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1. Introduction’

In a knowledge based society the creation and utilisation of knowledge become the key
factors determining the competitiveness of firms, regions and countries. In this
perspective a considerable effort is today dedicated to characterise the knowledge base
of different sectors in the economy and to detect its impact on firm performance and on
industrial organization (Breschi, Lissoni, and Malerba, 2003; Krafft, 2004, Nesta and
Saviotti, 2005). Although all sectors in modern economies are affected by a growing
knowledge intensity, some sectors are influenced more than the average. We call these
Knowledge Intensive Sectors (KISs). In this paper we map the dynamics of knowledge
generation within three KISs: biotechnology, telecommunications and electronics. The
first question which is addressed is how to characterize a KIS. Typically we would
expect KISs to have a high R&D intensity, to produce more patents and publications
than less knowledge intensive sectors and to have a greater impact of knowledge
production on firm performance and on sectoral growth. A further and important aspect
of KISs is the presence of discontinuity in knowledge. Not that such discontinuities are
present only in KISs: other sectors are going to be affected, although often less directly,
by these discontinuities. However, KISs are likely to be the first ones to start exploring
new forms of knowledge and to move them towards exploitation. Thus, we can expect
the dynamics of knowledge generation and utilization in KISs to be affected by both (i)
the rate of knowledge creation and (ii) the presence of discontinuities in new
knowledge. It follows that in order to be able to link the dynamics of knowledge
creation and utilization to firm performance and to industrial organization we need to
detect a number of properties of the knowledge base (KB) of KISs. Properties such as
the diversity/variety of the KB, its coherence and its cognitive distance (or conversely
its similarity) between different KBs have already been shown to be potential
determinants of firm performance. The aim of this paper is to contribute to this new
literature by characterizing the evolution of the KB in three KISs, namely
biotechnology, telecommunications and electronics. We use data from the European
Patent Office database (EPO database) to see whether we can find common trends in the
evolution of the KB of these three KISs.

The approach developed in this paper is original in that it considers the sector level and
not the firm level. A number of contributions have centred so far on the issues of
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corporate diversification and corporate coherence (Piscitello, 2004; Nesta, 2007), and
have thus a direct background in the economics of the firm (with essentially Penrose,
1959; and Teece, Rumelt, Dosi, and Winter, 1994, as key references). We investigate a
different, though complementary question. To the extent that the performance of each
sector is driven by knowledge and that each KIS has a different KB we expect specific
patterns and trends to emerge at the sectoral level. Of course, this does not mean that
firm specificity disappears within sectors. On the contrary, the study of knowledge
dynamics at the level of the firm constitutes a complementary question which deserves a
separate treatment. We analyse the changes in the composition of the KBs of the three
KISs, describing each one of them by means of a set of technological fields found in the
International Patent Classification (IPC classes).

To improve our knowledge of the nature of KISs and of the processes of their evolution
our methodology will follow two steps, and will proceed to test four research
propositions.

The first step consists of documenting the high rate of knowledge production in KISs.
Basic statistics like patent counts, the share of patent applications within each sector and
the growth trend in the dynamics of patent applications will be mobilized. All these
statistics show that the rate of knowledge production in KISs is high, although with a
larger distribution of patents over classes for electronics compared to biotechnologies
and telecommunications.

The second step relates to the knowledge discontinuities that characterize the KISs. In
previous contributions (Grebel, Krafft and Saviotti, 2006; Saviotti, 1996) we
hypothesized that when sectors are faced with the emergence of a radically new type of
knowledge corresponding to a new paradigm, random search strategies generally
precede more organized search strategies. 1f this hypothesis holds we expect to observe
the following regularities in the evolution of the properties of the KB of KISs. First,
during the random screening period we would expect to observe (i) an increase in the
variety of the technological classes associated with each KIS, (ii) a fall in the coherence
of the KB of KISs, (iii)) a growing cognitive distance between the internal KB of
incumbent firms previously used in the KIS and the new emerging knowledge. On the
other hand during the organized screening period we would expect the rate of growth of
variety to fall, coherence to rise, and cognitive distance to decline. The results we will
show later seem to generally confirm these predictions. However, important differences
can also be identified among the KISs, especially for what concerns the respective
length or the persistence over time of the random versus the organized period.

On the basis of the previous considerations we can now formulate the following four
propositions:

P1: A knowledge intensive sector has a higher than average rate of knowledge creation.

P2: The emergence of a discontinuity in a type of knowledge suitable to become the
future knowledge base of a KIS leads to the sequence of the two periods of random
search first and of organized search later.

P3: During the random search period KB variety rises, KB coherence falls and the
cognitive distance between the previous KB of a KIS and the new emerging



knowledge rises. During the organized search period KB the rate of growth of
variety falls, KB coherence rises and the cognitive distance between the previous
KB of a KIS and the new emerging knowledge falls.

P4: The higher the rate of increase over time in variety and in cognitive distance, and
the higher the decrease over time in coherence in the knowledge base, the more
persistent the period of random screening, i.e. the less established the organized
screening period.

In the rest of the paper Section 2 presents the data. Section 3 discusses the basic
statistics about the dynamics of knowledge production in KISs, and analyses P1.
Section 4 explores the existence of a phase of random search, followed by a phase of
more organised search for each KISs, and discusses P2. Section 5 defines the measure
of the knowledge base as a set of components including variety, coherence, cognitive
distance, and other complementary indicators, and elaborates on P3. Section 6 generates
the empirical results from the application of these measures to the database and
discusses P4. Section 7 concludes.

2. The Data

The initial dataset of patent applications consists of 2,659,301 items, both EU and
Worldwide applications, over the period 1978 — 2005. Our search strategy is based on
queries reporting the IPC classes that define each KISs under study, namely
biotechnology, telecommunications and electronics. The analysis thus focuses on three
subsets of patent applications, identified by merging the classifications set up by the
OECD and the Observatoire des Sciences et des 1echniques. We adopted these
classifications to elaborate some rough boundaries to our KISs, although we will realize
later in this paper that in some cases these classifications leave some important classes
out.

