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On (P5, P5)-sparse graphs and other families

Jean-Luc Fouquet and Jean-Marie Vanherpe

email : {Jean-Luc.Fouquet, Jean-Marie.Vanherpe}@univ-orleans.fr

We extend the notion of P4-sparse graphs previously introduced by Hoàng in [ 11] by considering
F -sparse graphs were F denotes a finite set of graphs on p vertices. Thus we obtain some results
on (P5, P5)-sparse graphs already known on (P5, P5)-free graphs. Finally we completely describe the
structure of (P5, P5, bull)-sparse graphs, it follows that those graphs have bounded clique-width.

1. Introduction

P4-free graphs, also called Cographs, were
designed to be completely decomposable by
complementation and motivated researchers
for studying graph classes characterized with
forbidden configurations. In addition, a num-
ber of optimization problems on a graph can
be reduced to their weighted version on the
set of prime graphs also called the set of rep-
resentative graphs (recall that the represen-
tative graph of graph G is obtained from G
by contracting every maximal proper mod-
ule of G into a single vertex)(see [ 13]). Thus
sub-classes of P5- free graphs were intensively
studied (see e.g. [ 2, 3, 4]), in particular Fou-
quet in [ 7] consider (P5, P5)-free graphs and
the subclass of (P5, P5, Bull)-free graphs (see
Figure 1). Later Giakoumakis and Rusu [ 10]
provide efficient solutions for some optimiza-
tion problems on (P5, P5)-free graphs.

Hoàng introduced in [ 11] the P4-sparse
graphs (every induced subgraph on 5 ver-
tices contains at most one P4) and several
extensions of this notion have arisen in the
litterature (see for examples [ 1, 8, 9, 14]).
We are concerned here with (P5,P5)-graphs
and (P5,P5,Bull)-graphs where these classes
of graphs are defined in the same way (every
subgraph on 6 vertices contains at most one

subgraph in the family).
In this paper, we extend the notion of P4-

sparse in the following way : A graph G is
said to be F-sparse, where F denotes a set
of graphs of order p, whenever any induced
subgraph of G on p + 1 vertices contains at
most one graph of F as induced subgraph.
We study F-sparse when F = {P5, P5}) and
when F = {P5, P5, Bull}). Those graphs
classes are defined with configurations which
are prime with respect to modular decom-
position (see Figure 1) and which properly
intersect graphs classes such that PL-graphs
or some (q, t)-graphs classes.

We obtain some results on (P5, P5)-sparse
graphs already known on (P5, P5)-free graphs
and we completely describe the structure of
(P5, P5, bull)-sparse graphs. This shows that
those graphs have bounded clique-width.

Basics
Let G = (V,E) be a graph, the comple-

mentary graph of G is denoted G. If x and y
are two adjacent vertices of G, x is said adja-
cent to y and y is a neighbor of x. A graph on
2n vertices such that all of them have exactly
one neighbor is a nK2.

Let X be a set of vertices and x be a vertex
such that x /∈ X, the set of neighbors of x
that belong to X is said the neighborhood of
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P5

BullP5

Figure 1. The forbidden configurations in a (P5, P5, Bull)-free graph

x in X and is denoted NX(x), if NX(x) = ∅
x is said independent of X and total for X
when NX(x) = X, if x is not independent of
X nor total for X, x is said partial for X. If
x is independent of X (resp. total for X),
x is said isolated in X ∪ {x} (universal for
X ∪ {x}).

Let X and Y be two disjoint sets of ver-
tices, the set

⋃

y∈Y

NX(y) is denoted NX(Y )

and called the neighborhood of Y in X. If
there is no edge connecting a vertex of X to
a vertex of Y , the sets X and Y are inde-
pendent while X is total for Y when there is
all possible edges connecting vertices of X to
vertices of Y .

2. On (P5, P5)-sparse graphs.

In this section we consider F-sparse graphs
when F = {P5, P5} and we call those graphs
(P5, P5)-sparse. Recall that in a such graph
every induced subgraph on 6 vertices contains
at most one P5 or P5.

