ(s, t)2 ≤ c

2,6

N
∑

j=1

|sj − tj |
2Hj , ∀ s, t ∈ R

N .

The following are some remarks about Conditions (C1) and (C2).

• Condition “E[X0(t)
2] ≥ c

2,1 for all t ∈ I” in (C1) assumes that X is non-degenerate on
I. This condition is needed to avoid some trivial cases in studying hitting probability
of X and dim

H

(

X−1(F ) ∩ I
)

.

• Under Condition (C1), X has a version which has continuous sample functions on I
almost surely. Henceforth we will assume without loss of generality that the Gaussian
random field X has continuous sample paths.

• Conditions (C1) and (C2) are closely related. It is easy to see that (C1) implies that
Var

(

X0(t)
∣

∣X0(s)
)

≤ c
2,3

∑N
j=1 |sj − tj |

2Hj for all s, t ∈ I and, on the other hand, (C2)

implies σ2(s, t) ≥ c
2,4

∑N
j=1 |sj − tj |

2Hj , where σ2(s, t) denotes E
[

(X0(s) − X0(t))
2 ]

.
Moreover, if the function σ(0, t) satisfies certain smoothness condition, say, it has con-
tinuous first order partial derivatives on I, then one can show that (C1) implies (C2) by
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using the following fact (which can be easily verified): If (U, V ) is a centered Gaussian
vector, then

Var(U |V ) =

(

ρ2
U,V − (σU − σV )2

)(

(σU + σV )2 − ρ2
U,V

)

4σ2
V

, (2.4)

where ρ2
U,V = E

[

(U − V )2
]

, σ2
U = E(U2) and σ2

V = E(V 2).

• Condition (C2) can be referred to as “two-point local nondeterminism” with index
H = (H1, . . . , HN ). See [23] for more information on properties of local nondeterminism
and their applications.

We point out that the class of Gaussian random fields satisfying Conditions (C1) and (C2)
is large. It includes not only the well-known fractional Brownian motion and the Brownian
sheet, but also such anisotropic random fields as fractional Brownian sheets ([1]), solutions
to stochastic heat equation driven by space-time white noise ([5], [6], [16]) and many more.
The results in this paper can be further extended so that they can be applied to the operator-
scaling Gaussian fields with stationary increments constructed in [4]; see Remark 2.7 below.

Now we state the main results of this paper. We will always assume F ⊆ R
d to be non-

empty and, except maybe in Remark 2.8, non-random. Theorem 2.1 is concerned with the
hitting probabilities of X and provides a necessary condition and a sufficient condition for
P{X−1(F ) ∩ I 6= ∅} > 0. Most part of it has been proved in [23].

Theorem 2.1 Let X = {X(t), t ∈ R
N} be an (N, d)-Gaussian random field defined by (1.1)

and assume that X0 satisfies Conditions (C1) and (C2). If F ⊆ R
d is a Borel set, then

c
2,7 Cd−Q(F ) ≤ P

{

X−1(F ) ∩ I 6= ∅

}

≤ c
2,8 Hd−Q(F ), (2.5)

where c
2,7 and c

2,8 are positive constants depending on I, F and H only. In the above,

Q :=
∑N

j=1
1

Hj
and Hq(F ) is defined as the q-dimensional Hausdorff measure of F when

q > 0, and Hq(F ) = 1 whenever q ≤ 0.

Remark 2.2

• Note that if 0 ∈ F , then the second inequality in (2.5) may not hold without the
condition “E[X0(t)

2] ≥ c
2,1 for all t ∈ I” in (C1).

• Let F ⊆ R
d be a Borel set and Q =

∑N
j=1

1
Hj

. Theorem 2.1 implies the following
statements:

(i) If dim
H
F < d − Q, then X−1(F ) ∩ I = ∅ a.s.

(ii) If dim
H
F > d − Q, then P{X−1(F ) ∩ I 6= ∅} > 0.

• A natural conjecture is that, at least for a large subclass of Gaussian random fields
satisfying the conditions of Theorem 2.1, P{X−1(F ) ∩ I 6= ∅} > 0 ⇐⇒ Cd−Q(F ) > 0.
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Next we consider the Hausdorff dimension of the inverse image X−1(F )∩I. In the special
case of fractional Brownian motion, this problem was considered by Testard [18] and Monrad
and Pitt [17]. The following two theorems determine dim

H

(

X−1(F ) ∩ I
)

in terms of dim
H
F

and the parameters N, d and H ∈ (0, 1)N of X. Compared with the results for fractional
Brownian motion, we see that the fractal structure of the inverse images of an anisotropic
random field is much richer.

For convenience we will always assume

0 < H1 ≤ H2 ≤ · · · ≤ HN < 1. (2.6)

Theorem 2.3 Let X = {X(t), t ∈ R
N} be an (N, d)-Gaussian random field defined by (1.1)

with X0 satisfying Conditions (C1) and (C2). Let F ⊆ R
d be a Borel set such that dim

H
F ≥

d − Q. Then the following statements hold:

(i) Almost surely

dim
H

(

X−1(F ) ∩ I
)

≤ min
1≤k≤N

{ k
∑

j=1

Hk

Hj
+ N − k − Hk

(

d − dim
H
F

)

}

. (2.7)

In particular, if dim
H
F = d − Q, then dim

H

(

X−1(F ) ∩ I
)

= 0 a.s.

(ii) If dim
H
F > d − Q, then for every ε > 0,

dim
H

(

X−1(F ) ∩ I
)

≥ min
1≤k≤N

{ k
∑

j=1

Hk

Hj
+ N − k − Hk

(

d − dim
H
F

)

}

− ε (2.8)

on an event of positive probability (which may depend on ε). In the special case when dim
H
F =

0 and d < Q, we have

dim
H

(

X−1(F ) ∩ I
)

= min
1≤k≤N

{ k
∑

j=1

Hk

Hj
+ N − k − Hkd

}

(2.9)

on an event of positive probability.

As in [9] and [13], we can combine (2.7) and (2.8) in Theorem 2.3 and write

∥

∥dim
H

(

X−1(F ) ∩ I
)∥

∥

L∞(P)
= min

1≤k≤N

{ k
∑

j=1

Hk

Hj
+ N − k − Hk

(

d − dim
H
F

)

}

. (2.10)

Here and in the sequel, for any function Y : Ω → R+, ‖Y ‖L∞(P) is defined as

‖Y ‖L∞(P) = sup
{

θ : Y ≥ θ on an event E with P(E) > 0
}

.

If one has more information on the geometry of F , then the conclusion in Part (ii) of
Theorem 2.3 can be strengthened so that the positive probability is independent of ε. In the
following we provide a sufficient (but not necessary) condition for this to be true. Because of
(2.7) and (2.9), it suffices to consider Borel sets F ⊆ R

d satisfying dim
H
F > max{d − Q, 0}.
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Theorem 2.4 Let X = {X(t), t ∈ R
N} be as in Theorem 2.3 and let F ⊆ R

d be a bounded
Borel set such that dim

H
F > max{d − Q, 0}. If F satisfies the Condition (S): There is a

finite constant c
2,9 ≥ 1 such that, for every γ ∈ (0, dim

H
F ), there exists a probability measure

µ0,γ (which may depend on γ) with compact support in F such that

µ0,γ

(

B(x, r)
)

≤ c
2,9 rγ for all x ∈ R

d and r > 0. (2.11)

Then with positive probability,

dim
H

(

X−1(F ) ∩ I
)

= min
1≤k≤N

{ k
∑

j=1

Hk

Hj
+ N − k − Hk(d − dim

H
F )

}

=
k

∑

j=1

Hk

Hj
+ N − k − Hk(d − dim

H
F ), if

k−1
∑

j=1

1

Hj
≤ d − dim

H
F <

k
∑

j=1

1

Hj
.

