

On $(P_5, \overline{P_5})$ -sparse graphs and other families

Jean-Luc Fouquet, Jean-Marie Vanherpe

▶ To cite this version:

Jean-Luc Fouquet, Jean-Marie Vanherpe. On (P_5, \overline{P}_5) -sparse graphs and other families. 2008. hal-00264104

HAL Id: hal-00264104

https://hal.science/hal-00264104

Preprint submitted on 14 Mar 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On $(P_5, \overline{P_5})$ -sparse graphs and other families

Jean-Luc Fouquet and Jean-Marie Vanherpe email : {Jean-Luc.Fouquet, Jean-Marie.Vanherpe}@univ-orleans.fr

We extend the notion of P_4 -sparse graphs previously introduced by Hoàng in [11] by considering \mathcal{F} -sparse graphs were \mathcal{F} denotes a finite set of graphs on p vertices. Thus we obtain some results on $(P_5, \overline{P_5})$ -sparse graphs already known on $(P_5, \overline{P_5})$ -free graphs. Finally we completely describe the structure of $(P_5, \overline{P_5}, bull)$ -sparse graphs, it follows that those graphs have bounded clique-width.

1. Introduction

 P_4 -free graphs, also called *Cographs*, were designed to be completely decomposable by complementation and motivated researchers for studying graph classes characterized with forbidden configurations. In addition, a number of optimization problems on a graph can be reduced to their weighted version on the set of prime graphs also called the set of representative graphs (recall that the representative graph of graph G is obtained from Gby contracting every maximal proper module of G into a single vertex) (see [13]). Thus sub-classes of P_5 - free graphs were intensively studied (see e.g. [2, 3, 4]), in particular Fouquet in [7] consider $(P_5, \overline{P_5})$ -free graphs and the subclass of $(P_5, \overline{P_5}, Bull)$ -free graphs (see Figure 1). Later Giakoumakis and Rusu [10] provide efficient solutions for some optimization problems on $(P_5, \overline{P_5})$ -free graphs.

Hoàng introduced in [11] the P_4 -sparse graphs (every induced subgraph on 5 vertices contains at most one P_4) and several extensions of this notion have arisen in the litterature (see for examples [1, 8, 9, 14]). We are concerned here with $(P_5, \overline{P_5})$ -graphs and $(P_5, \overline{P_5}, Bull)$ -graphs where these classes of graphs are defined in the same way (every subgraph on 6 vertices contains at most one

subgraph in the family).

In this paper, we extend the notion of P_4 -sparse in the following way: A graph G is said to be \mathcal{F} -sparse, where \mathcal{F} denotes a set of graphs of order p, whenever any induced subgraph of G on p+1 vertices contains at most one graph of \mathcal{F} as induced subgraph. We study \mathcal{F} -sparse when $\mathcal{F} = \{P_5, \overline{P_5}\}$ and when $\mathcal{F} = \{P_5, \overline{P_5}, Bull\}$). Those graphs classes are defined with configurations which are prime with respect to modular decomposition (see Figure 1) and which properly intersect graphs classes such that PL-graphs or some (q,t)-graphs classes.

We obtain some results on $(P_5, \overline{P_5})$ -sparse graphs already known on $(P_5, \overline{P_5})$ -free graphs and we completely describe the structure of $(P_5, \overline{P_5}, bull)$ -sparse graphs. This shows that those graphs have bounded clique-width.

Basics

Let G = (V, E) be a graph, the complementary graph of G is denoted \overline{G} . If x and y are two adjacent vertices of G, x is said adjacent to y and y is a neighbor of x. A graph on 2n vertices such that all of them have exactly one neighbor is a nK_2 .

Let X be a set of vertices and x be a vertex such that $x \notin X$, the set of neighbors of xthat belong to X is said the *neighborhood* of

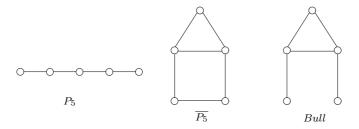


Figure 1. The forbidden configurations in a $(P_5, \overline{P_5}, Bull)$ -free graph

x in X and is denoted $N_X(x)$, if $N_X(x) = \emptyset$ x is said independent of X and total for X when $N_X(x) = X$, if x is not independent of X nor total for X, x is said partial for X. If x is independent of X (resp. total for X), x is said isolated in $X \cup \{x\}$ (universal for $X \cup \{x\}$).