Theorem 2.1 A prime (P5, P5)-sparse
graph is either C5-free or isomorphic to a
C5.

Proof Let G be a prime F-sparse graph
having at least 6 vertices.

Observe first that a vertex, say x, which
is partial to a C5 of G is either adjacent to
exactly two non-adjacent vertices of the C5

or to three consecutive vertices of the C5. In
all other cases of adjacencies the subgraph in-
duced by the vertices of the C5 together witrh
x contains two P5 or P5, a contradiction.

Let abcde be a C5 of G, since G is prime
there must exist in G a vertex, say x which
is partial to abcde. Without loss of gener-
ality we can assume that x is adjacent to a
and c and independent of d and e. Let A be
the set of vertices of G which are adjacent to
a and c and independent of d and e. Since
A contains at least two vertices ({b, x} ⊆ A)
and G is prime there must be a vertex, say y,
outside of A which distinguishes two vertices
of A say b1 and b2. But now, the vertex y
cannot be outside of A and satisfy the above
observation with bots C5 ab1cde and ab2cde,
a contradiction. �

Welsh-Powell perfect graphs are perfectly or-
derable and are characterized with 17 forbid-
den configurations (see [ 5]). It is a straight-
forward exercise to see that (P5, P5)-sparse
graphs which are also C5-free are Welsh-
Powell perfect . In [ 12], Hoàng, gives al-
gorithms to solve the Maximum Weighted
Clique problem as well as the Minimum
Weighted Coloring problem on perfectly or-
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derable graphs within O(nm) time complex-
ity.

Thus, as well as for (P5, P5)-free graphs
(see [ 10]), there exists algorithms running
in O(nm) time, for computing a Maximum
Weigted Clique and a Minimum Weighted
Coloring in a weighted (P5, P5)-sparse graph.
Since the class of (P5, P5)-sparse graphs is
auto-complementary the parameters Max-
imum Weighted Stable Set and Minimum
Weighted Clique Cover can be computed
within the same time complexity.

3. (P5, P5, Bull)-sparse graphs.

In this section we will study F-sparse
graphs where F = {P5, P5, Bull}, namely the
(P5, P5, Bull)-sparse graphs. We will charac-
terize the prime graphs of this family and give
some consequences.

Let’s first recall a main result on
(P5, P5, Bull)-free graphs.

Theorem 3.1 ([ 7]) A prime graph G is
(P5, P5, bull)-free if and only if one of the fol-
lowing holds :

1. G is isomorphic to a C5

2. G or its complement is a bipartite P5-
free graph.

Since Theorem 2.1 also holds for
(P5, P5, Bull)-sparse graphs we consider
henceforth only C5-free graphs.

Theorem 3.2 Let G be a prime C5-free
which contains an induced P5 (resp. P5).
G is (P5, P5, Bull)-sparse if and only if G
(resp. G) is isomorphic to one of the graphs
depicted in Figure 2.

Proof of Theorem 3.2. It is easy to
see that the graphs depicted in Figure 2

are prime (P5, P5, Bull)-sparse graphs, conse-
quently in the following we consider the only
if part of the theorem.

Assume without loss of generality that G
contains a P5, namely abcde. Observe first
that a vertex partial to this P5 can only
be adjacent to c, all other adjacency cases
lead to a contradiction Let’s denote C the
set of vertices in G whose neighborhood in
{a, b, c, d, e} is {c}, in addition we denote I
the set of vertices of G which have no neigh-
bor in {a, b, c, d, e} while T denotes the set of
vertices of G which are total for {a, b, c, d, e},
note that V (G) = {a, b, c, d, e} ∪ C ∪ T ∪ I.
Moreover we suppose henceforth that C is
not empty, otherwise by the primality as-
sumption, G would be the P5 abcde itself (one
of the graphs depicted in Figure 2).

Claim 1 If I has a neighbor in C then
NC(I) ∪ NI(C) is a nK2, the vertices of
NI(C) are isolated in I and the vertices of
NC(I) are isolated in C. Moreover T is total
for C and NI(C).

