On $(P_5, \overline{P_5})$ -sparse graphs and other families

Jean-Luc Fouquet and Jean-Marie Vanherpe email : {Jean-Luc.Fouquet, Jean-Marie.Vanherpe}@univ-orleans.fr

We extend the notion of P_4 -sparse graphs previously introduced by Hoàng in [11] by considering \mathcal{F} -sparse graphs were \mathcal{F} denotes a finite set of graphs on p vertices. Thus we obtain some results on $(P_5, \overline{P_5})$ -sparse graphs already known on $(P_5, \overline{P_5})$ -free graphs. Finally we completely describe the structure of $(P_5, \overline{P_5}, bull)$ -sparse graphs, it follows that those graphs have bounded clique-width.

1. Introduction

 P_4 -free graphs, also called *Cographs*, were designed to be completely decomposable by complementation and motivated researchers for studying graph classes characterized with forbidden configurations. In addition, a number of optimization problems on a graph can be reduced to their weighted version on the set of prime graphs also called the set of representative graphs (recall that the representative graph of graph G is obtained from Gby contracting every maximal proper module of G into a single vertex) (see [13]). Thus sub-classes of P_5 - free graphs were intensively studied (see e.g. [2, 3, 4]), in particular Fouquet in [7] consider $(P_5, \overline{P_5})$ -free graphs and the subclass of $(P_5, \overline{P_5}, Bull)$ -free graphs (see Figure 1). Later Giakoumakis and Rusu [10] provide efficient solutions for some optimization problems on $(P_5, \overline{P_5})$ -free graphs.

Hoàng introduced in [11] the P_4 -sparse graphs (every induced subgraph on 5 vertices contains at most one P_4) and several extensions of this notion have arisen in the litterature (see for examples [1, 8, 9, 14]). We are concerned here with $(P_5, \overline{P_5})$ -graphs and $(P_5, \overline{P_5}, Bull)$ -graphs where these classes of graphs are defined in the same way (every subgraph on 6 vertices contains at most one

subgraph in the family).

In this paper, we extend the notion of P_4 -sparse in the following way: A graph G is said to be \mathcal{F} -sparse, where \mathcal{F} denotes a set of graphs of order p, whenever any induced subgraph of G on p+1 vertices contains at most one graph of \mathcal{F} as induced subgraph. We study \mathcal{F} -sparse when $\mathcal{F} = \{P_5, \overline{P_5}\}$ and when $\mathcal{F} = \{P_5, \overline{P_5}, Bull\}$). Those graphs classes are defined with configurations which are prime with respect to modular decomposition (see Figure 1) and which properly intersect graphs classes such that PL-graphs or some (q,t)-graphs classes.

We obtain some results on $(P_5, \overline{P_5})$ -sparse graphs already known on $(P_5, \overline{P_5})$ -free graphs and we completely describe the structure of $(P_5, \overline{P_5}, bull)$ -sparse graphs. This shows that those graphs have bounded clique-width.

Basics

Let G = (V, E) be a graph, the complementary graph of G is denoted \overline{G} . If x and y are two adjacent vertices of G, x is said adjacent to y and y is a neighbor of x. A graph on 2n vertices such that all of them have exactly one neighbor is a nK_2 .

Let X be a set of vertices and x be a vertex such that $x \notin X$, the set of neighbors of xthat belong to X is said the *neighborhood* of

Figure 1. The forbidden configurations in a $(P_5, \overline{P_5}, Bull)$ -free graph

x in X and is denoted $N_X(x)$, if $N_X(x) = \emptyset$ x is said independent of X and total for X when $N_X(x) = X$, if x is not independent of X nor total for X, x is said partial for X. If x is independent of X (resp. total for X), x is said isolated in $X \cup \{x\}$ (universal for $X \cup \{x\}$).

Let X and Y be two disjoint sets of vertices, the set $\bigcup_{y \in Y} N_X(y)$ is denoted $N_X(Y)$ and called the *neighborhood of* Y *in* X. If there is no edge connecting a vertex of X to a vertex of Y, the sets X and Y are independent while X is total for Y when there is all possible edges connecting vertices of X to vertices of Y.