Let X and Y be two disjoint sets of vertices, the set $\bigcup_{y \in Y} N_X(y)$ is denoted $N_X(Y)$ and called the *neighborhood of* Y *in* X. If there is no edge connecting a vertex of X to a vertex of Y, the sets X and Y are independent while X is total for Y when there is all possible edges connecting vertices of X to vertices of Y.

2. On $(P_5, \overline{P_5})$ -sparse graphs.

In this section we consider \mathcal{F} -sparse graphs when $\mathcal{F} = \{P_5, \overline{P_5}\}$ and we call those graphs $(P_5, \overline{P_5})$ -sparse. Recall that in a such graph every induced subgraph on 6 vertices contains at most one P_5 or $\overline{P_5}$.

Theorem 2.1 A prime $(P_5, \overline{P_5})$ -sparse graph is either C_5 -free or isomorphic to a C_5 .

Proof Let G be a prime \mathcal{F} -sparse graph having at least 6 vertices.

Observe first that a vertex, say x, which is partial to a C_5 of G is either adjacent to exactly two non-adjacent vertices of the C_5 or to three consecutive vertices of the C_5 . In all other cases of adjacencies the subgraph induced by the vertices of the C_5 together with x contains two P_5 or $\overline{P_5}$, a contradiction.

Let abcde be a C_5 of G, since G is prime there must exist in G a vertex, say x which is partial to abcde. Without loss of generality we can assume that x is adjacent to a and c and independent of d and e. Let A be the set of vertices of G which are adjacent to a and c and independent of d and e. Since A contains at least two vertices ($\{b,x\}\subseteq A$) and G is prime there must be a vertex, say y, outside of A which distinguishes two vertices of A say b_1 and b_2 . But now, the vertex y cannot be outside of A and satisfy the above observation with bots C_5 ab_1cde and ab_2cde , a contradiction.

Welsh-Powell perfect graphs are perfectly orderable and are characterized with 17 forbidden configurations (see [5]). It is a straightforward exercise to see that $(P_5, \overline{P_5})$ -sparse graphs which are also C_5 -free are Welsh-Powell perfect. In [12], Hoàng, gives algorithms to solve the Maximum Weighted Clique problem as well as the Minimum Weighted Coloring problem on perfectly or-

derable graphs within O(nm) time complexity.

Thus, as well as for $(P_5, \overline{P_5})$ -free graphs (see [10]), there exists algorithms running in O(nm) time, for computing a Maximum Weigted Clique and a Minimum Weighted Coloring in a weighted $(P_5, \overline{P_5})$ -sparse graph. Since the class of $(P_5, \overline{P_5})$ -sparse graphs is auto-complementary the parameters Maximum Weighted Stable Set and Minimum Weighted Clique Cover can be computed within the same time complexity.

3. $(P_5, \overline{P_5}, Bull)$ -sparse graphs.

In this section we will study \mathcal{F} -sparse graphs where $\mathcal{F} = \{P_5, \overline{P_5}, Bull\}$, namely the $(P_5, \overline{P_5}, Bull)$ -sparse graphs. We will characterize the prime graphs of this family and give some consequences.

Let's first recall a main result on $(P_5, \overline{P_5}, Bull)$ -free graphs.

Theorem 3.1 ([7]) A prime graph G is $(P_5, \overline{P_5}, bull)$ -free if and only if one of the following holds:

- 1. G is isomorphic to a C₅
- 2. G or its complement is a bipartite P₅-free graph.

Since Theorem 2.1 also holds for $(P_5, \overline{P_5}, Bull)$ -sparse graphs we consider henceforth only C_5 -free graphs.

Theorem 3.2 Let G be a prime C_5 -free which contains an induced P_5 (resp. $\overline{P_5}$). G is $(P_5, \overline{P_5}, Bull)$ -sparse if and only if G (resp. \overline{G}) is isomorphic to one of the graphs depicted in Figure 2.

Proof of Theorem 3.2. It is easy to see that the graphs depicted in Figure 2

are prime $(P_5, \overline{P_5}, Bull)$ -sparse graphs, consequently in the following we consider the only if part of the theorem.