(2.12)

In the above we use the convention
0

∑

j=1

1

Hj
= 0.

We end this section with the following remarks about Theorems 2.3 and 2.4.

Remark 2.5 The key feature of Condition (S) is that the constant c
2,9 is independent of

γ < dim
H
F , even though the probability measure µ0,γ may depend on γ. This assumption

is stronger than the conclusion of Frostman’s lemma (where both c
2,9 and µ0,γ may depend

on γ), and is verified by a large class of Borel sets including all self-similar sets satisfying
the open set condition ([8]) and, more generally, the d-sets ([10]). By examining the proof
of Frostman’s lemma in [11, p. 130–131], one sees that Condition (S) is satisfied provided F
has the following property: There is a constant c

2,10 > 0 such that, for every γ ∈ (0, dim
H
F ),

one has

inf

{ ∞
∑

n=1

(diamBn)γ : F ⊆

∞
⋃

n=1

Bn

}

≥ c
2,10 , (2.13)

where the infimum is taken over all coverings of F by balls {Bn, n ≥ 1}. However, we have
not been able to fully characterise the family of Borel sets satisfying Condition (S).

Remark 2.6 In the special case of F = {x}, X−1(F ) ∩ I becomes the level set of X on
I and the above Hausdorff dimension formula (2.9) was proved by Ayache and Xiao [1] for
fractional Brownian sheets, by Wu and Xiao [20] for the solutions of stochastic heat equation
driven by a space-time white noise, and by Xiao [23] for Gaussian random fields satisfying
Conditions (C1) and (C2). Theorems 2.3 and 2.4 extend their results and, as we will see in
the next section, their proofs rely on some new ingredients.

Remark 2.7 From the proof of Theorem 2.3 given in Section 3 one can see that its conclusions
still hold if (2.1) and (2.2) in Conditions (C1) and (C2) are replaced respectively by the
following weaker conditions: For all ε > 0, there exist constants c′

2,i
(i = 2, 3, 4) which may

depend on ε such that

c′
2,2

N
∑

j=1

|sj − tj |
2Hj+ε ≤ E

[

(

X0(s) − X0(t)
)2

]

≤ c′
2,3

N
∑

j=1

|sj − tj |
2Hj−ε, ∀ s, t ∈ I. (2.14)
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and

Var
(

X0(t)
∣

∣X0(s)
)

≥ c′
2,4

N
∑

j=1

|sj − tj |
2Hj+ε, ∀ s, t ∈ I. (2.15)

It can be proven that the operator-scaling Gaussian fields constructed in [4] satisfy conditions
(2.14) and (2.15), while Conditions (C1) and (C2) are only satisfied by those random fields
with diagonal scaling matrices. We refer to [2] and [3] for further information.

Remark 2.8 Note that the event on which (2.12) holds depends on F . In light of the result
(1.6) of Monrad and Pitt [17], we may ask the following natural question: When

∑N
j=1

1
Hj

> d,

is it possible to have a single event Ω1 ⊆ Ω of positive probability such that on Ω1 (2.12)
holds for all Borel sets F ⊆ R

d? This is simply referred to as a uniform Hausdorff dimension
problem for the inverse images of X. An affirmative answer will make the formula (2.12)
applicable to random Borel sets F as well.

If, in addition to Conditions (C1) and (C2), we also assume that Condition (C3) or (C3′)
in [23] holds and H1 = H2 = · · · = HN , then one can modify the proofs in [17] to prove
that the answer to the above question is affirmative when N > H1d. In general, it can be
proved that the upper bound (2.7) holds almost surely for all Borel sets F ⊆ R

d. However it
is possible that the lower bound may not hold uniformly due to the anisotropy of X.

Remark 2.9 Another useful dimension for studying fractals is packing dimension, denoted
by dim

P
, see [8] for its definition and properties. We mention that the problem of finding the

packing dimension of X−1(F ) remains widely open. Even though one can apply Lemma 3.1
and a covering argument to derive that under the conditions of Theorem 2.3,

dim
P

(

X−1(F ) ∩ I
)

≤ min
1≤k≤N

{ k
∑

j=1

Hk

Hj
+ N − k − Hk(d − dim

P
F )

}

, a.s. (2.16)

It is possible that, for a general Borel set F ⊆ R
d, the inequality in (2.16) may be strict. New

ideas may be needed for solving this problem.

3 Proofs

In this section we prove the theorems stated in Section 2. The proofs of Theorem 2.1 and
Theorem 2.3 are divided into proving the upper and lower bounds for P

{

X−1(F )∩I 6= ∅
}

and
dim

H

(

X−1(F ) ∩I
)

separately. The upper bounds will be proved by using a covering argu-
ment, and the lower bounds will be proved by constructing a random measure on X−1(F )∩I.
These methods are similar to those in [11] and [18] for studying the level sets and hitting
probabilities of fractional Brownian motion. However, in order to deal with anisotropic Gaus-
sian random fields in general, we have to rely also on some new ingredients such as Lemma
3.1 and Lemma 3.2 below.

We will apply the following lemma on the hitting probability of X to prove the upper
bounds in (2.5) and (2.7). A slightly stronger version of this lemma was provided in [23] with
a longer proof. For the sake of completeness, we will provide a simpler proof by modifying
the argument in the proof of Proposition 4.4 in Dalang, Khoshnevisan and Nualart [5].
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Lemma 3.1 Let X = {X(t), t ∈ R
N} be an (N, d)-Gaussian random field defined by (1.1)

with X0 satisfying Conditions (C1) and (C2). For any constant M > 0, there exist positive
constants c

3,1 and δ0 such that for all r ∈ (0, δ0), t ∈ I and all x ∈ [−M, M ]d,

P

{

inf
s∈Bρ(t,r)∩I

∥

∥X(s) − x
∥

∥ ≤ r

}

≤ c
3,1 rd. (3.1)

In the above Bρ(t, r) = {s ∈ R
N : ρ(s, t) ≤ r} denotes the closed ball of radius r in the metric

ρ in R
N defined by (2.3).

Proof Since the coordinate processes of X are independent copies of X0, it is sufficient to
prove (3.1) for X0. Note that for any s ∈ I, we have

E
(

X0(s)|X0(t)
)

=
E

(

X0(s)X0(t)
)

E
(

X0(t)2
) X0(t) := c(s, t)X0(t). (3.2)

Then the Gaussian random variables X0(s)− c(s, t)X0(t) (s ∈ I) and X0(t) are independent.
Denote

Z(t, r) = sup
s∈Bρ(t,r)∩I

∣

∣X0(s) − c(s, t)X0(t)
∣

∣.

Then Z(t, r) is independent of X0(t). It follows from triangle’s inequality that

P

{

inf
s∈Bρ(t,r)∩I

∣

∣X0(s) − x
∣

∣ ≤ r

}

≤ P

{

inf
s∈Bρ(t,r)∩I

∣

∣c(s, t)
(

X0(t) − x
)
∣

∣ ≤ r + Z(t, r) + sup
s∈Bρ(t,r)∩I

∣

∣

(

1 − c(s, t)
)

x
∣

∣

}

.