2. On $(P_5, \overline{P_5})$ -sparse graphs.

In this section we consider \mathcal{F} -sparse graphs when $\mathcal{F} = \{P_5, \overline{P_5}\}$ and we call those graphs $(P_5, \overline{P_5})$ -sparse. Recall that in a such graph every induced subgraph on 6 vertices contains at most one P_5 or $\overline{P_5}$.

Theorem 2.1 A prime $(P_5, \overline{P_5})$ -sparse graph is either C_5 -free or isomorphic to a C_5 .

Proof Let G be a prime \mathcal{F} -sparse graph having at least 6 vertices.

Observe first that a vertex, say x, which is partial to a C_5 of G is either adjacent to exactly two non-adjacent vertices of the C_5 or to three consecutive vertices of the C_5 . In all other cases of adjacencies the subgraph induced by the vertices of the C_5 together with x contains two P_5 or $\overline{P_5}$, a contradiction.

Let abcde be a C_5 of G, since G is prime there must exist in G a vertex, say x which is partial to abcde. Without loss of generality we can assume that x is adjacent to a and c and independent of d and e. Let A be the set of vertices of G which are adjacent to a and c and independent of d and e. Since A contains at least two vertices ($\{b,x\}\subseteq A$) and G is prime there must be a vertex, say y, outside of A which distinguishes two vertices of A say b_1 and b_2 . But now, the vertex y cannot be outside of A and satisfy the above observation with bots C_5 ab_1cde and ab_2cde , a contradiction.

Welsh-Powell perfect graphs are perfectly orderable and are characterized with 17 forbidden configurations (see [5]). It is a straightforward exercise to see that $(P_5, \overline{P_5})$ -sparse graphs which are also C_5 -free are Welsh-Powell perfect. In [12], Hoàng, gives algorithms to solve the Maximum Weighted Clique problem as well as the Minimum Weighted Coloring problem on perfectly or-

derable graphs within O(nm) time complexity.

Thus, as well as for $(P_5, \overline{P_5})$ -free graphs (see [10]), there exists algorithms running in O(nm) time, for computing a Maximum Weigted Clique and a Minimum Weighted Coloring in a weighted $(P_5, \overline{P_5})$ -sparse graph. Since the class of $(P_5, \overline{P_5})$ -sparse graphs is auto-complementary the parameters Maximum Weighted Stable Set and Minimum Weighted Clique Cover can be computed within the same time complexity.

3. $(P_5, \overline{P_5}, Bull)$ -sparse graphs.

In this section we will study \mathcal{F} -sparse graphs where $\mathcal{F} = \{P_5, \overline{P_5}, Bull\}$, namely the $(P_5, \overline{P_5}, Bull)$ -sparse graphs. We will characterize the prime graphs of this family and give some consequences.

Let's first recall a main result on $(P_5, \overline{P_5}, Bull)$ -free graphs.

Theorem 3.1 ([7]) A prime graph G is $(P_5, \overline{P_5}, bull)$ -free if and only if one of the following holds:

- 1. G is isomorphic to a C₅
- 2. G or its complement is a bipartite P₅-free graph.

Since Theorem 2.1 also holds for $(P_5, \overline{P_5}, Bull)$ -sparse graphs we consider henceforth only C_5 -free graphs.

Theorem 3.2 Let G be a prime C_5 -free which contains an induced P_5 (resp. $\overline{P_5}$). G is $(P_5, \overline{P_5}, Bull)$ -sparse if and only if G (resp. \overline{G}) is isomorphic to one of the graphs depicted in Figure 2.

Proof of Theorem 3.2. It is easy to see that the graphs depicted in Figure 2

are prime $(P_5, \overline{P_5}, Bull)$ -sparse graphs, consequently in the following we consider the only if part of the theorem.