Assume without loss of generality that G contains a P_5 , namely abcde. Observe first that a vertex partial to this P_5 can only be adjacent to c, all other adjacency cases lead to a contradiction Let's denote C the set of vertices in G whose neighborhood in $\{a,b,c,d,e\}$ is $\{c\}$, in addition we denote I the set of vertices of G which have no neighbor in $\{a,b,c,d,e\}$ while T denotes the set of vertices of G which are total for $\{a,b,c,d,e\}$, note that $V(G) = \{a,b,c,d,e\} \cup C \cup T \cup I$. Moreover we suppose henceforth that C is not empty, otherwise by the primality assumption, G would be the P_5 abcde itself (one of the graphs depicted in Figure 2).

Claim 1 If I has a neighbor in C then $N_C(I) \cup N_I(C)$ is a nK_2 , the vertices of $N_I(C)$ are isolated in I and the vertices of $N_C(I)$ are isolated in C. Moreover T is total for C and $N_I(C)$.

Proof Let's assume that $x \in C$ has a neighbor $i \in I$, so $\{a, b, c, x, i\}$ is a P_5 . Then x(resp. i)has no other neighbor in I (resp. C). Moreover $N_I(C)$ is isolated in I because if i has a neighbor i' in I, then $\{a, b, c, x, i, i'\}$ is a P_6 , a contradiction; and $N_C(I)$ is isolated in C because if x has a neighbor x' in Cthen $\{a, b, c, x, x', i \text{ induces a } P_5 \text{ and a } bull,$ a contradiction. Let $t \in T$, assume that tisn't a neighbor of x or i. Let first t isn't a neighbor of i then $\{i, x, c, t, a, e\}$ induces 2 P_5 or 2 bull. Otherwise if t isn't a neighbor of x then $\{i, x, c, t, b, d\}$ induces $2 \overline{P_5}$, a contradiction. Let $x' \in C - N_C(I)$, recall that x isn't adjacent to x'; if x' is not adjacent to t, the graph $G[\{a,t,c,x',x,d\}]$ contains two induced bulls, a contradiction, then the vertices of T are all adjacent to the vertices of

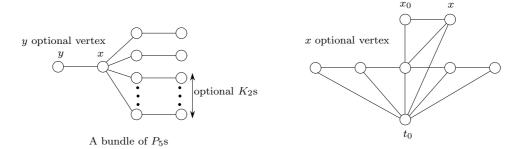


Figure 2. The 2 types of prime $(P_5, \overline{P_5}, Bull)$ -sparse graphs which are C_5 -free and contain a P_5 .

$$C \setminus N_C(I)$$
.

Since G is a prime graph, when I has a neighbor in C it follows that the sets T and $I \setminus N_I(C)$ are empty or $\{a,b,c,d,e\} \cup C \cup N_I(C)$ would be a non trivial module of G. Similarly $C \setminus N_C(I)$ contains at most one vertex and thus G is a bundle of P_5 's, one of the graphs depicted in Figure 2.

From now on, we assume that I has no neighbor in C, moreover we may assume that a vertex of T has a non-neighbor in C otherwise the set T would be empty (G is a prime graph) and once again, G would be a bundle of P_5 's.

Claim 2 There is a unique non-edge c_0t_0 such that $c_0 \in C$ and $t_0 \in T$, c_0 is adjacent to all other vertices of C, t_0 is adjacent to all other vertices of T and has no neighbor in T.

Proof Observe first that a vertex of T cannot have two non-neighbors in T, otherwise a such vertex say t together with two non-neighbors in C, say c_1 and c_2 and the vertices a, c and d would induce two bulls, a contradiction. Similarly, a vertex of C, say x cannot have two non-neighbors t_1 and t_2 in T or two bulls would be induced with the

vertices x, c, d, a, t_1 and t_2 , a contradiction. If there is two non-edges c_1t_1 and c_2t_2 such that $c_1, c_2 \in C$ and $t_1, t_2 \in T$, those vertices together with a and e would induce two P_5 's or two bulls or two $\overline{P_5}$'s or two C_5 's according to the connections between c_1 and c_2 and between t_1 and t_2 , a contradiction. If t_0 would have a non-neighbor in T, say t, the vertices c_0 , c, t_0 , t, a and e would induce two $\overline{P_5}$, a contradiction. A neighbor i of t_0 in I together with c_0 and the vertices b, c and dwould induce two bulls in G, a contradiction. If c_0 is independent of another member of C say x, the graph induced by the vertices x_0, x, t_0, c and a induces a bull, as well as $G[\{x_0, x, t_0, c, e\}]$, a contradiction.

