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Landau's function for one million billions

Introduction 1.Known results about Landau's function

For n ≥ 1, let S n denote the symmetric group with n letters. The order of a permutation of S n is the least common multiple of the lengths of its cycles. Let us call g(n) the maximal order of an element of S n . If the standard factorization of M into primes is M = q α1 1 q α2 2 . . . q α k k , we define ℓ(M ) to be ℓ(M ) = q α1 1 + q α2 2 + . . . + q α k k .

(1.1) E. Landau proved in [START_REF] Landau | Über die Maximalordnung der Permutationen gegebenen Grades[END_REF] that

g(n) = max ℓ(M)≤n M (1.2) which implies ℓ(g(n)) ≤ n (1.3)
and for all positive integers n, M ℓ(M ) ≤ n =⇒ M ≤ g(n) ⇐⇒ M > g(n) =⇒ ℓ(M ) > n.

(1.4) P. Erdős and P. Turán proved in [START_REF] Erdős | On some problems of a statistical group theory, IV[END_REF] that M is the order of some element of S n ⇐⇒ ℓ(M ) ≤ n.

(1.5) E. Landau also proved in [START_REF] Landau | Über die Maximalordnung der Permutationen gegebenen Grades[END_REF] that log g(n) ∼ n log n, n → ∞. (1.6) This asymptotic estimate was improved by S. M. Shah [START_REF] Shah | An inequality for the arithmetical function g(x)[END_REF] and M. Szalay [START_REF] Szalay | On the maximal order in S n and S * n[END_REF]; in [START_REF] Massias | Evaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique[END_REF], it is shown that

log g(n) = Li -1 (n) + O( √ n exp(-a log n)) (1.7)
for some a > 0; Li -1 denotes the inverse function of the integral logarithm. The survey paper [START_REF] Miller | The Maximal Order of an Element of a Finite Symmetric Group[END_REF] of W. Miller is a nice introduction to g(n); it contains elegant and simple proofs of (1.2), (1.5) and (1.6).

J.-P. Massias proved in [START_REF] Massias | Majoration explicite de l'ordre maximum d'un élément du groupe symétrique[END_REF] that for n ≥ 1 log g(n) ≤ log g(1319366)

1319366 log(1319366) n log n ≈ 1.05313 n log n.

(1.8)

In [START_REF] Massias | Effective Bounds for the Maximal Order of an Element in the Symmetric Group[END_REF] more accurate effective results are given, including log g(n) ≥ n log n, n ≥ 906 (1.9) and log g(n) ≤ n log n 1 + log log n -0.975 2 log n , n ≥ 4.

(1.10)

Let P + (g(n)) denote the greatest prime factor of g(n). In [START_REF] Grantham | The largest prime dividing the maximal order of an element of S n[END_REF], J. Grantham proved P + (g(n)) ≤ 1.328 n log n, n ≥ 5.

(1.11) Some other functions similar to g(n) were studied in [START_REF] Gerlach | Über die Elemente einer Menge verallgemeinerter ganzer Zahlen, die klein sind bezüglich einer auf dieser Menge definierten reellwertigen Abbildung[END_REF], [START_REF] Levitt | On the Maximum Order of Torsion Elements in GL(n, Z) and Aut(F n )[END_REF], [START_REF] Nicolas | Comparaison des ordres maximaux dans les groupes S n et GL(n, Z)[END_REF], [START_REF] Szalay | On the maximal order in S n and S * n[END_REF] and [START_REF] Vitányi | On the size of DOL languages[END_REF].