Assume without loss of generality that G contains a P_5 , namely abcde. Observe first that a vertex partial to this P_5 can only be adjacent to c, all other adjacency cases lead to a contradiction Let's denote C the set of vertices in G whose neighborhood in $\{a,b,c,d,e\}$ is $\{c\}$, in addition we denote I the set of vertices of G which have no neighbor in $\{a,b,c,d,e\}$ while T denotes the set of vertices of G which are total for $\{a,b,c,d,e\}$, note that $V(G) = \{a,b,c,d,e\} \cup C \cup T \cup I$. Moreover we suppose henceforth that C is not empty, otherwise by the primality assumption, G would be the P_5 abcde itself (one of the graphs depicted in Figure 2).

Claim 1 If I has a neighbor in C then $N_C(I) \cup N_I(C)$ is a nK_2 , the vertices of $N_I(C)$ are isolated in I and the vertices of $N_C(I)$ are isolated in C. Moreover T is total for C and $N_I(C)$.

Proof Let's assume that $x \in C$ has a neighbor $i \in I$, so $\{a, b, c, x, i\}$ is a P_5 . Then x(resp. i)has no other neighbor in I (resp. C). Moreover $N_I(C)$ is isolated in I because if i has a neighbor i' in I, then $\{a, b, c, x, i, i'\}$ is a P_6 , a contradiction; and $N_C(I)$ is isolated in C because if x has a neighbor x' in Cthen $\{a, b, c, x, x', i \text{ induces a } P_5 \text{ and a } bull,$ a contradiction. Let $t \in T$, assume that tisn't a neighbor of x or i. Let first t isn't a neighbor of i then $\{i, x, c, t, a, e\}$ induces 2 P_5 or 2 bull. Otherwise if t isn't a neighbor of x then $\{i, x, c, t, b, d\}$ induces $2 \overline{P_5}$, a contradiction. Let $x' \in C - N_C(I)$, recall that x isn't adjacent to x'; if x' is not adjacent to t, the graph $G[\{a,t,c,x',x,d\}]$ contains two induced bulls, a contradiction, then the vertices of T are all adjacent to the vertices of

Figure 2. The 2 types of prime $(P_5, \overline{P_5}, Bull)$ -sparse graphs which are C_5 -free and contain a P_5 .

$$C \setminus N_C(I)$$
.

Since G is a prime graph, when I has a neighbor in C it follows that the sets T and $I \setminus N_I(C)$ are empty or $\{a,b,c,d,e\} \cup C \cup N_I(C)$ would be a non trivial module of G. Similarly $C \setminus N_C(I)$ contains at most one vertex and thus G is a bundle of P_5 's, one of the graphs depicted in Figure 2.

From now on, we assume that I has no neighbor in C, moreover we may assume that a vertex of T has a non-neighbor in C otherwise the set T would be empty (G is a prime graph) and once again, G would be a bundle of P_5 's.

Claim 2 There is a unique non-edge c_0t_0 such that $c_0 \in C$ and $t_0 \in T$, c_0 is adjacent to all other vertices of C, t_0 is adjacent to all other vertices of T and has no neighbor in T.

Proof Observe first that a vertex of T cannot have two non-neighbors in T, otherwise a such vertex say t together with two non-neighbors in C, say c_1 and c_2 and the vertices a, c and d would induce two bulls, a contradiction. Similarly, a vertex of C, say x cannot have two non-neighbors t_1 and t_2 in T or two bulls would be induced with the

vertices x, c, d, a, t_1 and t_2 , a contradiction. If there is two non-edges c_1t_1 and c_2t_2 such that $c_1, c_2 \in C$ and $t_1, t_2 \in T$, those vertices together with a and e would induce two P_5 's or two bulls or two $\overline{P_5}$'s or two C_5 's according to the connections between c_1 and c_2 and between t_1 and t_2 , a contradiction. If t_0 would have a non-neighbor in T, say t, the vertices c_0 , c, t_0 , t, a and e would induce two $\overline{P_5}$, a contradiction. A neighbor i of t_0 in I together with c_0 and the vertices b, c and dwould induce two bulls in G, a contradiction. If c_0 is independent of another member of C say x, the graph induced by the vertices x_0, x, t_0, c and a induces a bull, as well as $G[\{x_0, x, t_0, c, e\}],$ a contradiction.