No vertex of $I \cup T \setminus \{t_0\}$ can distinguish the vertices of $\{a, b, c, d, e\} \cup C \cup \{t_0\}$, consequently $I \cup T \setminus \{t_0\} = \emptyset$. Moreover, $C \setminus \{c_0\}$ contains at most one vertex, it follows that G has either 7 or 8 vertices according to the fact that $C \setminus \{c_0\}$ is empty or not and is isomorphic to a graph depicted in Figure 2. \square

Theorem 3.3 Let G be a prime

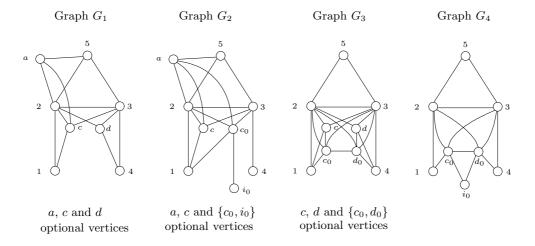


Figure 3. The 4 types of prime $(P_5, \overline{P_5}, Bull)$ -sparse graphs which are $(P_5, \overline{P_5}, C_5)$ -free and contain a Bull.

 $(P_5, \overline{P_5}, C_5)$ -free graph which contains an induced bull.

G is $(P_5, \overline{P_5}, Bull)$ -sparse if and only if G or \overline{G} is isomorphic to one of the graphs depicted in Figure 3.

Proof It is easy to check that all graphs in Figure 3 are $(P_5, \overline{P_5}, Bull)$ -sparse.

Let's consider an induced bull in G whose vertices are numbered 1, 2, 3, 4, 5 in such a way that $\{1, 2, 3, 4\}$ induces a P_4 whose endpoints are 1 and 4 and 5 is precisely adjacent to 2 and 3 and not to 1 nor 4.

We consider the 6 following subsets of $V \setminus \{1, 2, 3, 4, 5\}$.

Let T be the set of vertices which are adjacent to all the members of $\{1, 2, 3, 4, 5\}$ and I be the set of vertices having no neighbor among $\{1, 2, 3, 4, 5\}$. Let A be the set of vertices being adjacent to 2 and 5 and independent of 1, 3 and 4, while B denotes the set of vertices which are adjacent to 3 and to 5 and independent of 1, 2, and 4. Let C be set of

vertices which are adjacent to 1, 2 and 3 and independent of 4 and 5. D denotes the set of vertices being adjacent to 2, 3 and 4 and independent of 1 and 5.

It is easy to see that a vertex x which is partial with respect to $\{1,2,3,4,5\}$ must belong to $A \cup B \cup C \cup D$, in other cases of adjacency the subgraph induced by $\{1,2,3,4,5,x\}$ would not be $(P_5,\overline{P_5},Bull)$ -sparse. Consequently $V(G)=\{1,2,3,4,5\}\cup T\cup I\cup A\cup B\cup C\cup D$.

Claim 1 C is total for A and T, C is independent of B.

Proof Let $c \in C$. When c has a non-neighbor in A, say a, the set $\{a, 5, 3, c, 1\}$ induces a P_5 , a contradiction since G is assumed to be P_5 -free. The vertex c cannot have a neighbor in B, or this neighbor together with c, 1, 2, and 5 would induce a $\overline{P_5}$, a contradiction. When c has a non-neighbor t in T, 43ct1 is a $\overline{P_5}$, a contradiction.

that f(1) = 4, f(4) = 1, f(2) = 3, f(3) = 2 and f(5) = 5, we have f(A) = B, f(B) = A, f(C) = D, f(D) = C while f(T) = T and f(I) = I. It follows that we can derive from Claims 1 to Claim 5 below many analogous results by considering the mapping f and/or the complementary graph of G. For example the assertion G is total for G becomes G is total for G when considering the mapping G, while G is total for G becomes G is independent of G when applied in G and G is independent of G when considering the mapping G in G.