(3.3)

The Cauchy-Schwarz inequality and Condition (C1) imply that for all s, t ∈ I,

∣

∣1 − c(s, t)
∣

∣ =

∣

∣E
[

X0(t)
(

X0(t) − X0(s)
)]∣

∣

E
(

X0(t)2
) ≤

(

c
2,3

c
2,1

N
∑

j=1

|sj − tj |
2Hj

)1/2

. (3.4)

Hence there exists a constant δ0 > 0 such that for all r ∈ (0, δ0) and s ∈ Bρ(t, r)∩ I, we have
1/2 ≤ c(s, t) ≤ 1. Moreover, for all r ∈ (0, δ0), all s ∈ Bρ(t, r) ∩ I and all x ∈ [−M, M ],

∣

∣

(

1 − c(s, t)
)

x
∣

∣ ≤
M r

2
.

Combining the above with (3.3) it follows that for all x ∈ [−M, M ] and r ∈ (0, δ0),

P

{

inf
s∈Bρ(t,r)∩I

∣

∣X0(s)−x
∣

∣ ≤ r

}

≤ P

{

x−(M+2)r−2Z(t, r) ≤ X0(t) ≤ x+(M+2)r+2Z(t, r)

}

.

Then using the independence of X0(t) and Z(t, r) and Condition (C1) we obtain that for all
x ∈ [−M, M ] and r ∈ (0, δ0),

P

{

inf
s∈Bρ(t,r)∩I

∣

∣X0(s) − x
∣

∣ ≤ r

}

≤ c
3,2 E

(

r + Z(t, r)
)

= c
3,2 r + c

3,2 E
(

Z(t, r)
)

, (3.5)

9



where c
3,2 is a finite positive constant which depends on M .

The last term in (3.5) can be estimated by applying Dudley’s entropy theorem (see, e.g.,
[11], p. 219) to the Gaussian random field Y (s) = X0(s) − c(s, t)X0(t) (s ∈ Bρ(t, r) ∩ I). To
this end, note that Y (t) = 0 and the canonical metric

d(s, s′) :=
{

E
(

Y (s) − Y (s′)
)2

}1/2
≤ c ρ(s, s′)

for all s, s′ ∈ Bρ(t, r) ∩ I. Denote by D := sups,s′∈Bρ(t,r)∩I d(s, s′) and Nd

(

Bρ(t, r), ε
)

the
d-diameter and the metric entropy number of Bρ(t, r), respectively. Then D ≤ cr and

Nd

(

Bρ(t, r), ε
)

≤ c
(r

ε

)Q
.

It follows from Dudley’s theorem that

E
(

Z(t, r)
)

≤ c

∫ D

0

√

log Nd

(

Bρ(t, r), ε
)

dε ≤ c
3,3 r. (3.6)

This and (3.5) together imply (3.1) for d = 1. The proof of Lemma 3.1 is finished. �

For proving the lower bounds in Theorems 2.1, 2.3 and Theorem 2.4 we will make use of
the following lemma which extends a result of Testard [18] for fractional Brownian motion.

Lemma 3.2 Let X = {X(t), t ∈ R
N} be an (N, d)-Gaussian random field defined by (1.1)

with X0 satisfying Conditions (C1) and (C2). Then there exists a positive and finite constant
c
3,4 such that for all ε ∈ (0, 1), s, t ∈ I and x, y ∈ R

d, we have

∫

R2d

e−i(〈ξ, x〉+〈η, y〉) exp

(

−
1

2
(ξ, η)

(

εI2d + Cov
(

X(s), X(t)
))

(ξ, η)′
)

dξdη

≤
c
3,4

max{ρd(s, t), ‖x − y‖d}
.

(3.7)

In the above, I2d denotes the identity matrix of order 2d, Cov
(

X(s), X(t)
)

denotes the co-
variance matrix of the random vector (X(s), X(t)), and (ξ, η)′ is the transpose of the row
vector (ξ, η).

Proof Since the coordinate processes X1, . . . , Xd of X are independent copies of X0, we
first consider the case when d = 1.

For any ε ∈ (0, 1), let

Φs,t
ε (ξ1, η1) = ε(ξ2

1 + η2
1) + E

(

ξ1X1(s) + η1X1(t)
)2

=
(

ε + E
(

X1(s)
2
)

)

ξ2
1 + 2ξ1η1E

(

X1(s)X1(t)
)

+
(

ε + E
(

X1(t)
2
)

)

η2
1.

(3.8)

Denote by Γε(s, t) the symmetric matrix corresponding to the quadratic form (3.8). Then
Γε(s, t) = εI2 + Cov

(

X1(s), X1(t)
)

and its inverse is given by

Γ−1
ε (s, t) =

1

det
(

Γε(s, t)
)

(

ε + E
(

X1(t)
2
)

−E
(

X1(s)X1(t)
)

−E
(

X1(s)X1(t)
)

ε + E
(

X1(s)
2
)

)

, (3.9)
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where det(Γε(s, t)) denotes the determinant of Γε(s, t). Since the symmetric matrix Γε(s, t)
is positive definite for all ε > 0, we have

∫

R2

e−i(ξ1x1+η1y1) exp

(

−
1

2
Φs,t

ε (ξ1, η1)

)

dξ1dη1

=
2π

√

det
(

Γε(s, t)
)

exp

(

−
1

2
(x1, y1) Γ−1

ε (s, t) (x1, y1)
′

)

.
(3.10)

Let us remark that

(x1, y1) Γ−1
ε (s, t) (x1, y1)

′ =
1

det
(

Γε(s, t)
)

(

ε(x2
1 + y2

1) + E

[

(

x1X1(t) − y1X1(s)
)2

]

)

≥
1

det
(

Γε(s, t)
) E

[

(

x1X1(t) − y1X1(s)
)2

]

.

(3.11)

We claim that for all s, t ∈ I and all x1, y1 ∈ R,

E

[

(

x1X1(t) − y1X1(s)
)2

]

≥ c
3,5 (x1 − y1)

2, (3.12)

where c
3,5 > 0 is a constant depending only on c

2,1 , . . . , c2,4 in Conditions (C1) and (C2).
In order to verify (3.12), we note that it is equivalent to prove the following: There exists

a constant c > 0 such that, for all s, t ∈ I, the quadratic form

E

[

(

x1X1(s) − y1X1(t)
)2

]

− c (x1 − y1)
2 (3.13)

is positive semi-definite. Hence it is sufficient to show the existence of a constant c > 0 such
that

(i) E
(

X1(s)
2
)

≥ c for all s ∈ I.