Taking into account these elements, it resulted that the biotechnology sector includes 11
IPC classes, the telecommunications sector is made up of 16 IPC classes and the
electronics sector consists of 30 IPC classes (see Table 1).

Table 1 — Definition of sectors using IPC classes

BIOTECHNOLOGY

AOTH new plants or processes for obtaining them; plant reproduction by tissue culture
techniques

A61K preparations for medical, dental, or toilet purposes

CO2F treatment of water, waste water, sewage, or sludge

C07G compounds of unknown constitution

CO7K peptides

Ci2M apparatus for enzymology or microbiology

CI2N micro-organisms or enzymes; compositions thereof

C12P fermentation or enzyme-using processes to . synthesise a desirqd qhemical
compound or composition or to separate optical isomers from a racemic mixture
measuring or testing processes involving enzymes Or micro-organisms;

C12Q compositions or test papers thererof, processes of preparing such compositions;
condition-responsive control in microbiological or enzymological processes




processes using enzymes or micro-organisms to liberate, separate or purify a pre-

C128 existing compound or, processes using enzymes Or micro-organisms to treat
textiles or to clean solid surfaces of materials
GOIN investigating or analysing materials by determining their chemical or physical
properties
TELECOMMUNICATIONS
GO08C transmission systems for measured values, control or similar signals
HO1P waveguides; resonators, lines, or other devices of the waveguide type
HO1Q aerials
HO3B generation of oscillations, directly or by frequency-changing, by circuits
employing active elements which operate in a non-switching manner; generation
of noise by such circuits
HO3C modulation
HO3D demodulation or transference of modulation from one carrier to another
HO3H impedance networks, e.g. resonant circuits; resonators
HO3K pulse technique
HO3L automatic control, starting, synchronisation, or stabilisation of generators of
electronic oscillations or pulses
HO3M coding, decoding or code conversion, in general
HO04B transmission
HO4H broadcast communication
HO4J multiplex communication
HO4K secret communication; jamming of communication
HO4L transmission of digital information, ¢.g. telegraphic communication
H04Q selecting
ELECTRONICS
F21H incandescent mantles; other incandescent bodies heated by combustion
F21K light sources not otherwise provided for
lighting devices or systems thereof, being portable or specially adapted for
F21L transportation
F21IM transferred to F21s and F21V
F21P transferred to F21s and F21V
F21Q transferred to F21s and F21V
F21S non-portable lighting devices or systems thereof
functional features or details of lighting devices or systems thereof; structural
F21V combinations of lighting devices with other articles, not otherwise provided for
GOS5F systems for regulating electric or magnetic variables
cables; conductors; insulators; selection of materials for their conductive,
HO1B insulating, or dielectric properties
HO1C resistors
magnets; inductances; transformers; selection of materials for their magnetic
HO1F properties
HO1H electric switches; relays; selectors; emergency protective devices
HO1J electric discharge tubes or discharge lamps
HO1K electric incandescent lamps
processes or means, €.g. batteries, for the direct conversion of chemical energy
HO1IM into electrical energy
electrically-conductive connections; structural associations of a plurality of
mutually-insulated electrical connecting elements; coupling devices; current
HO1R collectors
HO1T spark gaps; overvoltage arresters using spark gaps; sparking plugs; corona




devices; generating ions to be introduced into non-enclosed gases

boards, substations, or switching arrangements for the supply or distribution of

HO02B electric power
installation of electric cables or lines, or of combined optical and electric cables or
HO02G lines
HO2H emergency protective circuit arrangements
circuit arrangements or systems for supplying or distributing electric power;
HO02J systems for storing electric energy
HO2K dynamo-electric machines

apparatus for conversion between ac and ac, between ac and dc, or between dc and
dc, and for use with mains or similar power supply systems; conversion of dc or

HO2M ac input power into surge output power; control or regulation thercof
control or regulation of electric motors, generators, or dynamo-electric converters;
HO2P controlling transformers, reactors or choke coils
HO04M telephonic communication
HO5B electric heating; electric lighting not otherwise provided for
electric circuits or apparatus specially designed for use in equipment for killing,
HO5C stunning, enclosing or guiding living beings
HOS5F static electricity; naturally-occurring electricity
printed circuits; casings or constructional details of electric apparatus;
HO5K manufacture of assemblages of electrical components

Source: World Intellectual Property Organization.

Table 2 reports the count and the share of each sector within the whole dataset in terms
of patent applications. Although the biotechnology sector is defined by the lowest
number of IPC classes, its share in the overall dataset is the highest (12.08%), while the
sector gathering the highest number of classes, i.e. electronics, represents the lower
share (1.81%). The telecommunications sector occupies an intermediate position in both
the number of IPC and its share in the dataset.

Table 2 — Overall distribution of the three sectors

# %
Biotechnology 321449 12.08
Telecommunications 115735 435
Electronics 47955 1.81

3. Dynamics of knowledge production in KISs

One can reasonably assume that the dynamics of knowledge production in KISs is
marked by important specificities. In this perspective, one immediate (and potentially
obvious) specificity is that knowledge production in KISs is likely to be higher than in
other sectors. In this section, we explore whether the following hypothesis “the higher
knowledge production, the more knowledge intensive the sector” holds in our KISs
(namely, biotechnology, telecommunications and electronics).




3.1. Increasing growth trend

A closer look at the dynamics of patent applications reveals that all of the three sectors
are characterized by an exponential growth trend. This can be explained by the general
increase in the propensity to patent which is often attributed to the diffusion of
European patents among innovating agents and the increase of resources devoted to
R&D activities (Archontopoulos, E., Guellec, D., Stevnsborg, N., Van Pottelsberghe de
la Potterie, B., Van Zeebroeck, N., 2007). However, in our case, a series of specific
features appears concerning the KISs under study. Biotechnology, telecommunications
and electronics have a higher rate of knowledge production than other sectors such as
machine tools or transport (see Figure 1).