Proof Let’s assume that x ∈ C has a neigh-
bor i ∈ I, so {a, b, c, x, i} is a P5. Then x
(resp. i)has no other neighbor in I (resp. C).
Moreover NI(C) is isolated in I because if i
has a neighbor i′ in I, then {a, b, c, x, i, i′} is
a P6, a contradiction; and NC(I) is isolated
in C because if x has a neighbor x′ in C
then {a, b, c, x, x′, i induces a P5 and a bull,
a contradiction. Let t ∈ T , assume that t
isn’t a neighbor of x or i. Let first t isn’t a
neighbor of i then {i, x, c, t, a, e} induces 2
P5 or 2 bull. Otherwise if t isn’t a neighbor
of x then {i, x, c, t, b, d} induces 2 P5, a con-
tradiction. Let x′ ∈ C − NC(I), recall that
x isn’t adjacent to x′; if x′ is not adjacent to
t, the graph G[{a, t, c, x′, x, d}]contains two
induced bulls, a contradiction, then the ver-
tices of T are all adjacent to the vertices of
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y optional vertex

A bundle of P5s

x0

t0

y x

x

optional K2s

x optional vertex

Figure 2. The 2 types of prime (P5, P5, Bull)-sparse graphs which are C5-free and contain a P5.

C \ NC(I). �

Since G is a prime graph, when I has a
neighbor in C it follows that the sets T and I\
NI(C) are empty or {a, b, c, d, e}∪C ∪NI(C)
would be a non trivial module of G. Similarly
C \ NC(I) contains at most one vertex and
thus G is a bundle of P5’s, one of the graphs
depicted in Figure 2.

From now on, we assume that I has no
neighbor in C, moreover we may assume that
a vertex of T has a non-neighbor in C other-
wise the set T would be empty (G is a prime
graph) and once again, G would be a bundle
of P5’s.

Claim 2 There is a unique non-edge c0t0
such that c0 ∈ C and t0 ∈ T , c0 is adjacent
to all other vertices of C, t0 is adjacent to all
other vertices of T and has no neighbor in I.

Proof Observe first that a vertex of T
cannot have two non-neighbors in T , other-
wise a such vertex say t together with two
non-neighbors in C, say c1 and c2 and the
vertices a, c and d would induce two bulls, a
contradiction. Similarly, a vertex of C, say
x cannot have two non-neighbors t1 and t2
in T or two bulls would be induced with the

vertices x, c, d, a, t1 and t2, a contradic-
tion. If there is two non-edges c1t1 and c2t2
such that c1, c2 ∈ C and t1, t2 ∈ T , those
vertices together with a and e would induce
two P5’s or two bulls or two P5’s or two C5’s
according to the connections between c1 and
c2 and between t1 and t2, a contradiction. If
t0 would have a non-neighbor in T , say t, the
vertices c0, c, t0, t, a and e would induce two
P5, a contradiction. A neighbor i of t0 in I
together with c0 and the vertices b, c and d
would induce two bulls in G, a contradiction.
If c0 is independent of another member of
C say x, the graph induced by the vertices
x0, x, t0, c and a induces a bull, as well as
G[{x0, x, t0, c, e}], a contradiction. �

No vertex of I ∪ T \ {t0} can distinguish
the vertices of {a, b, c, d, e} ∪C ∪ {t0}, conse-
quently I ∪ T \ {t0} = ∅. Moreover, C \ {c0}
contains at most one vertex, it follows that
G has either 7 or 8 vertices according to the
fact that C \ {c0} is empty or not and is
isomorphic to a graph depicted in Figure 2.
�

Theorem 3.3 Let G be a prime
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Figure 3. The 4 types of prime (P5, P5, Bull)-sparse graphs which are (P5, P5, C5)-free and
contain a Bull.

(P5, P5, C5)-free graph which contains an
induced bull.
G is (P5, P5, Bull)-sparse if and only if G or
G is isomorphic to one of the graphs depicted
in Figure 3.