No vertex of $I \cup T \setminus \{t_0\}$ can distinguish the vertices of $\{a, b, c, d, e\} \cup C \cup \{t_0\}$, consequently $I \cup T \setminus \{t_0\} = \emptyset$. Moreover, $C \setminus \{c_0\}$ contains at most one vertex, it follows that G has either 7 or 8 vertices according to the fact that $C \setminus \{c_0\}$ is empty or not and is isomorphic to a graph depicted in Figure 2. \square

Theorem 3.3 Let G be a prime

Figure 3. The 4 types of prime $(P_5, \overline{P_5}, Bull)$ -sparse graphs which are $(P_5, \overline{P_5}, C_5)$ -free and contain a Bull.

 $(P_5, \overline{P_5}, C_5)$ -free graph which contains an induced bull.

G is $(P_5, \overline{P_5}, Bull)$ -sparse if and only if G or \overline{G} is isomorphic to one of the graphs depicted in Figure 3.

Proof It is easy to check that all graphs in Figure 3 are $(P_5, \overline{P_5}, Bull)$ -sparse.

Let's consider an induced bull in G whose vertices are numbered 1, 2, 3, 4, 5 in such a way that $\{1, 2, 3, 4\}$ induces a P_4 whose endpoints are 1 and 4 and 5 is precisely adjacent to 2 and 3 and not to 1 nor 4.

We consider the 6 following subsets of $V \setminus \{1, 2, 3, 4, 5\}$.

Let T be the set of vertices which are adjacent to all the members of $\{1, 2, 3, 4, 5\}$ and I be the set of vertices having no neighbor among $\{1, 2, 3, 4, 5\}$. Let A be the set of vertices being adjacent to 2 and 5 and independent of 1, 3 and 4, while B denotes the set of vertices which are adjacent to 3 and to 5 and independent of 1, 2, and 4. Let C be set of

vertices which are adjacent to 1, 2 and 3 and independent of 4 and 5. D denotes the set of vertices being adjacent to 2, 3 and 4 and independent of 1 and 5.

It is easy to see that a vertex x which is partial with respect to $\{1,2,3,4,5\}$ must belong to $A \cup B \cup C \cup D$, in other cases of adjacency the subgraph induced by $\{1,2,3,4,5,x\}$ would not be $(P_5,\overline{P_5},Bull)$ -sparse. Consequently $V(G)=\{1,2,3,4,5\}\cup T \cup I \cup A \cup B \cup C \cup D$.

Claim 1 C is total for A and T, C is independent of B.

Proof Let $c \in C$. When c has a non-neighbor in A, say a, the set $\{a, 5, 3, c, 1\}$ induces a P_5 , a contradiction since G is assumed to be P_5 -free. The vertex c cannot have a neighbor in B, or this neighbor together with c, 1, 2, and 5 would induce a $\overline{P_5}$, a contradiction. When c has a non-neighbor t in T, 43ct1 is a $\overline{P_5}$, a contradiction.

that f(1) = 4, f(4) = 1, f(2) = 3, f(3) = 2 and f(5) = 5, we have f(A) = B, f(B) = A, f(C) = D, f(D) = C while f(T) = T and f(I) = I. It follows that we can derive from Claims 1 to Claim 5 below many analogous results by considering the mapping f and/or the complementary graph of G. For example the assertion G is total for G becomes G is total for G when considering the mapping G, while G is total for G becomes G is independent of G when applied in G and G is independent of G when considering the mapping G in G.

Let's now examine the connections between vertices of C and D and between vertices of C and I.

Claim 2 If $A \neq \emptyset$ then there is no edge connecting a vertex of C to a vertex of D, nor a vertex of D to a vertex of I.

Proof Let a be a vertex of A.

Assume that cd is an edge $(c \in C \text{ and } d \in D)$, the vertices c, d, 3, 5, a induce a $\overline{P_5}$, a contradiction.