Figure 1: Index of the (S5-year-)moving average of the number of patents with the base year 1980
(source: Grebel, Krafft, Saviotti, 2006)
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Although at a first glance our KISs seem to share a common growth pattern, the
behaviour of biotechnology is quite different from that of telecommunications and of
electronics. The number of patents in biotechnology is about twice as large as in
telecommunications and about three times as large as in electronics. Furthermore, the
rate of growth of patents in biotechnology seems to be more evenly distributed during
the period studied than in telecommunications.

3.2. Distributional properties of classes and co-occurrences

Figures 2, 3 and 4 report the dynamics of technological classes in each sector. The
number of IPC classes can be interpreted as a rough measure of the differentiation, or
scope, of each sector’s knowledge base. First of all it is immediately clear that the
dynamics of technological differentiation in the three KISs is influenced by the
dynamics of the patent stock. The rate of growth in the number of IPC classes closely
parallels the rate of growth of the number of patents. Indeed all of the three sectors



show an increasing number of technologies, the growth trend being exponential in the
case of biotechnology and telecommunications, and linear in the case of electronics.

It is interesting to note that the stock effect influences the time trend of the variable, but
not the cross-sector differences. Indeed the electronics sector is characterized by a
higher number of technological classes than biotechnology or telecommunications,
although its yearly number of patent applications is sensibly lower. In addition to the
time path of the total number of technological classes also their distribution within each
KIS deserves to be analyzed. It turns out that in each of the three KISs few classes occur
very frequently while most other classes are very rarely used. As a consequence we only
used for our statistics the top 10 classes in order of frequency of occurrence according
to their relative share in 1992. This means that some classes may appear or disappear
from the subset we use to represent the knowledge base of the KIS as a result of the
changing composition of the knowledge base. In fact this changing composition is an
expression of the structural change which occurs in science and which gives rise to
structural change in output.

Figure 2 — Patent Classes in the Biotechnology sample of patents, by year

o
3
N
o
35 O
O N
L
(%]
(]
k=)
o
©
c
<
(8]
(]
'_
o
3
—
o
S |
- 5 T T T T
1980 1985 1990 1995 2000
year



Figure 3 - Patent Classes in the Telecommunications sample of patents, by year
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Figure 4 - Patent Classes in the Electronics sample of patents, by year
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A number of interesting considerations stem from Table 3, where the shares of IPCs in
the biotechnology sector are reported. First of all, the A61K class retains the highest
share all over the observed period. It refers to a very generic set of industrial
applications, ranging from cosmetics to medicinal preparations containing antigens or
antibodies. Secondly, some IPCs appear in Table 3, while they were not listed in Table
1. This suggests that the boundaries of sectors taken from OECD and OST
classifications are only fuzzy boundaries that need to be complemented by the detailed
observation of data. For example, CO7C and CO7D, which are typical chemical classes
and which were used in the pharmaceutical industry before the emergence of modern
biotechnology, remain components of the KB of pharmaceutical firms although their
share of total patents falls over time. Conversely, A61P, which appears in 1988 and
whose share dramatically increases in 2000, is a class which while not included
amongst the descriptors of biotechnology covers medicinal and therapeutic applications
of chemical compounds. The last class, together with C12N and C07K, seem to be the
most interesting in our subset in that they are characterized by marked growth
dynamics. Finally, some classes such as C12Q, C02F and C12P while being distinctly
biological show either a less pronounced growth or even a fall in their relative weight
over the time period considered. These classes correspond to more 'traditional’, and
hence less fast growing, applications of biotechnology, such as fermentation techniques.
The above considerations remind us that defining the boundaries of knowledge types
(disciplines, fields etc) is not easier than defining the boundaries of industrial sectors.

Table 3 — Dynamics of Top 10 IPCs share in Biotechnology, by year

A61K | CO7D | C12P | C12N | CO7K | A61P | C12Q | Co7H | CO2F | C07C

1981 0.360 | 0.161 | 0.041 | 0.032 | 0.001 0.018 | 0.023 | 0.054 0.086
1982 0.366 | 0.158 | 0.039 | 0.039 | 0.001 0.021 | 0.023 | 0.051 0.085
1983 0.367 | 0.146 | 0.044 | 0.053 | 0.006 0.021 | 0.027 | 0.039 0.083
1984 0.360 | 0.130 | 0.056 | 0.072 | 0.035 0.020 | 0.024 | 0.041 0.058
1985 0.343 | 0.113 | 0.068 | 0.080 | 0.065 0.022 | 0.023 | 0.029 0.045
1986 0.338 | 0.107 | 0.065 | 0.087 | 0.075 0.027 | 0.025 | 0.036 0.037
1987 0.363 | 0.105 | 0.059 | 0.088 | 0.071 0.025 | 0.024 | 0.033 0.032

1988 0.354 | 0.095 | 0.066 | 0.094 | 0.079 | 0.000 | 0.027 | 0.032 | 0.029 0.033

1989 0.344 | 0.091 | 0.059 | 0.101 | 0.082 | 0.000 | 0.035 | 0.030 | 0.030 0.032

1990 0.339 | 0.085 | 0.060 | 0.114 | 0.085 | 0.001 | 0.037 | 0.028 | 0.031 0.027

1991 0.339 | 0.087 | 0.057 | 0.109 | 0.094 | 0.001 | 0.044 | 0.032 | 0.029 0.028

1992 0.341 | 0.091 | 0.057 | 0.104 | 0.091 | 0.002 | 0.046 | 0.030 | 0.028 0.027

1993 0.344 | 0.087 | 0.051 | 0.111 | 0.089 | 0.002 | 0.045 | 0.029 | 0.027 0.028

1994 0.347 | 0.085 | 0.041 | 0.116 | 0.097 | 0.003 | 0.048 | 0.030 | 0.027 0.026

1995 0.344 | 0.080 | 0.035 | 0.127 | 0.105 | 0.003 | 0.050 | 0.032 | 0.025 0.025

1996 0.341 | 0.077 | 0.037 | 0.124 | 0.102 | 0.003 | 0.054 | 0.030 | 0.023 0.023

1997 0.339 | 0.074 | 0.030 | 0.128 | 0.107 | 0.002 | 0.061 | 0.029 | 0.023 0.020

1998 0.332 | 0.067 | 0.029 | 0.143 | 0.110 | 0.002 | 0.070 | 0.024 | 0.020 0.020

1999 0.316 | 0.062 | 0.028 | 0.140 | 0.109 | 0.040 | 0.065 | 0.028 | 0.020 0.020

2000 0.290 | 0.060 | 0.025 | 0.126 | 0.101 | 0.116 | 0.054 | 0.023 | 0.018 0.016

2001 0.289 | 0.057 | 0.021 | 0.123 | 0.111 | 0.120 | 0.059 | 0.019 | 0.016 0.016

Source: our elaborations on EPO data.