Computing Landau's function

A table of Landau's function up to 300 is given at the end of [START_REF] Nicolas | Ordre maximal d'un élément du groupe des permutations et highly composite numbers[END_REF]. It has been computed with the algorithm described and used in [START_REF] Nicolas | Calcul de l'ordre maximum d'un élément du groupe symétrique S n[END_REF] to compute g(n) up to 8000. By using similar algorithms, a table up to 32000 is given in [START_REF] Morain | Table de g(n) pour 1 ≤ n ≤ 32000, internal document[END_REF], and a table up to 500000 is mentioned in [START_REF] Grantham | The largest prime dividing the maximal order of an element of S n[END_REF]. The algorithm given in [START_REF] Nicolas | Calcul de l'ordre maximum d'un élément du groupe symétrique S n[END_REF] will be referred in this paper as the basic algorithm. We shall recall it in Section 2. It can be used to compute g(n) for n up to, say, one million, eventually a little more. It cannot compute g(n) without calculating simultaneously g(n ′ ) for 1 ≤ n ′ ≤ n.

If we look at a table of g(n) for 31000 ≤ n ≤ 31999 (such a table can be easily built by using the Maple procedure given in Section 2), we observe three parts among the prime divisors of g(n). More precisely, let us set g(n) = p p αp , g (1) (n) = p≤17 p αp , g (2) (n) = 19≤p≤509 p αp , g (3) (n) = p>509 p αp ; the middle part g (2) (n) is constant (and equal to 19≤p≤509 p) for all n between 31000 and 31999, while the first part g (1) (n) takes only 18 values, and the third part g (3) (n) takes 92 values.

So, if n ′ is in the neighbourhood of n, g(n ′ )/g(n) is a fraction which is the product of a prefix (made of small primes) and a suffix (made of large primes).

The aim of this article is to make precise this remark to get an algorithm able to compute g(n) for some fixed n up to 10 15 .

The new algorithm

Let τ (n) = d | n 1 be the divisor function. To study highly composite numbers (that is the n's such that m < n implies τ (m) < τ (n)), S. Ramanujan (cf. [START_REF] Ramanujan | Highly composite numbers[END_REF][START_REF] Ramanujan | Highly composite numbers[END_REF][START_REF] Nicolas | On highly composite numbers, Ramanujan revisited[END_REF]) has introduced the superior highly composite numbers which maximize τ (n)/n ε for some ε > 0. This definition can be extended to function ℓ: N is said to be ℓ-superchampion if it minimizes ℓ(N )ρ log(N ) for some ρ > 0. These numbers will be discussed in Section 4: they are easy to compute and have the property that, if n = ℓ(N ), then g(n) = N .

If N minimizes ℓ(N )ρ log(N ), we call benefit of an integer M the nonnegative quantity ben (M ) = ℓ(M )ℓ(N )ρ log(M/N ). If n is not too far from ℓ(N ), a relatively small bound can be obtained for ben g(n), and this allows computing it. This notion of benefit will be discussed in Section 6.

To compute g(n), the main steps of our algorithm are 1. Determine the two consecutive ℓ-superchampion numbers N and N ′ such that ℓ(N ) ≤ n < ℓ(N ′ ) and their common parameter ρ (cf. Section 5).

2. For a guessed value B ′ , determine a set D(B ′ ) of plain prefixes whose benefit is smaller than B ′ (cf. Section 7.1 and Section 7.2).

3. Use the set D(B ′ ) to compute an upper bound B such that ben g(n) ≤ ben g(n) + nℓ(g(n)) ≤ B (cf. Section 7.3); note that, from (1.3), ℓ(g(n)) ≤ n holds. 5. Compute a set containing the normalized prefix of g(n) (cf. Sections 7.7, 7.8 and 7.9).

6. Determine the suffix of g(n) by using the function G(p k , m) introduced in Section 1.4 and discussed in Sections 8 and 9.

In the sequel of our article, " step " will refer to one of the above six steps, and " the algorithm " will refer to the algorithm sketched in Section 1.3.

On the web site of the second author, there is a Maple code of this algorithm where each instruction is explained according with the notation of this article.

If we want to calculate g(n) for consecutive values n = n 1 , n = n 1 +1, . . . , n = n 2 , most of the operations of the algorithm are similar and can be put in common; however, due to some technical questions, it is more difficult to treat this problem, and here, we shall restrict ourselves to the computation of g(n) for one value of n.