Suppose that $d \in D$ has a neighbor i in I, then id35a is a P_5 , a contradiction

Claim 3 If a vertex of C has a neighbor in I then the vertices of $N_I(C)$ are isolated in I, the vertices of $N_C(I)$ are isolated in C, T is total for $A \cup N_I(C)$, in addition there is a unique edge c_0i_0 connecting a vertex of C to a vertex of I and i_0 is isolated in I..

Proof Let $c \in C$ and $i \in I$ be adjacent vertices.

If i has a neighbor in I, say i', i'ic34 is a P_5 when i' is independent of c while $\{i, i', c, 2, 3, 4\}$ induces 2 bulls when i is adjacent to c, a contradiction.

If c has a neighbor in C, say c', the vertices

i, c, c', 2, 3, 4 induces two bulls, a contradiction

Let $at (a \in A, t \in T)$ be a non edge of G, then ict5a is a P_5 of G, a contradiction.

Moreover, observe that a vertex of C cannot have two neighbors i and i' in I, otherwise the vertices c, i, i', 2, 3, 4 would induce two bulls, a contradiction. On the same manner, a vertex in I cannot have two neighbors in C, say c and c' or once again two bulls are induced in $G[\{i, c, c', 2, 3, 4\}]$, contradiction. Consequently, according to Claim 3, two edges connecting vertices of C to vertices of C would induce a C and thus this C together with the vertex 2 would induce a C in C, a contradiction.

Let c_0i_0 be the unique edge connecting a vertex of C to a vertex of I, if i_0 has a neighbor, say i' in I, $i'i_0c_034$ would be P_5 of G, a contradiction.

Claim 4 If C has a neighbor in D then $N_D(C)$ is universal in D, there is a unique edge connecting a vertex of C to a vertex of D, the vertices of I do not distinguish c_0 from d_0 and $D \setminus \{d_0\}$ is independent of I.

Proof Assume that a vertex $c \in C$ has two neighbors in D, namely d and d'. In this case the graph induced by the vertices c, d, d', 1, 3, 5 contains two bulls, a contradiction. Symmetrically, a member of D cannot have two neighbors in C.

Moreover, if d is independent of some other vertex of D, namely d', the set $\{c, 3, d, 1, 5, d'\}$ induces two bulls, a contradiction, thus $N_D(C)$ is universal in D, similarly $N_C(D)$ is universal in C.

If cd and c'd' $(c, c' \in C, d, d' \in D)$ are two distinct edges, $G[\{c, c', d, d', 4\}]$ is a $\overline{P_5}$, a contradiction which proves the uniqueness of an edge connecting C to D.

Assume without loss of generality that $i \in I$ is adjacent to c_0 and not to d_0 . the subgraph induced by 1, i, c_0 , d_0 , 3 and 5 contains two bulls, a contradiction.

Finally, suppose that $d \in D$, distinct from d_0 is adjacent to $i \in I$, then G contains a P_5 (idd_035 if i is adjacent to d_0 and dic_025 if i is not adjacent to d_0), a contradiction.

Claim 5 At least one of the sets A, B, C, D is empty.

Proof Let $a \in A$, $b \in B$, $c \in C$, $d \in D$. We know by Claim 1 that a is connected to c and not to d and that b is connected to d and not to c, Claim2 asserts that c is not adjacent to d while a and b are connected. Consequently 1cabd is a P_5 , a contradiction.

According to Claim 5 we will now discuss on the number of empty sets among A, B, Cand D and prove that G or \overline{G} is isomorphic to one of the graphs depicted in Figure 3.

Case 1: The sets A, B, C and D are all empty.

Recall that G is prime, thus the sets T and I are also empty, for otherwise $\{1, 2, 3, 4, 5\}$ would be a non-trivial module. Consequently G is a bull, a graph isomorphic to G_1 in Figure 3 when a, c and d are missing.

Case 2: Three of the sets A, B, C and D are empty.