In telecommunications (Table 4) the change in the weights of the leading IPCs is even
more marked than in biotechnology. In 1981 the IPC with the highest share was HO3K.
The share of this class decreased so rapidly that at the beginning of the 2000s it was no
longer within the leading group. H04Q showed a soft decrease in the 1980s followed by
a pretty fast rate of growth in the second half of the 1990s, thus becoming the second
ranking IPC in telecommunications, overtaking the class HO04B. The latter class is
indeed characterized by a modest increase in the 1980s, and then by slowdown in the
second half of the 1990s. Unsurprisingly, the class that emerges as the leader in the
second half of the 1990s is HO4L, which is related to digital transmission. This class
already outperforms HO4B in 1996 and takes persistently the leadership until 2001.

Table 4 — Dynamics of Top 10 IPCs share in Telecommunications, by year

H04B | HO4L | HO3K | H04Q | HO1Q | H04J | HO1P | HO3H | HO3M | H04M

1981 0.125 | 0.119 | 0.139 | 0.104 | 0.051 | 0.032 | 0.030 | 0.034 0.038

1982 0.131 | 0.123 | 0.127 | 0.074 | 0.055 | 0.037 | 0.035 | 0.029 0.035

1983 0.111 | 0.115 | 0.164 | 0.092 | 0.051 | 0.042 | 0.033 | 0.030 | 0.001 0.029

1984 0.105 | 0.120 | 0.152 | 0.069 | 0.055 | 0.031 | 0.034 | 0.038 | 0.026 0.020

1985 0.129 | 0.126 | 0.132 | 0.063 | 0.052 | 0.031 | 0.020 | 0.038 | 0.048 0.021

1986 0.119 | 0.110 | 0.130 | 0.080 | 0.053 | 0.038 | 0.037 | 0.033 | 0.042 0.036

1987 0.130 | 0.130 | 0.112 | 0.057 | 0.088 | 0.026 | 0.040 | 0.030 | 0.052 0.022

1988 0.131 | 0.125 | 0.101 | 0.085 | 0.053 | 0.031 | 0.036 | 0.042 | 0.049 0.020

1989 0.120 | 0.142 | 0.099 | 0.069 | 0.071 | 0.045 | 0.042 | 0.033 | 0.046 0.025

1990 0.156 | 0.129 | 0.097 | 0.085 | 0.059 | 0.045 | 0.021 | 0.038 | 0.050 0.020

1991 0.163 | 0.140 | 0.082 | 0.076 | 0.051 | 0.051 | 0.032 | 0.033 | 0.052 0.020

1992 0.159 | 0.147 | 0.083 | 0.078 | 0.057 | 0.050 | 0.039 | 0.037 | 0.028 0.024

1993 0.180 | 0.143 | 0.076 | 0.116 | 0.045 | 0.042 | 0.020 | 0.033 | 0.034 0.038

1994 0.170 | 0.163 | 0.062 | 0.116 | 0.050 | 0.047 | 0.022 | 0.036 | 0.042 0.030

1995 0.159 | 0.153 | 0.066 | 0.146 | 0.044 | 0.051 | 0.023 | 0.028 | 0.043 0.031

1996 0.153 | 0.180 | 0.057 | 0.158 | 0.049 | 0.048 | 0.023 | 0.033 | 0.037 0.030

1997 0.158 | 0.188 | 0.046 | 0.163 | 0.047 | 0.048 | 0.021 | 0.022 | 0.035 0.044

1998 0.159 | 0.198 | 0.037 | 0.184 | 0.050 | 0.047 | 0.016 | 0.018 | 0.030 0.040

1999 0.167 | 0.214 | 0.030 | 0.190 | 0.045 | 0.051 | 0.015 | 0.014 | 0.033 0.043

2000 0.163 | 0.230 | 0.030 | 0.175 | 0.043 | 0.048 | 0.017 | 0.015 | 0.028 0.039

2001 0.150 | 0.244 | 0.023 | 0.170 | 0.046 | 0.044 | 0.018 | 0.017 | 0.031 0.037

Source: our elaborations on EPO data.

Table 5 reports the share of the top 10 classes in the electronics sectors. Looking at the
figures, and comparing them with the evidence about the other two sectors, the idea that
here patents are more distributed over the classes gains further support. Indeed no class
has a share exceeding 9% over the whole period, and the lowest share is 1%. This
means that the rest of the classes observed in the electronics sector retains a weight
lower than 1%. Bearing this in mind one class, namely H04M, emerges as the leader in
the second half of the 1990s. Clearly, this is a class closely related to the
telecommunications sector. For this reason it is hardly surprising that its share increases
over time, particularly in the late 1990s. The rest of the classes stay in between the 2%
and 3%, the only exception being HOSK, which reaches 6% in the 1990s. Even in this
case, the evidence is not surprising, as patents in this class refer, among the others, to
printed circuits (i.e. assemblies of individual semiconductors), which are of paramount
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importance in the manufacturing of electronic devices used for digital communication
and data storing. The growing importance of H04M and of HOSK shows that
telecommunications is one of the main sectors of application of electronics. However,
the relatively flat distribution of IPC classes shows that electronics has a wider range of
applications to other sectors than either biotechnology or telecommunications, both of
which are more internally focused.