Proof It is easy to check that all graphs in
Figure 3 are (P5, P5, Bull)-sparse.

Let’s consider an induced bull in G whose
vertices are numbered 1, 2, 3, 4, 5 in such a
way that {1, 2, 3, 4} induces a P4 whose end-
points are 1 and 4 and 5 is precisely adjacent
to 2 and 3 and not to 1 nor 4.

We consider the 6 following subsets of V \
{1, 2, 3, 4, 5}.

Let T be the set of vertices which are ad-
jacent to all the members of {1, 2, 3, 4, 5} and
I be the set of vertices having no neighbor
among {1, 2, 3, 4, 5}. Let A be the set of ver-
tices being adjacent to 2 and 5 and indepen-
dent of 1, 3 and 4, while B denotes the set of
vertices which are adjacent to 3 and to 5 and
independent of 1, 2, and 4. Let C be set of

vertices which are adjacent to 1, 2 and 3 and
independent of 4 and 5. D denotes the set
of vertices being adjacent to 2, 3 and 4 and
independent of 1 and 5.

It is easy to see that a vertex x which
is partial with respect to {1, 2, 3, 4, 5} must
belong to A ∪ B ∪ C ∪ D, in other
cases of adjacency the subgraph induced by
{1, 2, 3, 4, 5, x} would not be (P5, P5, Bull)-
sparse. Consequently V (G) = {1, 2, 3, 4, 5} ∪
T ∪ I ∪ A ∪ B ∪ C ∪ D.

Claim 1 C is total for A and T , C is inde-
pendent of B.

Proof Let c ∈ C. When c has a non-
neighbor in A, say a, the set {a, 5, 3, c, 1}
induces a P5, a contradiction since G is as-
sumed to be P5-free. The vertex c cannot
have a neighbor in B, or this neighbor to-
gether with c, 1, 2, and 5 would induce a P5,
a contradiction. When c has a non-neighbor
t in T , 43ct1 is a P5, a contradiction. �

Let f be an edge preserving mapping such
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that f(1) = 4, f(4) = 1, f(2) = 3, f(3) = 2
and f(5) = 5, we have f(A) = B, f(B) = A,
f(C) = D, f(D) = C while f(T ) = T and
f(I) = I. It follows that we can derive from
Claims 1 to Claim 5 below many analogous
results by considering the mapping f and/or
the complementary graph of G. For exam-
ple the assertion C is total for A becomes D
is total for B when considering the mapping
f , while C is total for T becomes B is in-
dependent of I when applied in G and A is
independent of I when considering the map-
ping f in G.

Let’s now examine the connections be-
tween vertices of C and D and between ver-
tices of C and I.

Claim 2 If A 6= ∅ then there is no edge con-
necting a vertex of C to a vertex of D, nor a
vertex of D to a vertex of I.

Proof Let a be a vertex of A.
Assume that cd is an edge (c ∈ C and d ∈

D), the vertices c, d, 3, 5, a induce a P5, a
contradiction.

Suppose that d ∈ D has a neighbor i in I,
then id35a is a P5, a contradiction �

Claim 3 If a vertex of C has a neighbor in
I then the vertices of NI(C) are isolated in
I, the vertices of NC(I) are isolated in C, T
is total for A ∪ NI(C), in addition there is a
unique edge c0i0 connecting a vertex of C to
a vertex of I and i0 is isolated in I..

Proof Let c ∈ C and i ∈ I be adjacent
vertices.

If i has a neighbor in I, say i′, i′ic34
is a P5 when i′ is independent of c while
{i, i′, c, 2, 3, 4} induces 2 bulls when i is adja-
cent to c, a contradiction.

If c has a neighbor in C, say c′, the vertices

i, c, c′, 2, 3, 4 induces two bulls, a contradic-
tion.

Let at (a ∈ A, t ∈ T ) be a non edge of G,
then ict5a is a P5 of G, a contradiction.