Assume without loss of generality that $C \neq \emptyset$. We know by Claim 1 that C is total for T If C has no neighbor in I, no vertex of $T \cup I$ can distinguish the members of $\{1, 2, 3, 4, 5\} \cup C$ and by the primality of G the sets T and I are empty while C is reduced to a single vertex. In this case G is isomorphic to G_1 where G and G are missing.

If C has a neighbor in I we know by Claim 3 that there is a unique edge, namely c_0i_0 connecting C to I. We consider the following decomposition of C and $I: C = \{c_0\} \cup (C \setminus \{c_0\}), I = \{i_0\} \cup (I \setminus \{i_0\}).$

By construction $C \setminus \{c_0\}$ is independent of I and $I \setminus \{i_0\}$ is independent of C while i_0 has no neighbor in $I \setminus \{i_0\}$ and c_0 has no neighbor in $C \setminus \{c_0\}$ (Claim 3). Moreover i_0 is completely adjacent to T (Claim 3).

Consequently $T \cup (I \setminus \{i_0\}) = \emptyset$ or the set $\{1, 2, 3, 4, 5, c_0, i_0\} \cup (C \setminus \{c_0\})$ would be a non trivial module of G, a contradiction. In addition $C \setminus \{c_0\}$ is either a singleton, say $\{c\}$ or empty and G is isomorphic to G_2 without the vertex a and where c is possibly missing if $C \setminus \{c_0\} = \emptyset$ (see Figure 3).

Case 3: Among A, B, C and D exactly two sets are empty.

Due to symmetries we only consider three different situations.

Let first suppose that $B = C = \emptyset$.

We know (Claim 1) that A and D are independent, D is total for T and A is independent of I. Moreover D is independent of I (Claim 2) and thus A is total for T. Because of the primality of G the set $T \cup I$ is empty and A as well as D is a singleton. Consequently G is isomorphic to G_2 without the vertex c (Figure 3).

Assume in a second stage that $B = D = \emptyset$. We know by Claim 1 that C is total for T and A is independent of I.

If there is an edge between C and I, it is unique (Claim 3), let's denote this edge c_0i_0 . In this case A is totally adjacent to T (Claim 3), the set $C \setminus \{c_0\}$ is independent of I and by construction c_0 is independent of $I \setminus \{i_0\}$, i_0 is independent of $I \setminus \{i_0\}$ and c_0 has no neighbor in $C \setminus \{c_0\}$ (Claim 3 again). It follows that the prime graph G is isomorphic to G_2 (Figure 3)

where c can miss if $C \setminus \{c_0\}$ is empty.

If there is no connection between C and I, some vertex of A can have a non neighbor in T, we are then in a similar situation than above in the complementary graph of G.

When C is independent of I and A is total for T the graph is isomorphic to graph G_1 in Figure 3.

Finally let's study the case $A = B = \emptyset$. We know that C and D are totally adjacent to T (Claim 1).

If C and D are not connected it is easy to see that C and D are not adjacent to I. As a matter of fact, suppose on the contrary that c_0i_0 is an edge $(c_0 \in C \text{ and } i_0 \in I)$ and that d is some vertex in D. If d and i_0 are not connected, i_0c_02d4 is a P_5 and i_0c_03d4 is a $\overline{P_5}$ if d and i_0 are adjacent, a contradiction in both cases. Consequently, G being prime is isomorphic to the graph G_1 in Figure 3 where d misses.

When C has a neighbor in D, we consider the unique edge connecting C to D, namely c_0d_0 ($c_0 \in C, d_0 \in D$). By Claim 4, c_0 is universal in C and d_0 is universal in D. We know (Claim 4) that only c_0 and d_0 can have a neighbor in I.

If it is not the case G is isomorphic to G_3 in Figure 3 without c or d if $C \setminus \{c_0\}$ or $D \setminus \{d_0\}$ is empty. If, on the contrary, c_0 and d_0 have a neighbor, say i_o in I, $C = \{c_0\}$ (or $\{1, c, c_0, i_0, d_0, 4\}$ where c is a vertex of C distinct from c_0 induces two bulls, a contradiction) and similarly $D = \{d_0\}$. Consequently G is isomorphic to the graph G_4 of Figure 3.