Table S - Dynamics of Top 10 IPCs share in Electronics, by year

HOSK | HO1B | HO1J | HOSB | HOIR | HO4M | HO1F | HO2G | HO1H | HO1L

1981 0.034 | 0.046 | 0.026 | 0.049 | 0.033 | 0.036 | 0.039 | 0.027 | 0.026 0.023

1982 0.030 | 0.054 | 0.029 | 0.064 | 0.028 | 0.037 | 0.029 | 0.019 | 0.028 0.020

1983 0.046 | 0.056 | 0.023 | 0.048 | 0.037 | 0.035 | 0.033 | 0.011 | 0.034 0.021

1984 0.045 | 0.056 | 0.044 | 0.053 | 0.036 | 0.019 | 0.044 | 0.019 | 0.036 0.026

1985 0.049 | 0.050 | 0.036 | 0.049 | 0.035 | 0.024 | 0.036 | 0.018 | 0.027 0.020

1986 0.051 | 0.049 | 0.031 | 0.052 | 0.033 | 0.034 | 0.027 | 0.016 | 0.034 0.011

1987 0.051 | 0.042 | 0.050 | 0.034 | 0.043 | 0.026 | 0.040 | 0.018 | 0.032 0.021

1988 0.052 | 0.047 | 0.040 | 0.045 | 0.033 | 0.022 | 0.035 | 0.023 | 0.031 0.026

1989 0.048 | 0.038 | 0.036 | 0.050 | 0.046 | 0.026 | 0.041 | 0.026 | 0.030 0.023

1990 0.054 | 0.049 | 0.039 | 0.049 | 0.038 | 0.028 | 0.031 | 0.026 | 0.025 0.022

1991 0.057 | 0.051 | 0.038 | 0.053 | 0.049 | 0.029 | 0.026 | 0.033 | 0.023 0.026

1992 0.061 | 0.051 | 0.044 | 0.042 | 0.041 | 0.032 | 0.031 | 0.028 | 0.027 0.027

1993 0.050 | 0.038 | 0.034 | 0.042 | 0.036 | 0.051 | 0.027 | 0.024 | 0.023 0.022

1994 0.056 | 0.037 | 0.030 | 0.042 | 0.051 | 0.051 | 0.027 | 0.026 | 0.026 0.020

1995 0.049 | 0.030 | 0.040 | 0.048 | 0.046 | 0.051 | 0.032 | 0.023 | 0.026 0.024

1996 0.060 | 0.028 | 0.039 | 0.038 | 0.036 | 0.057 | 0.035 | 0.022 | 0.025 0.029

1997 0.060 | 0.028 | 0.037 | 0.033 | 0.035 | 0.071 | 0.030 | 0.021 | 0.020 0.028

1998 0.049 | 0.028 | 0.032 | 0.039 | 0.036 | 0.072 | 0.028 | 0.020 | 0.023 0.027

1999 0.044 | 0.028 | 0.034 | 0.032 | 0.028 | 0.090 | 0.022 | 0.020 | 0.021 0.025

2000 0.056 | 0.023 | 0.036 | 0.034 | 0.027 | 0.090 | 0.019 | 0.016 | 0.019 0.032

2001 0.056 | 0.025 | 0.040 | 0.037 | 0.026 | 0.092 | 0.022 | 0.018 | 0.019 0.032

Source: our elaborations on EPO data.

4. Random search versus organized search
4.1. Patterns of IPC co-occurrences

The evidence presented so far shows that KISs are more knowledge intensive than
'traditional' sectors. Furthermore, there are differences in patenting activity both across
and within the three macro-sectors. In a previous paper (Grebel et al, 2006) we had
formulated propositions P2-P4 based on the observations of matrices of technological
co-occurrence. Such matrices are constructed by representing the IPC classes describing
a given type of knowledge on both axes of the matrix. Each patent is classified
according to a primary and a number of secondary classes. There is no strict consensus
on whether or not this distinction has to be taken into account in investigating the
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technological base of a sector’. In this case we find in the non diagonal cells of the
matrix the frequencies of co-occurrence of IPCs. The numerical values of these
frequencies are then plotted on a third dimension, thus providing a graphic
representation of the distribution of co-occurrences of IPCs in the field of knowledge
studied. We interpreted our observation that the distribution of co-occurrences of IPC
classes was becoming more uneven as the as the new field of knowledge started
maturing as the result of a transition from a random search to an organized search
strategy. In what follows we first reconstruct the co-occurrence matrices and then
develop a series of measures intended to test more quantitatively propositions P1-P4.

In order to gain a preliminary understanding of the relationships among different
classes, and of how they evolve over time, we divided the whole period in 4 sub-periods
and summed up the co-occurrences over each period (e.g. the period 1981-1985
presents the cumulated frequency of co-occurrences for each couple of IPCs).

We then obtained square matrices with O values on the diagonal by construction and
very large dimensions. For this reason only the related diagrams will be shown in what

follows. Results are reported in Figures 8 to 16.

Figure 5 - Matrix of classes co-occurence, Biotechnolgy 1981-1985
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2 In this analysis we follow Breschi et al. (2003), who did not take into account the distinction

between primary and secondary classes. See alternatively Verspagen (1997) for the opposite point of
view.
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Figure 6 - Matrix of classes co-occurence, Biotechnolgy 1986-1990
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Figure 7 - Matrix of classes co-occurence, Biotechnolgy 1991-1995
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Figure 8 - Matrix of classes co-occurence, Biotechnolgy 1996-2001
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occurence, TLC 1981-1985
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Figure 10 - Matrix of classes co-occurence, TLC 1986-1990
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Figure 11 - Matrix of classes co-occurence, TLC 1991-1995
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Figure 12 - Matrix of classes co-occurence, TLC 1996-2001
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Figure 13 - Matrix of classes co-occurence, Electronics 1981-1985
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Figure 14 - Matrix of classes co-occurence, Electronics 1986-1990
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Figure 15 - Matrix of classes co-occurence, Electronics 1991-1995
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Figure 16- Matrix of classes co-occurence, Electronics 1996-2001
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4.2. Common patterns and less common patterns