Moreover, observe that a vertex of C can-
not have two neighbors i and i′ in I, other-
wise the vertices c, i, i′, 2, 3, 4 would induce
two bulls, a contradiction. On the same man-
ner, a vertex in I cannot have two neighbors
in C, say c and c′ or once again two bulls
are induced in G[{i, c, c′, 2, 3, 4}], contradic-
tion. Consequently, according to Claim 3,
two edges connecting vertices of C to vertices
of I would induce a 2K2 and thus this 2K2

together with the vertex 2 would induce a P5

in G, a contradiction.
Let c0i0 be the unique edge connecting a

vertex of C to a vertex of I, if i0 has a neigh-
bor, say i′ in I, i′i0c034 would be P5 of G, a
contradiction. �

Claim 4 If C has a neighbor in D then
ND(C) is universal in D, there is a unique
edge connecting a vertex of C to a vertex of
D, the vertices of I do not distinguish c0 from
d0 and D \ {d0} is independent of I.

Proof Assume that a vertex c ∈ C has two
neighbors in D, namely d and d′. In this case
the graph induced by the vertices c, d, d′,
1, 3, 5 contains two bulls, a contradiction.
Symmetrically, a member of D cannot have
two neighbors in C.

Moreover, if d is independent of some
other vertex of D, namely d′, the set
{c, 3, d, 1, 5, d′} induces two bulls, a contra-
diction, thus ND(C) is universal in D, simi-
larly NC(D) is universal in C.

If cd and c′d′ (c, c′ ∈ C, d, d′ ∈ D) are
two distinct edges, G[{c, c′, d, d′, 4}] is a P5,
a contradiction which proves the uniqueness
of an edge connecting C to D.
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Assume without loss of generality that i ∈
I is adjacent to c0 and not to d0. the sub-
graph induced by 1, i, c0, d0, 3 and 5 contains
two bulls, a contradiction.

Finally, suppose that d ∈ D, distinct from
d0 is adjacent to i ∈ I, then G contains a P5

(idd035 if i is adjacent to d0 and dic025 if i
is not adjacent to d0), a contradiction. �

Claim 5 At least one of the sets A, B, C,
D is empty.

Proof Let a ∈ A, b ∈ B, c ∈ C, d ∈ D. We
know by Claim 1 that a is connected to c and
not to d and that b is connected to d and not
to c, Claim2 asserts that c is not adjacent to
d while a and b are connected. Consequently
1cabd is a P5, a contradiction. �

According to Claim 5 we will now discuss on
the number of empty sets among A, B, C
and D and prove that G or G is isomorphic
to one of the graphs depicted in Figure 3.

Case 1 : The sets A, B, C and D are
all empty.

Recall that G is prime, thus the sets T and
I are also empty, for otherwise {1, 2, 3, 4, 5}
would be a non-trivial module. Consequently
G is a bull, a graph isomorphic to G1 in Fig-
ure 3 when a, c and d are missing.

Case 2 : Three of the sets A, B, C
and D are empty.

Assume without loss of generality that C 6=
∅. We know by Claim 1 that C is total for T

If C has no neighbor in I, no vertex of T∪I
can distinguish the members of {1, 2, 3, 4, 5}∪
C and by the primality of G the sets T and
I are empty while C is reduced to a single
vertex. In this case G is isomorphic to G1

where a and d are missing.

If C has a neighbor in I we know by Claim
3 that there is a unique edge, namely c0i0
connecting C to I. We consider the following
decomposition of C and I : C = {c0} ∪ (C \
{c0}), I = {i0} ∪ (I \ {i0}).
By construction C \ {c0} is independent of
I and I \ {i0} is independent of C while i0
has no neighbor in I \ {i0} and c0 has no
neighbor in C \ {c0} (Claim 3). Moreover i0
is completely adjacent to T (Claim 3).
Consequently T ∪ (I \ {i0}) = ∅ or the set
{1, 2, 3, 4, 5, c0 , i0}∪(C \{c0}) would be a non
trivial module of G, a contradiction. In ad-
dition C \ {c0} is either a singleton, say {c}
or empty and G is isomorphic to G2 without
the vertex a and where c is possibly missing
if C \ {c0} = ∅ (see Figure 3).