To compute the first 5000 highly composite numbers, G. Robin (cf. [START_REF] Robin | Méthodes d'optimisation pour un problème de théorie des nombres, R.A.I[END_REF]) already used a notion of benefit similar to that introduced in this article.

The function G(p k , m)

In step 6, the computation of the suffix of g(n) leads to the function G(p k ,m), defined by Definition 1. Let p k be the k-th prime, for some k ≥ 3 and m an integer satisfying 0 ≤ m ≤ p k+1 -3. We define

G(p k , m) = max Q 1 Q 2 . . . Q s q 1 q 2 . . . q s (1.12)
where the maximum is taken over the primes

Q 1 , Q 2 , . . . , Q s , q 1 , q 2 , . . . , q s (s ≥ 0) satisfying 3 ≤ q s < q s-1 < . . . < q 1 ≤ p k < p k+1 ≤ Q 1 < Q 2 < . . . < Q s (1.13) and s i=1 (Q i -q i ) ≤ m. (1.14) This function G(p k , m) is interesting in itself. It satisfies ℓ(G(p k , m)) ≤ m. (1.15)
We study it in Section 8, where a combinatorial algorithm is given to compute its value when m is not too large. For m large, a better algorithm is given in Section 9.

Let us denote by µ 1 (n) < µ 2 (n) < . . . the increasing sequence of the primes which do not divide g(n), and by P (n) the largest prime factor of g(n). It is shown in [START_REF] Nicolas | Sur l'ordre maximum d'un élément dans le groupe S n des permutations[END_REF] that lim n→∞ P (n)/µ 1 (n) = 1. We may guess from Proposition 10 that µ 1 (n) can be much smaller than P (n) while µ 2 (n) is closer to P (n). It seems difficult to prove any result in this direction.

The running time

Though we have the feeling that the algorithm presented in this paper (and implemented in Maple) yields the value of g(n) for all n's up to 10 15 (and eventually for greater n's) in a reasonable time, it is not proved to do so. Indeed, we do not know how to get an effective upper bound for the benefit of g(n) (see sections 6, 7.3 and 11.1) and in the second and third steps, what we do is just, for a given n, to provide such an upper bound B = B(n) by an experimental way.

In the fourth step, the algorithm determines a set D(B) of plain prefixes (cf. sections 7.2 and 7.3). It turns out that the number ν(n) of these prefixes is rather small and experimentally satisfies ν(n) = O(n 0.3 ) (cf. (7.11)); but we do not know how to prove such a result, and it might exist some values of n for which ν(n) is much larger.

Let us now analyze each of the six steps described in Section 1.3. The first step determines the greatest superchampion number N such that ℓ(N ) ≤ n. Let S(x) = p≤x p be the sum of the primes up to x. The main part of this step is to compute S(x) for x close to √ n log n. In our Maple program, by Eratosthenes' sieve, we have precomputed a function close to S(x), the details are given in Section 5. However, a faster way exists to evaluate S(x). By extending Meissel's technique to compute π(x) = p≤x 1, (cf. [START_REF] Deléglise | Computing π(x): the Meissel, Lehmer, Lagarias, Miller, Odlyzko method[END_REF]), M. Deléglise is able to compute p≤x f (p) where f is a multiplicative function. E. Bach (cf. [START_REF] Bach | Sums over Primes[END_REF][START_REF] Bach | Computing prime harmonic sums[END_REF]) has considered a wider class of functions for which this method also works. By his algorithm, M. Deléglise has computed S(10 18 ), and S(x) costs O(x 2/3 / log 2 x). We hope to implement soon this new evaluation of S(x) in our first step.