Our data seem to broadly corroborate proposition P2, or at least they do not contradict
it. Search strategies for the new knowledge generally evolve from random search when
firms can perceive the opportunities inherent in the new knowledge but have not yet
identified promising directions, to a later, more organized search, when most firms can
identify within the new knowledge the more promising trajectories. This can be
visualized in biotechnologies and telecommunications where, in the earlier periods, a
large number of peaks are emerging in Figures 5 to 12 while, in the latter periods, only a
smaller number of peaks are observed, also reaching higher values. This common
pattern of evolution can be explained as follows. Within the highly uncertain period
immediately following the emergence of the new technology the search is random and
aimed at learning in all possible directions, stressing differentiation. As the exploration
of the new knowledge landscape proceeds, some directions of development emerge as
being the most promising. Search becomes more structured around a restricted number
of knowledge types and improving the integration of these types of knowledge increases
in importance. The shock of novelty produces uncertainty and induces a random search
while subsequent learning processes select some subsets of the new knowledge space
and structure the search processes around them. The existence of a random search
period is an indication that a radical change in knowledge is occurring. The exploration
of a completely new part of the knowledge space can be expected to proceed initially
without clearly established rules or well defined trajectories.
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While the above pattern seems to be compatible with the observed behaviour of
biotechnology and telecommunications it seems to fit less well that of electronics. In
this case a large number of peaks is observed even in the later periods (see Figure 13 to
16). This different pattern of development is quite likely related to the broader range of
applications observed for electronics relative to biotechnology and telecommunications.

5. Measurement of the Knowledge Base

Amongst the various properties of the knowledge base can be measured we select three
candidates adapted to our research question: variety, measured by information entropy;
coherence, or knowledge relatedness; cognitive distance. We analyse the relationships
that may exist between them first during the random search period, and second in the
organized search period.

S.1. Variety or information entropy

Entropy measures the degree of disorder or randomness of the system, so that systems
characterized by high entropy will also be characterized by a high degree of uncertainty.
The greater is the variety within the system, the higher is the amount of information
required to describe it, and hence the higher the entropy; the higher the degree of non-
equiprobability of states, the lower is the entropy. Lower entropy is also associated with
a greater capacity of the system to store information’. Interestingly information entropy
can also be decomposed in a “within” and a “between” part anytime the events to be
investigated can be aggregated in a smaller numbers of subsets. We will use this
decomposed index since, in our case, within-entropy will measures variety within the
subsets (i.e. within existing or closey related IPC classes), while between-entropy will
focus on the subsets measuring the variety across them (i.e., the emergence of new IPC
classes). Formally, information entropy is thus defined as the sum of between and
average within-group parts (see Frenken, 2008 for details about the calculation of such
indexes).

5.2. Coherence or knowledge relatedness

Coherence or knowledge relatedness is a variable aimed at capturing the ability of firms
to combine, or integrate, different pieces of knowledge. In fact it is often calculated at
the firm rather than at the industry level®. At the level of a sector coherence measures
the average ability of firms to combine, or integrate, different pieces of knowledge. It is

3 See Shannon and Weaver (1949) on the initial definition of the entropy index; Theil (1967) on

the introduction of such an index in the economic analysis; Saviotti (1986) on the capacity of the system
to store information measured by entropy; Attaran (1986), Attaran and Saghafi (1988), Frenken et al.
(2007) on applications aimed at measuring diversity of an industry (or of a sample of firms within an
industry) against a uniform distribution of economic activities in all sectors, or among firms; and finally
Frenken et al. (1999, 2004) on the degree of variety and uncertainty within a technological population.

4 See Nesta and Saviotti (2005, 2006); Nesta (2007) who defines the coherence of the knowledge
base as the average relatedness of any technology randomly chosen within a firm with respect to any
other technology. They develop a measure on how much the technologies present within the firm are
related each other.
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a complementary measure to information entropy. While information entropy analyzes
variety from a statistical viewpoint, the coherence index draws upon a relatedness
matrix which provides synthetic information on the closeness degree of technologies
within the industry portfolio. As an example, increasing entropy signals an increase in
the variety of technologies couples observed in the sample of patents. This may be
linked to an increasing or decreasing coherence index, according to whether variety
concerns related or unrelated technologies. Coherence or (Knowledge Relatedness) has
been calculated following Nesta and Saviotti (2006).

5.3. Cognitive distance

This index is intended to measure the dissimilarity between the knowledge bases of
different firms, sectors, countries etc. Cognitive distance is defined as the inverse of
similarity. Several measures of cognitive distance can in principle be used. The one we
use here is derived from the measure of technological proximity originally proposed by
Jaffe (1986 and 1989), who investigated the proximity of firms’ technological
portfolios. Subsequently Breschi et al. (2003) adapted the index in order to measure the
proximity, or similarity, between two technologies. Furthermore, this measure is related
to Nootebooms' (1999, 2000) concept of cognitive distance.

5.4. Summing up

During the random search period KB variety rises, KB coherence falls and the cognitive
distance between the previous KB of a KIS and the new emerging knowledge rises.

During the organized search period KB the rate of growth of variety falls, KB coherence
rises and the cognitive distance between the previous KB of a KIS and the new
emerging knowledge falls.

6. Empirical Results

6.1. Preliminaries

The measures of information entropy and knowledge relatedness have been applied to
investigate the patterns of evolution of knowledge bases in three broad sectors:
biotechnology, telecommunication and electronics. As far as entropy is concerned, we
considered 4-digit technological classes. 4-digit classes may in turn be assigned to 1-
digit larger classes. 1-digit classes will be used to calculate between- and within-group
entropy.

The analysis of cognitive distance is carried out by calculating two indexes: the inverse
of technological relatedness and the Euclidean distance between two subsequent
periods’. In what follow the results are indexed with respect to the base year 1981. We

3 We left out the Euclidean distance between two technologies within the same period because it

is conceptually very similar to technological relatedness, but it does not compare the co-occurrence of
two technologies / and j with a third one, with their independent occurrence.
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set 1981 = 1 and calculated dC(t)/d7 at each period. The following years are calculated
as C(t+1) = C(t) * (1 +dC(t)/ds).