Let's now examine the connections between vertices of C and D and between vertices of C and I.

Claim 2 If $A \neq \emptyset$ then there is no edge connecting a vertex of C to a vertex of D, nor a vertex of D to a vertex of I.

Proof Let a be a vertex of A.

Assume that cd is an edge $(c \in C \text{ and } d \in D)$, the vertices c, d, 3, 5, a induce a $\overline{P_5}$, a contradiction.

Suppose that $d \in D$ has a neighbor i in I, then id35a is a P_5 , a contradiction

Claim 3 If a vertex of C has a neighbor in I then the vertices of $N_I(C)$ are isolated in I, the vertices of $N_C(I)$ are isolated in C, T is total for $A \cup N_I(C)$, in addition there is a unique edge c_0i_0 connecting a vertex of C to a vertex of I and i_0 is isolated in I..

Proof Let $c \in C$ and $i \in I$ be adjacent vertices.

If i has a neighbor in I, say i', i'ic34 is a P_5 when i' is independent of c while $\{i, i', c, 2, 3, 4\}$ induces 2 bulls when i is adjacent to c, a contradiction.

If c has a neighbor in C, say c', the vertices

i, c, c', 2, 3, 4 induces two bulls, a contradiction

Let $at (a \in A, t \in T)$ be a non edge of G, then ict5a is a P_5 of G, a contradiction.

Moreover, observe that a vertex of C cannot have two neighbors i and i' in I, otherwise the vertices c, i, i', 2, 3, 4 would induce two bulls, a contradiction. On the same manner, a vertex in I cannot have two neighbors in C, say c and c' or once again two bulls are induced in $G[\{i, c, c', 2, 3, 4\}]$, contradiction. Consequently, according to Claim 3, two edges connecting vertices of C to vertices of C would induce a C and thus this C together with the vertex 2 would induce a C in C, a contradiction.

Let c_0i_0 be the unique edge connecting a vertex of C to a vertex of I, if i_0 has a neighbor, say i' in I, $i'i_0c_034$ would be P_5 of G, a contradiction.

Claim 4 If C has a neighbor in D then $N_D(C)$ is universal in D, there is a unique edge connecting a vertex of C to a vertex of D, the vertices of I do not distinguish c_0 from d_0 and $D \setminus \{d_0\}$ is independent of I.

Proof Assume that a vertex $c \in C$ has two neighbors in D, namely d and d'. In this case the graph induced by the vertices c, d, d', 1, 3, 5 contains two bulls, a contradiction. Symmetrically, a member of D cannot have two neighbors in C.

Moreover, if d is independent of some other vertex of D, namely d', the set $\{c, 3, d, 1, 5, d'\}$ induces two bulls, a contradiction, thus $N_D(C)$ is universal in D, similarly $N_C(D)$ is universal in C.

If cd and c'd' $(c, c' \in C, d, d' \in D)$ are two distinct edges, $G[\{c, c', d, d', 4\}]$ is a $\overline{P_5}$, a contradiction which proves the uniqueness of an edge connecting C to D.

Assume without loss of generality that $i \in I$ is adjacent to c_0 and not to d_0 . the subgraph induced by 1, i, c_0 , d_0 , 3 and 5 contains two bulls, a contradiction.

Finally, suppose that $d \in D$, distinct from d_0 is adjacent to $i \in I$, then G contains a P_5 (idd_035 if i is adjacent to d_0 and dic_025 if i is not adjacent to d_0), a contradiction.

Claim 5 At least one of the sets A, B, C, D is empty.

Proof Let $a \in A$, $b \in B$, $c \in C$, $d \in D$. We know by Claim 1 that a is connected to c and not to d and that b is connected to d and not to c, Claim2 asserts that c is not adjacent to d while a and b are connected. Consequently 1cabd is a P_5 , a contradiction.

According to Claim 5 we will now discuss on the number of empty sets among A, B, Cand D and prove that G or \overline{G} is isomorphic to one of the graphs depicted in Figure 3.

Case 1: The sets A, B, C and D are all empty.