Case 4: Among A, B, C and D exactly one set is empty.

For convenience we will suppose that $B = \emptyset$. By Claim 1, A is completely adjacent to C and independent of D. There is no edge connecting a vertex of C to a vertex of D (Claim 2).

Moreover C and D are completely adjacent to T and A is independent of I (Claim 1). In addition, there is no connection between D and I (Claim 2) and similarly A is total for T.

If there is no edge between C and I, the sets T and I must be empty (or $\{1,2,3,4,5\} \cup A \cup C \cup D$ would be a non trivial module of G) and A, C, D are singletons. In this case G is isomorphic to G_2 in Figure 3.

When there is a unique edge c_0i_0 between C and I ($c_0 \in C, i_0 \in I$), once again $I \setminus \{i_0\}$ is completely independent of $C \cup \{i_0\}$ while $\{c_0, i_0\}$ has no connections with $C \setminus \{c_0\}$ (Claim 3). Consequently, G is isomorphic to G_2 where c misses if $C = \{c_0\}$. \Box It follows from Theorem 3.1, 2.1, 3.1 and 3.3 that a prime $(P_5, \overline{P_5}, Bull)$ -sparse graph or its complement is either a C_5 or a P_5 -free bipartite graph or a bundle of P_5 's (see Figure 2) or is a graph on less than 10 vertices. This leads to a linear time recognition algorithm for $(P_5, \overline{P_5}, Bull)$ -sparse graphs, moreover those graphs have bounded clique-width (see [6]).

REFERENCES

- L. Babel and S. Olariu. A new characterisation of P₄-connected graphs. Lecture notes in Computer Science, 1197,WG 96:17–30, 1996.
- G. Bacsó and ZS. Tuza. Dominating cliques in P₅-free graphs. Periodica Mathematica Hungarica, 21:303–308, 1990.
- A. Brandstädt and D. Kratsch. On the structure of (P₅, gem)-free graphs. Discrete Applied Mathematics, 145(Issue 2):155-166, January 2005.

- 4. A. Brandstädt and R. Mosca. On the structure and stability number of P_5 and co-chair-free graphs. Discrete Applied Mathematics, 2003.
- V. Chvátal, C.T. Hoàng, N.V.R. Mahadev, and D. de Werra. Four classes of perfectly orderable graphs. *Journal of Graph Theory*, 11:481–495, 1987.
- B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique width. *Lecture Notes in Computer* Science, 1517:1–16, 1998.
- 7. J.L. Fouquet. A decomposition for a class of $(P_5, \overline{P_5})$ -free graphs. Discrete Mathematics, 121:75–83, 1993.
- 8. J.L. Fouquet and J.M. Vanherpe. On bipartite graphs with weak density of some subgraphs. *Discrete Mathematics*, 307(Issues 11-12):1516–1524, May 2007.
- 9. V. Giakoumakis, F. Roussel, and H. Thuillier. On P_4 -tidy graphs. Discrete Mathematics and Theoretical Computer Science, 1:17–41, 1997.
- 10. V. Giakoumakis and I. Rusu. Weighted parameters in $(P_5, \overline{P_5})$ -free graphs. Discrete Applied Mathematics, 80:255–261, 1997.
- C.T. Hoàng. Perfect Graphs. PhD thesis, School of Computer Science, McGill University, Montreal, 1985.
- 12. C.T. Hoàng. Efficient algorithms for minimum weighted colouring of some classes of perfect graphs. *Discrete Applied Mathematics*, 55:133–143, 1994.
- R.H. Möhring and F.J. Radermacher. Substitution decomposition for discrete structures and connections with combinatorial optimization. *Annals of Discrete Mathematics*, 19:257–356, 1984.
- 14. F. Roussel, I. Rusu, and H. Thuillier. On graphs with limited number of P_4 -

partners. International Journal of Fundations of Computer Science, 10:103–121, 1999.