6.2. Biotechnology

Figure 17 shows the evolution of information entropy for the biotechnology sector. The
index is positive and above 1 over the whole time period considered. Moreover, the rate
of growth of information entropy falls for most of the period of observation until it
becomes constant from the early 1990s, with the possible exception of the mid 1980s.
In 1985 the rate of growth of variety starts rising in correspondence with the overtaking
on inter-group variety by intra- group variety. The distinction of inter- (or unrelated)
and intra-group (o related) variety was introduced by Frenken et al. (2007) to measure
the output variety of different regions of the Netherlands. In our case while in the early
1980s the between-group entropy was higher than the within-group, the situation was
reversed starting from 1985. This would suggest that, while in the very early phases of
the emergence of modern biotechnology most of the new knowledge was coming from
outside the knowledge base previously used, starting from 1985 internal (to the sector)
sources of knowledge differentiation became more prominent.

Figure 17: Information Entropy, Biotechnology

Information Entropy, Biotechnology
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However, the concept of related variety assumes that classes (or sectors) belonging to
the same subset are more similar than those which belong to different sets. This may not
be the case all the times. As an example consider IPCs A21B and A61K. While they
belong to the same subset “A”, they can hardly be said to be technologically related. It
may indeed be the case that an increase in the variety of observed technological classes
causes an increase in the probability for a technology to co-occur with an unrelated one.
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This may be the case also if within-group entropy has higher entropy than between-
group. As an example, consider an increase in the co-occurrences of IPC AO1B and
C12P. It would imply an increase in between-group entropy. However on average their
technological relatedness (T) is 3.99, and hence an increase in their co-occurrences will
cause an increase in coherence, other things being equal. If we look at the denomination
of the IPCs we find AO1B; while C12P. This may well be the case of a patent related to
research on chemical fertilizers. So, while the decomposition of entropy helps gaining
more information on the processes going on, it needs to be complemented by the
coherence index, which allows to assess the technological closeness of classes.

Figure 18 reports the dynamics of knowledge relatedness for the biotechnology sector.
We can distinguish within the overall changes a positive growth trend and
superimposed deviations. In particular, there are two periods of fast rise in knowledge
relatedness, beginning in 1982 and in 1995 respectively. The first of these deviations
from the trend seems to be closely related to the ratio of within-group to between-group
variety. When between-group variety is greater than the within-group one, in the period
1981-1982, the coherence index falls. It then begins to increase in 1983 when within-
group variety overtakes between-group variety. The subsequent rise in 1997 cannot be
explained in the same way. However, it can be observed that the two rises in knowledge
relatedness seem to coincide with the onset of the absorption of two different
generations of biotechnology, based on recombinant DNA and on genomics
respectively, by incumbent firms (Saviotti, Catherine, 2008). Taking this into account
we can interpret the overall (trend) rise in knowledge relatedness as due to the relative
similarity, or low cognitive distance, of the new types of knowledge which incumbent
firms needed to learn. The deviations with respect to the trend could be explained by the
emergence of new generations of biotechnology and/or by the ratio of intra to inter
group variety. As a new generation of biotechnology emerges the overall trend is not
reversed but deviations can occur due to the however limited cognitive distance that the
new generation introduces. This line of explanation is not incompatible with the one
based on the ratio of within-group to between-group variety. If we assume changes in
intra-group variety to be generally lower than those in inter-group variety, then we can
expect changes of generation within one technology (e.g. biotechnology) to raise the
ratio intra/inter while the emergence of a completely new technology can be expected to
lower the same ratio.
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Figure 18: Knowledge relatedness, Biotechnology
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The evolution of cognitive distance is reported in Figure 19. Even in this case we can
distinguish an overall trend from the deviations with respect to it. The evidence for the
biotechnology sector is very consistent with the measures of information entropy and
knowledge relatedness. The distance index indeed decreases dramatically in the early
years of the period we observed. Although with some cyclical fluctuations, it keeps on
falling until the first half of the 1990s. Then it remains almost constant with the
possibility of a very limited rise.

Figure 19: Cognitive distance, Biotechnology
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In summary, in the biotechnology sector there has been a growing knowledge
differentiation, detected by the growth in variety, accompanied by a trend towards
knowledge relatedness and towards falling cognitive distance. These broad trends have
been combined with a changing ratio of within to between group variety, with
fluctuations with respect to the trend of both knowledge relatedness and of cognitive
distance. The overall trend towards a growth in variety implies that the new types of
knowledge introduced into the KB of biotechnology are relatively similar to those
which were already there. On the other hand, the cognitive distance which these new
types of knowledge entailed was enough to cause deviations with respect to the trend.
In particular, the deviations were towards a fall in knowledge relatedness at the
emergence of a new generation of biotechnology and towards rise in knowledge
relatedness as the new generation started maturing. Our findings so far are thus not
incompatible with propositions P1-P4. Although the expected fall in knowledge
relatedness when the new type of knowledge emerged did not occur, the deviations with
respect to the trend bear a close relationship to both the emergence of new generations
of biotechnology and to the changing ratio of within- to between-group variety.
Propositions P1-P4 were initially formulated without taking into account the distinction
between within- and between-group variety and will need to be modified accordingly.
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6.3. Telecommunications

The evidence about Telecommunications is very different from biotechnology.
Knowledge variety, as measured by information entropy, increases all the times but it
undergoes particularly fast rises two or three times, in 1981, between 1991and 1994 and
possibly in 1986 (Figure 20). Furthermore, in this case the between-group entropy is
fairly stable all over the period we observed. Hence the dynamics of total entropy is
driven by within group entropy. The fastest rise in total variety, occurring from 1991, is
totally accounted for by intra-group variety.

Figure 20: Information Entropy, Telecommunications
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The trend of knowledge relatedness falls until 1990 and then rises (Figure 21). Also in
this case the rise in knowledge relatedness seems to be almost completely determined
by the growing ratio intra/inter group variety. Even in this case there are large
fluctuations with respect to the trend. In particular, the steep increase in the years 1983-
1985 is followed by a discontinuity causing a fall in 1986. Then the index keeps falling
until 1991 and increases monotonically along the rest of the 1990s. Comparing Figures
20 and 21, one can easily note that the period of steep increase of coherence
corresponds to the acceleration of the within group entropy, which occurs especially in
the first half of the 1990s. Hence it may be argued that during the 1980s the research
efforts in the telecommunication sector were mainly characterized by the search for new
technological paths to develop. At mid and at the end of the 1980s two major
discontinuities appeared, suggesting the introduction of radical innovations whose
technological potential started being explored in the subsequent decade.