Recall that G is prime, thus the sets T and I are also empty, for otherwise $\{1, 2, 3, 4, 5\}$ would be a non-trivial module. Consequently G is a bull, a graph isomorphic to G_1 in Figure 3 when a, c and d are missing.

Case 2: Three of the sets A, B, C and D are empty.

Assume without loss of generality that $C \neq \emptyset$. We know by Claim 1 that C is total for T If C has no neighbor in I, no vertex of $T \cup I$ can distinguish the members of $\{1, 2, 3, 4, 5\} \cup C$ and by the primality of G the sets T and I are empty while C is reduced to a single vertex. In this case G is isomorphic to G_1 where G and G are missing.

If C has a neighbor in I we know by Claim 3 that there is a unique edge, namely c_0i_0 connecting C to I. We consider the following decomposition of C and $I: C = \{c_0\} \cup (C \setminus \{c_0\}), I = \{i_0\} \cup (I \setminus \{i_0\}).$

By construction $C \setminus \{c_0\}$ is independent of I and $I \setminus \{i_0\}$ is independent of C while i_0 has no neighbor in $I \setminus \{i_0\}$ and c_0 has no neighbor in $C \setminus \{c_0\}$ (Claim 3). Moreover i_0 is completely adjacent to T (Claim 3).

Consequently $T \cup (I \setminus \{i_0\}) = \emptyset$ or the set $\{1, 2, 3, 4, 5, c_0, i_0\} \cup (C \setminus \{c_0\})$ would be a non trivial module of G, a contradiction. In addition $C \setminus \{c_0\}$ is either a singleton, say $\{c\}$ or empty and G is isomorphic to G_2 without the vertex a and where c is possibly missing if $C \setminus \{c_0\} = \emptyset$ (see Figure 3).

Case 3: Among A, B, C and D exactly two sets are empty.

Due to symmetries we only consider three different situations.

Let first suppose that $B = C = \emptyset$.

We know (Claim 1) that A and D are independent, D is total for T and A is independent of I. Moreover D is independent of I (Claim 2) and thus A is total for T. Because of the primality of G the set $T \cup I$ is empty and A as well as D is a singleton. Consequently G is isomorphic to G_2 without the vertex c (Figure 3).

Assume in a second stage that $B = D = \emptyset$. We know by Claim 1 that C is total for T and A is independent of I.

If there is an edge between C and I, it is unique (Claim 3), let's denote this edge c_0i_0 . In this case A is totally adjacent to T (Claim 3), the set $C \setminus \{c_0\}$ is independent of I and by construction c_0 is independent of $I \setminus \{i_0\}$, i_0 is independent of $I \setminus \{i_0\}$ and c_0 has no neighbor in $C \setminus \{c_0\}$ (Claim 3 again). It follows that the prime graph G is isomorphic to G_2 (Figure 3)

where c can miss if $C \setminus \{c_0\}$ is empty.

If there is no connection between C and I, some vertex of A can have a non neighbor in T, we are then in a similar situation than above in the complementary graph of G.

When C is independent of I and A is total for T the graph is isomorphic to graph G_1 in Figure 3.

Finally let's study the case $A = B = \emptyset$. We know that C and D are totally adjacent to T (Claim 1).

If C and D are not connected it is easy to see that C and D are not adjacent to I. As a matter of fact, suppose on the contrary that c_0i_0 is an edge $(c_0 \in C \text{ and } i_0 \in I)$ and that d is some vertex in D. If d and i_0 are not connected, i_0c_02d4 is a P_5 and i_0c_03d4 is a P_5 if d and i_0 are adjacent, a contradiction in both cases. Consequently, G being prime is isomorphic to the graph G_1 in Figure 3 where d misses.

When C has a neighbor in D, we consider the unique edge connecting C to D, namely c_0d_0 ($c_0 \in C, d_0 \in D$). By Claim 4, c_0 is universal in C and d_0 is universal in D. We know (Claim 4) that only c_0 and d_0 can have a neighbor in I.

If it is not the case G is isomorphic to G_3 in Figure 3 without c or d if $C \setminus \{c_0\}$ or $D \setminus \{d_0\}$ is empty. If, on the contrary, c_0 and d_0 have a neighbor, say i_o in I, $C = \{c_0\}$ (or $\{1, c, c_0, i_0, d_0, 4\}$ where c is a vertex of C distinct from c_0 induces two bulls, a contradiction) and similarly $D = \{d_0\}$. Consequently G is isomorphic to the graph G_4 of Figure 3.