(ii) for all s, t ∈ I we have

(

E
(

X1(s)
2
)

− c
)(

E
(

X1(t)
2
)

− c
)

−
(

E
(

X1(s)X1(t)
)

− c
)2

≥ 0. (3.14)

Since Condition (C1) implies (i) holds for any c ∈ (0, c
2,1 ], it remains to verify (ii) for c > 0

small enough.
It can be seen that (3.14) holds for some c > 0 if and only if

c ≤
E

(

X1(s)
2
)

E
(

X1(t)
2
)

−
(

E
(

X1(s)X1(t)
)

)2

E
[(

X1(s) − X1(t)
)2] (3.15)

for all s, t ∈ I with s 6= t. Observe that the numerator in (3.15) is detCov
(

X1(s), X1(t)
)

. It
follows from (C1), (C2) and the identity that for any Gaussian vector (Z1, Z2),

detCov
(

Z1, Z2

)

= Var
(

Z1

)

Var
(

Z2

∣

∣Z1

)

(3.16)

that

detCov
(

X1(s), X1(t)
)

≥ c
2,1 c

2,4

N
∑

j=1

|sj − tj |
2Hj . (3.17)
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This and (2.1) imply that the right-hand side of (3.15) is bounded from below by c
2,1c2,4/c

2,3 .
By taking 0 < c ≤ min{c

2,1 , c
2,1c2,4/c

2,3}, we have verified (3.12).
Combining (3.10), (3.11) and (3.12) together, we obtain

∫

R2

e−i(ξ1x1+η1y1) exp

(

−
1

2
Φs,t

ε (ξ1, η1)

)

dξ1dη1

≤
2π

√

det
(

Γε(s, t)
)

exp

(

−
c
3,5

2

(x1 − y1)
2

det
(

Γε(s, t)
)

)

.
(3.18)

Going back to R
d, we derive from (3.18) that for all ε > 0,

∫

R2d

e−i(〈ξ, x〉+〈η, y〉) exp

(

−
1

2
(ξ, η)

(

εI2d + Cov
(

X(s), X(t)
))

(ξ, η)′
)

dξdη

≤
(2π)d

[

det
(

Γε(s, t)
)]d/2

exp

(

−
c
3,5

2

‖x − y‖2

det
(

Γε(s, t)
)

)

.
(3.19)

Note that, if det
(

Γε(s, t)
)

≥ ‖x − y‖2, then

(2π)d

[

det
(

Γε(s, t)
)]d/2

exp

(

−
c
3,5

2

‖x − y‖2

det
(

Γε(s, t)
)

)

≤
(2π)d

[

det
(

Γε(s, t)
)]d/2

. (3.20)

On the other hand, if det
(

Γε(s, t)
)

< ‖x − y‖2, then we use the elementary inequality

xd/2e−c x ≤ c
3,6 (∀x > 0) to obtain

(2π)d

[

det
(

Γε(s, t)
)]d/2

exp

(

−
c
3,5

2

‖x − y‖2

det
(

Γε(s, t)
)

)

≤
c
3,7

‖x − y‖d
. (3.21)

By (3.20) and (3.21) we obtain

(2π)d

[

det
(

Γε(s, t)
)]d/2

exp

(

−
c
3,5

2

‖x − y‖2

det
(

Γε(s, t)
)

)

≤
c
3,8

max
{[

det
(

Γε(s, t)
)]d/2

, ‖x − y‖d
}

. (3.22)

Finally, we note that for all s, t ∈ I,

det
(

Γε(s, t)
)

≥ detCov
(

X1(s), X1(t)
)

≥ c
2,1 c

2,4 ρ(s, t)2. (3.23)

Therefore (3.7) follows from (3.19), (3.22) and (3.23). �

We will also make use of the following elementary lemma from [1, Lemma 10].

Lemma 3.3 Let α, β and η be positive constants. For A > 0 and B > 0, let

J := J(A, B) =

∫ 1

0

dt

(A + tα)η(B + t)β
. (3.24)

Then there exist finite constants c
3,9 and c

3,10, depending on α, β, η only, such that the

following hold for all real numbers A, B > 0 satisfying A1/α ≤ c
3,9 B:

12



(i) If αη > 1, then

J ≤ c
3,10

1

Aη−α−1Bβ
; (3.25)

(ii) If 0 < αη < 1 and αη + β 6= 1, then

J ≤ c
3,10

(

1

Bαη+β−1
+ 1

)

. (3.26)

Now we are ready to prove Theorems 2.1, 2.3 and 2.4.

Proof of Theorem 2.1 We distinguish three cases: (i) d < Q, (ii) d = Q and (iii) d > Q.
When d < Q, the second inequality in (2.5) holds automatically with c

2,8 = 1. Moreover,
Theorem 7.1 in [23] implies that X hits points, hence P

{

X−1(F )∩ I 6= ∅
}

> 0 since F 6= ∅.
When d > Q, (2.5) is proved in Theorem 7.6 in [23]. Hence it only remains to consider

the case (ii). Again, the second inequality in (2.5) holds automatically with c
2,8 = 1.

The proof of the lower bound in (2.5) is similar to that of Theorem 7.6 in [23]. Without
loss of generality, we assume C0(F ) > 0 otherwise there is nothing to prove. By Choquet’s
capacity theorem (cf. [12]), we may and will assume F is compact and let M > 0 be a
constant such that F ⊆ [−M, M ]d.

By definition (1.3), there is a Borel probability measure ν0 on F such that

E0(ν0) :=

∫

Rd

∫

Rd

log

(

e

‖x − y‖ ∧ 1

)

ν0(dx)ν0(dy) ≤
2

C0(F )
. (3.27)

For all integers n ≥ 1, we consider a family of random measures νn on I defined by

∫

I
g(t) νn(dt) =

∫

I

∫

Rd

(2πn)d/2 exp

(

−
n

∥

∥X(t) − x
∥

∥

2

2

)

g(t) ν0(dx) dt

=

∫

I

∫

Rd

∫

Rd

exp

(

−
‖ξ‖2

2n
+ i〈ξ, X(t) − x〉

)

g(t) dξ ν0(dx) dt,

(3.28)

where g is an arbitrary measurable, nonnegative function on I.
Denote the total mass of νn by ‖νn‖ := νn(I). We claim that the following two inequalities

hold:
E

(

‖νn‖
)

≥ c
3,11 and E

(

‖νn‖
2
)

≤ c
3,12E0(ν0), (3.29)

where the constants c
3,11 and c

3,12 are independent of ν0 and n.
Some simple calculation shows

E
(

‖νn‖
)

=

∫

I

∫

Rd

∫

Rd

exp

(

−
1

2

( 1

n
+ σ2(t)

)

‖ξ‖2 − i〈ξ, x〉

)

dξ ν0(dx) dt

≥

∫

I

∫

Rd

(2π)d/2

(1 + σ2(t))d/2
exp

(

−
‖x‖2

2σ2(t)

)

ν0(dx) dt

≥

∫

I

(2π)d/2

(1 + σ2(t))d/2
exp

(

−
dM2

2σ2(t)

)

dt := c
3,11 ,

(3.30)

where σ2(t) = E
(

X0(t)
2
)

and the last inequality follows from the boundedness of F . Since
t 7→ σ2(t) is a positive continuous function on I, c

3,11 > 0. This gives the first inequality
in (3.29).
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Denote by I2d the identity matrix of order 2d and let Γn(s, t) = n−1I2d+Cov
(

X(s), X(t)
)

.
Since Γn(s, t) is positive definite, we have

E
(

‖νn‖
2
)

=

∫

I

∫

I

∫

R2d

∫

R2d

e−i(〈ξ, x〉+〈η, y〉)

× exp

(

−
1

2
(ξ, η) Γn(s, t) (ξ, η)′

)

dξdη ν0(dx)ν0(dy) dsdt

=

∫

I

∫

I

∫

R2d

(2π)d

√

det
(

Γn(s, t)
)

exp

(

−
1

2
(x, y) Γ−1

n (s, t) (x, y)′
)