Figure 21: Knowledge coherence, Telecommunications
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As far as cognitive distance is concerned, the evidence about telecommunications
(Figure 22) is less striking than that about biotechnology. Knowledge coherence was
slightly decreasing over the 1980s, and then began to increase in the 1990s. Cognitive
distance shows a flat trend with a possible slight fall starting in the 1990s.
Superimposed upon this trend there are considerable fluctuations.

Figure 22: Cognitive distance, Telecommunications
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Compared to biotechnology telecommunications shows a less smooth trend towards
growing knowledge variety and a larger departure of intra- from inter-group knowledge
variety. This indicates that during the period studied new forms of knowledge being
used in telecommunications were increasingly similar to those already present within
the sector. This interpretation is confirmed by the almost constant value of cognitive
distance. Furthermore, the relative rise in intra-group knowledge variety seems to
indicate a progressive focusing of new forms of knowledge inside the technology.
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6.4. Electronics

In electronics total entropy keeps increasing until 1998, when it basically stabilizes
(Figure 23). However, interestingly, in this case total knowledge variety is led by the
between-group variety, which always has a higher weight than the within-group one.

Figure 23: Information entropy, Electronics
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The trend of knowledge coherence falls all the times (Figure 24). The fluctuations show
falls beginning in 1981 and in 1989 and raises beginning in 1985 and in 1993. In this
case the overall trend with respect to biotechnology and to telecommunications can be
explained by the higher relative value of inter-group knowledge variety. This implies a
higher cognitive distance, as confirmed by the diagram in fig 25. The fluctuations
around the trend are for the moment more difficult to explain and will require further
research.

Figure 24: Knowledge coherence, Electronics
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Figure 25: Cognitive distance, Electronics
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6. Summing up

Our initial hypothesis that the emergence of a discontinuity in knowledge should lead to
the subsequent adoption of a random search strategy first and of an organized search
strategy later is partially confirmed. However, the hypothesis was based on two implicit
premises: (1) that new forms of knowledge would be either highly similar or completely
different from pre-existing ones; (ii) that knowledge variety could not be decomposed.

In the present paper we replace these premises by measures of three properties of the
knowledge base of the KISs we studied and we introduce the distinction between intra-
and inter-group knowledge variety. This more accurate and subtler approach leads to
possible outcomes which could previously not have been envisaged. For example, we
can find the combination of a growing trend in a given variable and of fluctuations in
the same variable during a given period of time. These combinations can give rise to
multiple outcomes such as a growing coherence when the new forms of knowledge have
a very low cognitive distance with respect to the previous ones or to falling coherence
for a much higher cognitive distance. Furthermore, the predominance of intra-group
knowledge variety is likely to be associated with a lower cognitive distance and with a
higher coherence than the predominance of inter-group knowledge variety. Although
our hypotheses are broadly confirmed, the presence of these measures and of these
distinctions will require the hypotheses to be refined.

Our results still confirm the importance of discontinuities in knowledge and allow us to
maintain the fruitful distinction between random and organised search strategies. In
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general we still expect that the higher the rate of increase over time in variety and in
cognitive distance, the higher the decrease over time in coherence in the knowledge
base, the more persistent the period of random screening, i.e. the less established the
organized screening period. Both in biotechnology and telecommunications, the
organized screening period seems to be more established, while the evolution of the KB
in electronics is more characteristic of a persistent period of random screening. Yet the
distinctions and measures we introduced in this paper give rise to some outcomes we
could not have previously expected.

With our research we begin to make sense of the historical paths of development of
these sectors. The biotechnology sector faced a major discontinuity in the knowledge
base when the discoveries of recombinant DNA and monoclonal antibodies opened the
door to a large range of industrial applications. The change was very important, since
the knowledge base had previously been constituted mainly of organic chemistry. The
replacement of a very large share of the existing research personnel by researchers with
new and very different competencies occurred. Here, researchers working in public
research institutes played a key role. A lot of them became scientific entrepreneurs and
created their own businesses, often called the new dedicated biotechnology firms. A
relationship of complementarity occurred between these new actors and the incumbent
ones, the new actors providing new scientific and technological knowledge, while the
incumbent ones developed complementary assets (finance, marketing, etc). A gradual
improvement of the coherence of the knowledge base was achieved over time thanks to
this relationship of complementarity often materialised by cooperation agreements
between the two actors, although variety and cognitive distance in the new knowledge
remain significant.

A similar process occurred in the telecommunications industry. The emergence of
packet-switched technologies on which the Internet is based generated a new set of
commercial applications. The former knowledge base in the telecommunications sector
was essentially related to the circuit-switched technology, and required a drastic change
in competencies to adapt to the new industrial challenges. Here also, new technology
based firms (IP based) were created and contributed to the gradual change in the
knowledge base, evolving towards a greater coherence. The process of merger and
acquisitions between incumbent and new actors has certainly been more pronounced
than in the biotechnology sector, however.

The electronics sector proceeded a different way. Part of the explanation can be that the
sector is very vast, involving that it may be difficult to find the general explanation of
the evolution of the knowledge base of this sector. However, it may be conjectured that
since the most important IPC fields in the sector are common to the telecommunications
sector (HO4M, telephonic communication), or highly related to it (HOSK, printed
circuits), the evolution of the knowledge base can progressively become more
comparable with the one observed in the telecommunications sector, although with an
important delay.
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7. Conclusion

This paper was intended to characterize the KB of three different KISs, namely
biotechnology, telecommunications and electronics. Several major striking features
emerge from these results. The first one is that biotechnology, telecommunications and
electronics can effectively be qualified as KISs compared to other sectors. The second
one is that all of these sectors, when confronted to the emergence of a discontinuity,
proceed from a period of random screening to a following period of more organized
search. The characteristics of the KB for each of these KISs differ from one period to
the other, and attest the transformation of the KB before and after the emergence of the
discontinuity.
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