Case 4: Among A, B, C and D exactly one set is empty.

For convenience we will suppose that $B = \emptyset$. By Claim 1, A is completely adjacent to C and independent of D. There is no edge connecting a vertex of C to a vertex of D (Claim 2).

Moreover C and D are completely adjacent to T and A is independent of I (Claim 1). In addition, there is no connection between D and I (Claim 2) and similarly A is total for T.

If there is no edge between C and I, the sets T and I must be empty (or $\{1,2,3,4,5\} \cup A \cup C \cup D$ would be a non trivial module of G) and A, C, D are singletons. In this case G is isomorphic to G_2 in Figure 3.

When there is a unique edge c_0i_0 between C and I ($c_0 \in C, i_0 \in I$), once again $I \setminus \{i_0\}$ is completely independent of $C \cup \{i_0\}$ while $\{c_0, i_0\}$ has no connections with $C \setminus \{c_0\}$ (Claim 3). Consequently, G is isomorphic to G_2 where c misses if $C = \{c_0\}$. \Box It follows from Theorem 3.1, 2.1, 3.1 and 3.3 that a prime $(P_5, \overline{P_5}, Bull)$ -sparse graph or its complement is either a C_5 or a P_5 -free bipartite graph or a bundle of P_5 's (see Figure 2) or is a graph on less than 10 vertices. This leads to a linear time recognition algorithm for $(P_5, \overline{P_5}, Bull)$ -sparse graphs, moreover those graphs have bounded clique-width (see [6]).

REFERENCES

- L. Babel and S. Olariu. A new characterisation of P₄-connected graphs. Lecture notes in Computer Science, 1197,WG 96:17–30, 1996.
- G. Bacsó and ZS. Tuza. Dominating cliques in P₅-free graphs. Periodica Mathematica Hungarica, 21:303–308, 1990.
- 3. A. Brandstädt and D. Kratsch. On the structure of (P_5, gem) -free graphs. Discrete Applied Mathematics, 145(Issue 2):155–166, January 2005.

- 4. A. Brandstädt and R. Mosca. On the structure and stability number of P_5 and co-chair-free graphs. Discrete Applied Mathematics, 2003.
- V. Chvátal, C.T. Hoàng, N.V.R. Mahadev, and D. de Werra. Four classes of perfectly orderable graphs. *Journal of Graph Theory*, 11:481–495, 1987.
- B. Courcelle, J.A. Makowsky, and U. Rotics. Linear time solvable optimization problems on graphs of bounded clique width. *Lecture Notes in Computer* Science, 1517:1–16, 1998.
- 7. J.L. Fouquet. A decomposition for a class of $(P_5, \overline{P_5})$ -free graphs. Discrete Mathematics, 121:75–83, 1993.
- 8. J.L. Fouquet and J.M. Vanherpe. On bipartite graphs with weak density of some subgraphs. *Discrete Mathematics*, 307(Issues 11-12):1516–1524, May 2007.
- 9. V. Giakoumakis, F. Roussel, and H. Thuillier. On P_4 -tidy graphs. Discrete Mathematics and Theoretical Computer Science, 1:17–41, 1997.
- 10. V. Giakoumakis and I. Rusu. Weighted parameters in $(P_5, \overline{P_5})$ -free graphs. Discrete Applied Mathematics, 80:255–261, 1997.
- C.T. Hoàng. Perfect Graphs. PhD thesis, School of Computer Science, McGill University, Montreal, 1985.
- 12. C.T. Hoàng. Efficient algorithms for minimum weighted colouring of some classes of perfect graphs. *Discrete Applied Mathematics*, 55:133–143, 1994.
- R.H. Möhring and F.J. Radermacher. Substitution decomposition for discrete structures and connections with combinatorial optimization. *Annals of Discrete Mathematics*, 19:257–356, 1984.
- 14. F. Roussel, I. Rusu, and H. Thuillier. On graphs with limited number of P_4 -

partners. International Journal of Fundations of Computer Science, 10:103–121, 1999.