ν0(dx)ν0(dy) dsdt

≤ c
3,13

∫

I

∫

I

∫

R2d

1

max{ρd(s, t), ‖x − y‖d}
ν0(dx)ν0(dy) dsdt,

(3.31)

where the last inequality follows from Lemma 3.2 and the constant c
3,13 is independent of ν0

and n.
We claim that for all x, y ∈ R

d,

∫

I

∫

I

dsdt

max{ρd(s, t), ‖x − y‖d}
≤ c

3,14 log

(

e

‖x − y‖ ∧ 1

)

, (3.32)

where c
3,14 > 0 is a constant. To verify this, we break the integral in (3.32) over the regions

{(s, t) ∈ I × I : ρ(s, t) ≤ ‖x− y‖} and {(s, t) ∈ I × I : ρ(s, t) > ‖x− y‖} and denote them by
I1 and I2, respectively. Since d = Q, we derive that

I1 =

∫

I

∫

{t∈I:ρ(s,t)≤‖x−y‖}

dsdt

‖x − y‖d
≤

c
3,15

‖x − y‖d
‖x − y‖Q = c

3,15 . (3.33)

In the above, we have used the fact that, for every s ∈ I, the set {t ∈ I : ρ(s, t) ≤ ‖x − y‖}
is contained in an rectangle of side-lengths ‖x − y‖1/Hj (j = 1, . . . , N).

On the other hand,

I2 =

∫

I

∫

{t∈I:ρ(s,t)>‖x−y‖}

dsdt

ρd(s, t)
≤

∫

{t∈[−1,1]N :ρ(0,t)>‖x−y‖}

dt

ρd(0, t)

since ρ(s, t) = ρ(0, t − s). Let us consider the diagonal matrix E = diag (1/H1, . . . , 1/HN ).
Then, t 7→ ρ(0, t) is E-homogeneous function in the sense of Definition 2.6 of [4], that is

∀r > 0, ρ
(

0, rEt
)

= rρ (0, t)

with rE = exp (log(r)E) . By using the formula of integration in the polar coordinates with
respect to E (see Proposition 2.3 in [15]) and Q = d, we have

I2 ≤

∫ +∞

0

∫

SE

1{rEθ∈[−1,1], rρ(0,θ)>‖x−y‖}

σE (dθ) dr

r ρd(0, θ)
,

where SE is a compact set which does not contain 0 and σE (dθ) is a finite positive Radon
measure on SE . Since

0 < min
θ∈SE

ρ (0, θ) ≤ max
θ∈SE

ρ (0, θ) < ∞,
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there exist some finite positive constants m, M, c, c
3,16 such that

I2 ≤ c

∫ M

0
1{r>m‖x−y‖}

dr

r
≤ c

3,16 log

(

e

‖x − y‖ ∧ 1

)

. (3.34)

Combining (3.33) and (3.34) one verifies (3.32). It is clear that (3.31), (3.32) and Fubini’s
theorem imply the second inequality in (3.29).

By using (3.29) and an argument in [18] (see Lemma 2.9) or in ([11], pp.204–206), one
can verify that there is an event Ω0 with probability at least c2

3,11
/(2c

3,12 E0(ν0)) such that
for every ω ∈ Ω0, {νn(ω), n ≥ 1} has a subsequence that converges weakly to a finite positive
measure ν which is supported on X−1(F ) ∩ I. Then, we have

P

{

X(I) ∩ F 6= ∅

}

≥
c2
3,11

2c
3,12 E0(ν0)

. (3.35)

Combining this with (3.27) yields the lower bound in (2.5). The proof of Theorem 2.1 is
completed. �

Proof of Theorem 2.3
Proof of Part (i) It is clear that the second statement in Part (i) follows from (2.7) directly.
Hence we proceed to prove (2.7).

Since dim
H

is σ-stable ([8]), without loss of generality, we will assume that F ⊆ [−M, M ]d

for some constant M > 0 to prove that (2.7) holds almost surely.
Let us choose and fix an arbitrary constant γ > dim

H
F . Then, for δ0 in Lemma 3.1, there

exists a constant δ ∈ (0, δ0) and a sequence of balls {B(xj , rj), j ≥ 1} in R
d (in Euclidean

metric) such that rj ≤ δ for all j ≥ 1,

F ⊆
∞
⋃

j=1

B(xj , rj) and
∞

∑

j=1

(2rj)
γ ≤ 1. (3.36)

Moreover, we require xj ∈ [−M, M ]d for all j ≥ 1.
For every integer j ≥ 1, let nj be the integer such that 2−nj−1 ≤ rj < 2−nj . We divide I

into sub-rectangles Rj,i of side-lengths 2−nj/Hℓ (ℓ = 1, . . . , N). Note that there are at most

c 2njQ such rectangles (recall that Q =
∑N

j=1
1

Hj
), and each Rj,i is equivalent to a ball of radius

2−nj in the metric ρ. Let Nj denote the number of Rj,i’s such that Rj,i∩X−1(B(xj , rj)) 6= ∅.
Hence, by using Lemma 3.1, we derive

E(Nj) ≤ c
3,17 2njQ 2−njd = c

3,17 2nj(Q−d). (3.37)

Since X−1(F ) ⊆
⋃∞

j=1 X−1
(

B(xj , rj)
)

, we have obtained a covering of X−1(F ) ∩ I by a

subsequence of the rectangles {Rj,i} (i.e., those satisfying Rj,i ∩ X−1
(

B(xj , rj)
)

6= ∅).

For every k ∈ {1, . . . , N}, each rectangle Rj,i can be covered by at most
∏N

ℓ=k

(

2
nj(

1

Hk
− 1

Hℓ
)

+1
)

cubes of side-length 2−nj/Hk . In this way, we obtain a covering of X−1(F ) ∩ I by cubes

of side-length 2−nj/Hk which can be used to bound the Hausdorff measure of X−1(F ) ∩ I.
Let

βk =
k

∑

j=1

Hk

Hj
+ N − k − Hk(d − γ).
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It follows from (3.36) and (3.37) that

E

[ ∞
∑

j=1

Nj

N
∏

ℓ=k

(

2
nj(

1

Hk
− 1

Hℓ
)
+ 1

)

2
−

nj
Hk

βk

]

≤ c
3,18

∞
∑

j=1

2−njγ ≤ c
3,18 . (3.38)

This and Fatou’s lemma together imply that Hβk

(

X−1(F ) ∩ I) < ∞ almost surely. Hence
we have dim

H

(

X−1(F ) ∩ I
)

≤ βk a.s. for every k ∈ {1, . . . , N}. Letting γ ↓ dim
H
F along

rational numbers yields (2.7).

Proof of Part (ii) Assume that F is a non-empty set such that dim
H
F > d−Q. Note that if

dim
H
F = 0, then we have

∑N
j=1

1
Hj

> d. For any fixed x ∈ F , we have X−1(F ) ⊇ X−1({x})

and (2.9) follows from Theorem 7.1 in [23] and (2.7). It remains to consider those Borel sets
F ⊆ R

d with dim
H
F > 0.

For this purpose, let us note that (2.6) implies

min
1≤k≤N

{ k
∑

j=1

Hk

Hj
+ N − k − Hk(d − dim

H
F )

}

=

k
∑

j=1

Hk

Hj
+ N − k − Hk(d − dim

H
F ), if

k−1
∑

j=1

1

Hj
≤ d − dim

H
F <

k
∑

j=1

1

Hj
.