The second and the fourth steps compute respectively D(B ′ ) and D(B). If B ′ is "well" chosen, we may hope that Card(D(B ′ )) is not much larger than ν(n) = Card(D(B)). The running time of the computation of D(B ′ ) as explained in Section 7.2 could be larger than ν(n). For n ≈ 10 20 , most of the time of the computation of g(n) is spent in the second and fourth steps. But any precise estimation of these steps seems unaccessible.

The running time of the third step is O(Card(D(B ′ ))), and we may hope that it is O(ν(n)).

In practice, the fifth step (finding the possible normalized prefixes) is fast. For every plain prefix π, Inequations (7.36) have at most one solution, and the cost of this step is O(ν(n)).

The sixth and last step also is fast. Under the strong assumption that δ 1 (p) is polynomial in log p (see (9.8)), for any m, the computation of G(p, m) (where p is a prime satisfying p ≈ √ n log n) is polynomial in log n, and the number of normalized prefixes surviving the fight (cf. Section 7.9) seems to be bounded (we have no examples of more than three of them), so that (see Section 7.8) this step might be polynomial in log n.

Plan of the paper

In Section 3, some mathematical lemmas are given. The various steps of the algorithm presented in Section 1.3 are explained in sections 4-9; Section 10 presents some results while Section 11 asks five open problems.

Notation

We denote by P = {2, 3, 5, 7, . . .} the set of primes, by p ∈ P a generic prime, by p i the i-th prime and by v p (N ) the p-adic valuation of N , that is the greatest integer α such that p α divides N . Q i and q i also denote primes, except in Lemma 1 which is stated in a more general form, but which is used with Q i and q i primes. The integral part of a real number t is denoted by ⌊t⌋. The additive function ℓ can be easily extended to a rational number by setting ℓ(A/B) = ℓ(A)ℓ(B) (with A and B coprime).

The basic algorithm 2.1 The first version

For j ≥ 0, let us denote by S j the set of numbers having only p 1 , p 2 , . . . , p j as prime divisors

S j = {M ; p | M =⇒ p ≤ p j }. (2.1)
We have S 0 = {1}, S 1 = {1, 2, 4, 8, 16, . . .}. The algorithm described in [START_REF] Nicolas | Calcul de l'ordre maximum d'un élément du groupe symétrique S n[END_REF] computes the functions

g j (n) = max M∈Sj , ℓ(M)≤n M (2.2)
which obviously satisfy the induction relation

g j (n) = max g j-1 (n), p j g j-1 (n -p j ), . . . , p k j g j-1 (n -p k j ) (2.3)
where k is the largest integer such that p k j ≤ n, and g 0 (n) = 1 for all n ≥ 0. Using the upper bound (1.11), we write the following Maple procedure: Algorithm 1: The basic algorithm: this Maple procedure computes g(n) for 0 ≤ n ≤ N and stores the results in table g.

gden:= proc(N) local n, g, pmax, p, k, a for n from 0 to N do g[n] := 1 endo; pmax := f loor(1.328 ⋆ eval(sqrt(N ⋆ log N ))); p := 2; while p ≤ pmax do for n from N to p by -1 do for k from 1 while

p k ≤ n do a := p k ⋆ g[n -p k ]; if g[n] < a then g[n] := a end if endo endo; p:=nextprime(p) end while; end;
The running time of this procedure is 13 hours for N = 10 6 on a 3 Ghz Pentium 4 with a storage of 337 Mo. To compute g

(n), 1 ≤ n ≤ N , the theoretical running time is O N 3/2 / √ log N and the needed memory is O(N ) integers of size exp(O( √ N log N )).

The merging and pruning algorithm

The above algorithm takes a very long time to compute g j (n) when j is small. It is better to represent (g j (n)) n≥1 by a list [START_REF] Bach | Computing prime harmonic sums[END_REF][START_REF] Bach | Computing prime harmonic sums[END_REF], [START_REF] Cramér | On the order of magnitude of the difference between consecutive prime numbers[END_REF][START_REF] Cramér | On the order of magnitude of the difference between consecutive prime numbers[END_REF], [START_REF] Grantham | The largest prime dividing the maximal order of an element of S n[END_REF][START_REF] Grantham | The largest prime dividing the maximal order of an element of S n[END_REF], . . .].