Case 3 : Among A, B, C and D ex-
actly two sets are empty.

Due to symmetries we only consider three dif-
ferent situations.

Let first suppose that B = C = ∅.
We know (Claim 1) that A and D are inde-
pendent, D is total for T and A is indepen-
dent of I. Moreover D is independent of I
(Claim 2) and thus A is total for T . Because
of the primality of G the set T ∪ I is empty
and A as well as D is a singleton. Conse-
quently G is isomorphic to G2 without the
vertex c (Figure 3).

Assume in a second stage that B = D = ∅.
We know by Claim 1 that C is total for T
and A is independent of I.

If there is an edge between C and I, it is
unique (Claim 3), let’s denote this edge c0i0.
In this case A is totally adjacent to T (Claim
3), the set C \{c0} is independent of I and by
construction c0 is independent of I\{i0}, i0 is
independent of I\{i0} and c0 has no neighbor
in C\{c0} (Claim 3 again). It follows that the
prime graph G is isomorphic to G2 (Figure 3)
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where c can miss if C \ {c0} is empty.
If there is no connection between C and I,

some vertex of A can have a non neighbor
in T , we are then in a similar situation than
above in the complementary graph of G.

When C is independent of I and A is total
for T the graph is isomorphic to graph G1 in
Figure 3.

Finally let’s study the case A = B = ∅.
We know that C and D are totally adjacent
to T (Claim 1).

If C and D are not connected it is easy to
see that C and D are not adjacent to I. As a
matter of fact, suppose on the contrary that
c0i0 is an edge (c0 ∈ C and i0 ∈ I) and that
d is some vertex in D. If d and i0 are not
connected, i0c02d4 is a P5 and i0c03d4 is a
P5 if d and i0 are adjacent, a contradiction in
both cases. Consequently, G being prime is
isomorphic to the graph G1 in Figure 3 where
d misses.

When C has a neighbor in D, we consider
the unique edge connecting C to D, namely
c0d0 (c0 ∈ C, d0 ∈ D). By Claim 4, c0 is
universal in C and d0 is universal in D. We
know (Claim 4) that only c0 and d0 can have
a neighbor in I.

If it is not the case G is isomorphic to G3

in Figure 3 without c or d if C \ {c0} or
D \ {d0} is empty. If, on the contrary, c0

and d0 have a neighbor, say io in I, C = {c0}
(or {1, c, c0, i0, d0, 4} where c is a vertex of
C distinct from c0 induces two bulls, a con-
tradiction) and similarly D = {d0}. Conse-
quently G is isomorphic to the graph G4 of
Figure 3.

Case 4 : Among A, B, C and D ex-
actly one set is empty.

For convenience we will suppose that B = ∅.
By Claim 1, A is completely adjacent to

C and independent of D. There is no edge

connecting a vertex of C to a vertex of D
(Claim 2).

Moreover C and D are completely adjacent
to T and A is independent of I (Claim 1). In
addition, there is no connection between D
and I (Claim 2) and similarly A is total for
T .

If there is no edge between C and I, the
sets T and I must be empty (or {1, 2, 3, 4, 5}∪
A ∪ C ∪ D would be a non trivial module of
G) and A, C, D are singletons. In this case
G is isomorphic to G2 in Figure 3.

When there is a unique edge c0i0 between
C and I (c0 ∈ C, i0 ∈ I), once again I \ {i0}
is completely independent of C ∪ {i0} while
{c0, i0} has no connections with C \ {c0}
(Claim 3). Consequently, G is isomorphic to
G2 where c misses if C = {c0}. �

It follows from Theorem 3.1, 2.1, 3.1 and 3.3
that a prime (P5, P5, Bull)-sparse graph or
its complement is either a C5 or a P5-free
bipartite graph or a bundle of P5’s (see Fig-
ure 2) or is a graph on less than 10 vertices.
This leads to a linear time recognition algo-
rithm for (P5, P5, Bull)-sparse graphs, more-
over those graphs have bounded clique-width
(see [ 6]).
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