(3.39)

The verification of (3.39) is elementary (cf. Lemma 7 in [1]) and is omitted.
Let k ∈ {1, . . . , N} be the unique integer satisfying

k−1
∑

j=1

1

Hj
≤ d − dim

H
F <

k
∑

j=1

1

Hj
. (3.40)

By (3.39), it is sufficient to prove that for every ε > 0, the inequality

dim
H

(

X−1(F ) ∩ I
)

≥
k

∑

j=1

Hk

Hj
+ N − k − Hk(d − dim

H
F ) − ε (3.41)

holds on an event with positive probability (which may depend on ε).
Let us choose and fix an arbitrary constant δ ∈ (0, dim

H
F ) such that

k−1
∑

j=1

1

Hj
< d − dim

H
F + δ <

k
∑

j=1

1

Hj
(3.42)

(this is possible because of (3.40)) and define

βδ :=
k

∑

j=1

Hk

Hj
+ N − k − Hk(d − dim

H
F ) − Hkδ. (3.43)

Then it can be verified that βδ ∈ (N − k, N − k + 1), and (3.41) follows from

dim
H

(

X−1(F ) ∩ I
)

≥ βδ (3.44)
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on an event with positive probability (which may depend on δ).
Now we prove (3.44). Let γ ∈ (dim

H
F − δ, dim

H
F ) be a constant. Then (3.42) still

holds when dim
H
F − δ is replaced by γ. Then there is a compact set Fγ ⊆ F such that

dim
H
Fγ > γ (see [8]). It follows from Frostman’s lemma (cf. [8] or [11]) that there exists a

Borel probability measure µ0,γ supported on Fγ such that

µ0,γ

(

B(x, r)
)

≤ c
3,19 rγ for all x ∈ R

d and r > 0, (3.45)

where c
3,19 may depend on γ.

We construct a sequence {µn,γ , n ≥ 1} of random Borel measures on I as in (3.28) with
ν0 replaced by µ0,γ . We will prove the following statements:

(i) There exist finite positive constants c
3,20 and c

3,21 (which may depend on γ) such that

E
(

‖µn,γ‖
)

≥ c
3,20 and E

(

‖µn,γ‖
2
)

≤ c
3,21 (3.46)

hold for all integers n ≥ 1.

(ii) For the constant βδ defined by (3.43), there exists a finite positive constant c
3,22 such

that for all n ≥ 1

E

∫

I

∫

I

1

‖s − t‖βδ
µn,γ(ds)µn,γ(dt) ≤ c

3,22 . (3.47)

The first inequality in (3.46) is derived in the same way as (3.30), because the probability
measure µ0,γ is supported on the compact set Fγ . Now we prove the second inequality in
(3.46). Similar to (3.31), we use Lemma 3.2 to obtain

E
(

‖µn,γ‖
2
)

≤ c
3,23

∫

I

∫

I

∫

R2d

1

max{ρd(s, t), ‖x − y‖d}
µ0,γ(dx)µ0,γ(dy) dsdt. (3.48)

By property (3.45) of µ0,γ , it can be shown that

∫

R2d

1

max{ρd(s, t), ‖x − y‖d}
µ0,γ(dx)µ0,γ(dy) ≤

c
3,24

ρ(s, t)d−γ
. (3.49)

To this end, we break the above integral over {(x, y) ∈ R
2d : ‖x − y‖ ≥ ρ(s, t)} and {(x, y) ∈

R
2d : ‖x − y‖ < ρ(s, t)} and write them as J1 and J2, respectively. For each fixed x ∈ R

d,
let κx be the image measure of µ0,γ under the mapping T : y 7→ ‖x − y‖ from R

d to R+.

J1 =

∫

Rd

µ0,γ(dx)

∫

{‖x−y‖≥ρ(s,t)}

µ0,γ(dy)

‖x − y‖d
=

∫

Rd

µ0,γ(dx)

∫ +∞

ρ(s,t)

1

rd
κx(dr)

≤ d c
3,19

∫

Rd

µ0,γ(dx)

∫ +∞

ρ(s,t)
rγ−d−1 dr =

c
3,25

ρ(s, t)d−γ
,

(3.50)

where the above inequality follows from an integration-by-parts formula and (3.45).
On the other hand, (3.45) implies that

J2 =

∫

Rd

µ0,γ(dx)

∫

{‖x−y‖<ρ(s,t)}

µ0,γ(dy)

ρ(s, t)d
≤

c
3,19

ρ(s, t)d−γ
. (3.51)
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Hence (3.49) follows from (3.50) and (3.51).
It follows from (3.48), (3.49), Condition (C2) and some elementary computation that

E(‖µn,γ‖
2) ≤ c

3,26

∫

I

∫

I

1
[
∑N

j=1 |sj − tj |Hj
]d−γ

ds dt := c
3,21 < ∞. (3.52)

In the above, we have used (3.42) to show the last integral is convergent (cf. [1], p. 432).
Thus we have verified the second inequality in (3.46).

Similar to (3.48)–(3.52) and recall that I = [ε0, 1]N , we derive

E

∫

I

∫

I

1

‖s − t‖βδ
µn,γ(ds)µn,γ(dt)

≤ c
3,27

∫

I

∫

I

1
[
∑N

j=1 |sj − tj |Hj
]d−γ(

∑N
j=1 |sj − tj |

)βδ
ds dt

≤ c
3,28

∫

[0,1]N

1
[
∑N

j=1 t
Hj

j

]d−γ(
∑N

j=1 tj
)βδ

dt.

(3.53)

Let us denote the last integral in (3.53) by G and apply Lemma 3.3 to verify that it
is convergent. Without loss of generality, we assume k ≥ 2, otherwise we jump to (3.56)
directly. We integrate [dt1] first. By (3.42) we see that H1(d − γ) > 1. Hence we can use

(3.25) of Lemma 3.3 with α = H1, η = d − γ, A =
∑N

j=2 t
Hj

j and B =
∑N

j=2 tj to get

G ≤ c
3,29

∫ 1

0
dtN · · ·

∫ 1

0

1
(
∑N

j=2 t
Hj

j

)d−γ−1/H1
(
∑N

j=2 tj
)βδ

dt2. (3.54)

We repeat this procedure for integrating dt2, . . . , dtk−1 to obtain

G ≤ c
3,30

∫ 1

0
dtN · · ·

∫ 1

0

dtk
(
∑N

j=k t
Hj

j

)d−γ−
∑k−1

j=1
1/Hj

(
∑N

j=k tj
)βδ

. (3.55)

To integrate [dtk] in (3.55), note that Hk

(

d − γ −
∑k−1

j=1 1/Hj

)

< 1. It follows from (3.26)
that

G ≤ c
3,31

[
∫ 1

0
dtN · · ·

∫ 1

0

dtk+1
(
∑N

j=k+1 tj
)Hk(d−γ−

∑k−1

j=1
1/Hj)+βδ−1

+ 1

]

= c
3,31

[
∫ 1

0
dtN · · ·

∫ 1

0

dtk+1
(
∑N

j=k+1 tj
)N−k+Hk(dim

H
F−δ−γ)

+ 1

]

.

(3.56)

Since dim
H
F − δ < γ, the last integral is convergent. Hence (3.47) holds.

By using (3.46) and the argument in [18] (see Lemma 2.9) or in ([11], pp.204–206) again,
one can verify that there is an event Ωγ with probability at least c2

3,20
/(2c

3,21) such that for
every ω ∈ Ωγ , {µn,γ(ω), n ≥ 1} has a subsequence that converges weakly to a positive finite
measure µγ , which is supported on X−1(F ) ∩ I.

On the other hand, (3.47) and the monotone convergence theorem together imply that, on
the event Ωγ , the βδ-energy of µγ is finite. Therefore by Frostman’s theorem (cf. [8] or [11])
we derive that (3.41) holds on an event with probability at least c2

3,20
/(2c

3,21). This finishes
the proof of Theorem 2.3. �
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Finally we show that, under the extra condition (S), the proof of Theorem 2.3 can be
strengthened to prove Theorem 2.4.

Proof of Theorem 2.4 The second equality in (2.12) is implied by (3.39). Hence it only
remains to prove that, if F ⊆ R

d is a Borel set satisfying

k−1
∑

j=1

1

Hj
≤ d − dim

H
F <

k
∑

j=1

1

Hj
(3.57)

for some integer k ∈ {1, . . . , N}, then

dim
H

(

X−1(F ) ∩ I
)

≥

k
∑

j=1

Hk

Hj
+ N − k − Hk(d − dim

H
F ) (3.58)

holds with positive probability. We will prove the following statement: there exist constants
δ0 ∈ (0, dim

H
F ) and c

3,32 > 0 such that for all δ ∈ (0, δ0) we have

k−1
∑

j=1

1

Hj
< d − dim

H
F − δ <

k
∑

j=1

1

Hj
(3.59)

and

dim
H

(

X−1(F ) ∩ I
)

≥
k

∑

j=1

Hk

Hj
+ N − k − Hk(d − dim

H
F ) − Hkδ (3.60)

holds with probability greater than c
3,32 (which does not depend on δ). Letting δ ↓ 0, this

shows that (3.58) holds with probability greater than c
3,32 .

The proof of the above statement is almost the same as the proof of (3.44). Since (3.57)
is fulfilled, we can choose δ0 ∈ (0, dim

H
F ) such that (3.59) holds for all δ ∈ (0, δ0). Let

δ ∈ (0, δ0), γ ∈ (dim
H
F − δ, dim

H
F ) and define βδ by (3.43). Let µ0,γ be the probability

measure with compact support in F given by Condition (S), and let {µn,γ , n ≥ 1} be the
sequence of random Borel measures on I constructed in the proof of Theorem 2.3. The only
difference is that we will show the constants c

3,20 and c
3,21 in (3.46) are independent of δ and

γ.
Since F is bounded, we derive as in (3.30) that c

3,20 is independent of µ0,γ , γ and δ. Next
we prove that E

(

‖µn,γ‖
2
)

≤ c
3,21 for all γ ∈ (dim

H
F − δ, dim

H
F ), and the constant c

3,21 only
depends on F , δ0, c

2,9 , I and H.
Recall from (3.48) that

E
(

‖µn,γ‖
2
)

≤ c
3,23

∫

I

∫

I

∫

R2d

1

max{ρd(s, t), ‖x − y‖d}
µ0,γ(dx)µ0,γ(dy) dsdt. (3.61)

Since γ > dim
H
F − δ0, the probability measure µ0,γ also satisfies

µ0,γ

(

B(x, r)
)

≤ c
2,9 rdim

H
F−δ0 for all x ∈ R

d and r ∈ (0, 1).

We can assume without loss of generality that c
2,9 ≥ 1. Then since µ0,γ is probability measure

and dim
H
F − δ0 > 0, we have

µ0,γ

(

B(x, r)
)

≤ c
2,9 rdim

H
F−δ0 for all x ∈ R

d and r ∈ (0,∞). (3.62)
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Similar to the verification of (3.49), we derive from (3.62) that
∫

R2d

1

max{ρd(s, t), ‖x − y‖d}
µ0,γ(dx)µ0,γ(dy) ≤

c
3,33

ρ(s, t)d−dim
H

F+δ0
. (3.63)

Here the constant c
3,33 depends only on d, F , c

2,9 and δ0. It follows from (3.61) and (3.63)
that

E(‖µn,γ‖
2) ≤ c

3,34

∫

I

∫

I

1
[
∑N

j=1 |sj − tj |Hj
]d−dim

H
F+δ0

ds dt := c
3,21 < ∞. (3.64)

This verified the second inequality in (3.46) and the constant c
3,21 is independent of γ and δ.

As shown in the proof of Theorem 2.3, (3.46) implies the existence of a subsequence of
{µn,γ , n ≥ 1} that converges weakly to a positive finite measure µγ , which is supported on
X−1(F )∩ I on an event Ωγ with probability c2

3,20
/(2c

3,21) := c
3,32 . The constant c

3,32 does not
depend on γ and δ.

Observe that (3.47) remains valid for µn,γ . On the event Ωγ the βδ-energy of µ is finite
almost everwhere. Thus by Frostman’s theorem, we derive

dim
H

(

X−1(F ) ∩ I
)

≥ βδ (3.65)

on an event with probability greater than c
3,32 which does not depend on γ and δ. This

finishes the proof of Theorem 2.4. �

4 Applications to stochastic partial differential equations

Theorems 2.1, 2.3 and 2.4 are applicable to solutions of stochastic partial differential equations
(SPED) such as linear hyperbolic SPDE considered by Dalang and Nulart [7] and nonlinear
stochastic heat equations considered by Dalang, Khoshnevisan and Nualart [5]. In this section
we only consider the Hausdorff dimension of the inverse images of nonlinear stochastic heat
equations in [5].

Let Ẇ =
(

Ẇ1, . . . , Ẇd

)

be a space-time white noise in R
d. That is, the components

Ẇ1(x, t), . . . , Ẇd(x, t) of Ẇ (x, t) are independent space-time white noises, which are general-
ized Gaussian processes with covariance given by

E
[

Ẇi(t, x)Ẇi(y, s)
]

= δ(x − y)δ(t − s), (i = 1, . . . , d),

where δ(·) is the Dirac delta function. For all 1 ≤ j ≤ d, let bj : R
d → R be globally Lipschitz

and bounded functions, and σ := (σi,j) be a deterministic d × d invertible matrix.
Consider the system of stochastic partial differential equations

∂ui

∂t
(t, x) =

∂2ui

∂x2
(t, x) +

d
∑

j=1

σi,jẆj(t, x) + bi

(

u(t, x)
)

(4.1)

for 1 ≤ i ≤ d, t ∈ [0, T ] and x ∈ [0, 1], with the initial conditions u(0, x) = 0 for all x ∈ [0, 1],
and the Neumann boundary conditions

∂ui

∂x
(t, 0) =

∂ui

∂x
(t, 1) = 0, 0 ≤ t ≤ T. (4.2)
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In the above, u(t, x) =
(

u1(t, x), . . . , ud(t, x)
)

.
Following Dalang, Khoshnevisan and Nualart [5], Equation (4.1) can be interpreted rig-

orously as follows. Let Wi = {Wi(s, x), s ∈ R+, x ∈ [0, 1]} (1 ≤ i ≤ d) be independent
Brownian sheets, defined on a probability space (Ω,F , P), and set W = (W1, . . . , Wd).
For t ≥ 0, let Ft = σ(W (s, x) : s ∈ [0, t], x ∈ [0, 1]). We say that a random field
u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]} is adapted to (Ft) if u(t, x) is Ft-measurable for every
(t, x) ∈ [0, T ] × [0, 1]. A random field u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]} is a solution of (4.1)
if u is adapted to (Ft) and if for every i ∈ {1, . . . , d}, t ∈ [0, T ] and x ∈ [0, 1],

ui(t, x) =

∫ t

0

∫ 1

0
Gt−r(x, v)

d
∑

j=1

σi,jWj(dr, dv) +

∫ t

0

∫ 1

0
Gt−r(x, v) bi(u(t, x)

)

drdv, (4.3)

where Gt(x, y) is the Green kernel for the heat equation with Neumann boundary conditions
(see Walsh [19]).

For the linear form of (4.1) [i.e., b ≡ 0 and σ ≡ Id (the d × d identity matrix)], Mueller
and Tribe [16] found necessary and sufficient conditions (in terms of the dimension d) for
its solution u to hit points or to have double points of various types. Wu and Xiao [20]
further studied the fractal properties of the sample paths of u. In particular, they obtained
the Hausdorff dimensions of the level sets and the set of double times of u.

More generally, Dalang, Khoshnevisan and Nualart [5] studied hitting probabilities for
the non-linear equation (4.1) by providing sufficient conditions and necessary conditions for
a Borel set F ⊆ R

d to be polar for the processes {u(t, x), t ∈ [0, T ], x ∈ [0, 1]}, {u(t, x), x ∈
[0, 1]} (t ∈ (0, T ] is fixed) and {u(t, x), t ∈ [0, T ]} (x ∈ [0, 1] is fixed). They also determined
the Hausdorff dimensions of the range and level sets of these processes.

In the following, we apply Theorem 2.3 to further determine the Hausdorff dimension of
inverse images of the processes u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]}, ut = {u(t, x), x ∈ [0, 1]}
(t ∈ (0, T ] is fixed) and ux = {u(t, x), t ∈ [0, T ]} (x ∈ [0, 1] is fixed). As shown by Proposition
5.1 in [5], it is sufficient to consider these problems for the solution of equation (4.1) in the
following drift-free case [i.e., b ≡ 0]:

∂u

∂t
(t, x) =

∂2u

∂x2
(t, x) + σ Ẇ . (4.4)

The solution of (4.4) is the mean zero Gaussian random field u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]}
with values in R

d defined by

u(t, x) =

∫ t

0

∫ 1

0
Gt−r(x, y)σW (dr, dy), ∀ t ∈ [0, T ], x ∈ [0, 1]. (4.5)

Moreover, since the matrix σ is invertible, a change of variables shows (see the proof of
Proposition 4.1 in [5]) that v := σ−1u solves the following uncoupled system of SPDE

∂v

∂t
(t, x) =

∂2v

∂x2
(t, x) + Ẇ . (4.6)

Note that both processes u and v have the same hitting probability and Hausdorff dimension
properties. Therefore, without loss of generality, we will assume that σ = Id in (4.4).

The following is a consequence of Lemmas 4.2 and 4.3 of Dalang, Khoshnevisan and
Nualart [5].
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Lemma 4.1 Let u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]} be the solution of (4.4). Then for every
t0 ∈ (0, T ), there exist positive and finite constants c

4,1 , . . . , c4,5 such that the following hold:

(i) For all t ∈ I = [t0, T ] × [0, 1], we have c
4,1 ≤ E[u(t, x)2] ≤ c

4,2 and

c
4,3

(

|t − s|1/4 + |x − y|1/2
)2

≤ E

[

(

u(t, x) − u(s, y)
)2

]

≤ c
4,4

(

|t − s|1/4 + |x − y|1/2
)2

.

(4.7)

(ii) For all (t, x), (s, y) ∈ I,

Var
(

u(t, x)
∣

∣u(s, y)
)

≥ c
4,5

(

|t − s|1/4 + |x − y|1/2
)2

. (4.8)

In other words, Lemma 4.1 states that the Gaussian random field u satisfies Conditions
(C1) and (C2) with H1 = 1/4 and H2 = 1/2.

Proof It follows from (4.5) that

E
[

u(t, x)2
]

=

∫ t

0
dr

∫ 1

0

(

Gt−r(x, v)
)2

dv.

It can be verified that the function σ2(t, x) := E
[

u(t, x)2
]

is continuous in (t, x) and positive
on I. This implies the first conclusion of the lemma. The inequality (4.7) is the same as
(4.11) in Lemma 4.2 of Dalang, Khoshnevisan and Nualart [5].

To prove (4.8), we note that Lemma 4.3 of Dalang, Khoshnevisan and Nualart [5] shows
that

detCov
(

u(t, x), u(s, y)
)

≥ c
4,6

(

|t − s|1/4 + |x − y|1/2
)2

. (4.9)

Hence (4.8) follows from (3.16), (4.9) and the fact that E[u(s, y)2] ≤ c
4,2 for all t ∈ I. This

proves Lemma 4.1. �

Remark 4.2 Lemma 4.1 implies that, for every fixed t ∈ [t0, T ], the Gaussian process
ut = {u(t, x), x ∈ [0, 1]} has the following properties:

c
4,1 ≤ E[ut(x)2] ≤ c

4,2 , ∀x ∈ [0, 1], (4.10)

c
4,3 |x − y| ≤ E

[

(

ut(x) − ut(y)
)2

]

≤ c
4,4 |x − y|, ∀x, y ∈ [0, 1] (4.11)

and
Var

(

ut(x)
∣

∣ut(y)
)

≥ c
4,5 |x − y|, ∀x, y ∈ [0, 1]. (4.12)

This shows that the Gaussian process ut satisfies the two-point local nondeterminism with
index H2 = 1/2. Similarly, for every fixed x ∈ (0, 1], the Gaussian process ux = {u(t, x), t ∈
[t0, T ]} satisfies the two-point local nondeterminism with H1 = 1/4.

Hence we can apply Theorem 2.1 to recover the results of Dalang, Khoshnevisan and
Nualart [5] on the hitting probabilities of the solution to (4.1). The following theorem extends
the Hausdorff dimension results in [5].
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Theorem 4.3 Let u =
{

u(t, x), t ∈ [0, T ], x ∈ [0, 1]
}

denote the solution to (4.1) and let
F ⊆ R

d be a Borel set. The following conclusions hold:

(i) If dim
H
F ≥ d − 6, then

∥

∥dim
H

(

u−1(F )∩I
)∥

∥

L∞(P)
=

{

2 − 1
4(d − dim

H
F ) if 0 ≤ d − dim

H
F < 4,

3 − 1
2(d − dim

H
F ) if 4 ≤ d − dim

H
F ≤ 6.

(4.13)

(ii) If dim
H
F ≥ d − 2, then for every fixed t ≥ t0 we have

∥

∥dim
H

(

u−1
t (F ) ∩ [0, 1]

)∥

∥

L∞(P)
= 1 −

1

2

(

d − dim
H
F

)

. (4.14)

(iii) If dim
H
F ≥ d − 4, then for every fixed x ∈ [0, 1] we have

∥

∥dim
H

(

u−1
x (F ) ∩ [0, T ]

)
∥

∥

L∞(P)
= 1 −

1

4

(

d − dim
H
F

)

. (4.15)

Proof The conclusions follow from Theorem 2.3, Lemma 4.1 and Remark 4.2. �
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