L j = [[M 1 , l 1 ], . . . , [M i , l i ], . . .] (where l i = ℓ(M i )) ordered so that M i+1 > M i and l i+1 > l i . If l i ≤ n < l i+1 , then g j (n) = M i . So, L 0 = [[1, 0]] and L 1 = [[1, 0],
To calculate L j+1 from L j we construct the list of all elements [M i p a j+1 , l i + ℓ(p a j+1 )] for all elements [M i , l i ] ∈ L j and a ≥ 0 such that l i + ℓ(p a j+1 ) ≤ N . We sort this new list with respect to the first term of the elements (merge sort is here specially recommended) to get a list Λ

= [[K 1 , λ 1 ], [K 2 , λ 2 ], . . .] with K 1 < K 2 < . . . Now, to take (2.
3) into account, we have to prune the list Λ: if K r < K s and λ r ≥ λ s , we take off the element [K r , λ r ] from the list Λ. The list L j+1 will be the pruned list of Λ.

Two lemmas

Lemma 1. Let s be a non-negative integer, and t 1 , q 1 , q 2 , . . . , q s , Q 1 , Q 2 , . . . , Q s be real numbers satisfying

0 < t 1 ≤ q s < q s-1 < . . . < q 1 < Q 1 < Q 2 < . . . < Q s .
(3.1)

If we set S = s i=1 Q i -q i ,
then the following inequality holds:

1. Q 1 Q 2 . . . Q s q 1 q 2 . . . q s ≤ exp S t 1 . Moreover, if s ≥ 1 and S < Q 1 , we have 2. Q 1 Q 2 . . . Q s q 1 q 2 . . . q s ≤ Q s Q s -S < Q s-1 Q s-1 -S < . . . < Q 1 Q 1 -S
with the first inequality in 2. strict when s ≥ 2.

Proof. Lemma 1 is a slight improvement of Lemma 3 of [START_REF] Nicolas | Ordre maximal d'un élément du groupe des permutations et highly composite numbers[END_REF] where, in 2., only the upper bound Q 1 /(Q 1 -S) was given. Point 1. is easy by applying 1 + u ≤ exp u to u = Q i /q i -1. Let us prove 2. by induction. For s = 1, 2. is an equality. Let us assume that s ≥ 2. Setting S ′ = s i=2 Q iq i = S -(Q 1q 1 ), we have S ′ < S < Q 1 < Q s and by induction hypothesis, we get

Q 1 Q 2 . . . Q s q 1 q 2 . . . q s = Q 1 q 1 Q 2 . . . Q s q 2 . . . q s ≤ Q 1 q 1 Q s Q s -S ′ • (3.2)
We shall use the following principle:

Principle 1. If x and y add to a constant, the product xy decreases when |y -x| increases.

We have Q s -S ′ ≤ Q s -(Q s -q s ) = q s < q 1 ,
and using Principle 1, we get by increasing q 1 to Q 1 and decreasing 

Q s -S ′ to Q s -S q 1 (Q s -S ′ ) > Q 1 (Q s -S)
ℓ(M ) -ρ log M ≥ ℓ(N ) -ρ log N. (4.1) 
When this is the case, we say that N is a ℓ-superchampion associated to ρ.

Geometrically, if we represent log M in abscissa and ℓ(M ) in ordinate, the straight line of slope ρ going through the point (log M, ℓ(M )) has an intersep equal to ℓ(M )ρ log(M ) and so, the superchampion numbers are the vertices of the convex envelop of all these points (see Fig. 1).

Similar numbers, the so-called superior highly composite numbers were first introduced by S. Ramanujan (cf. [START_REF] Ramanujan | Highly composite numbers[END_REF]). The ℓ-superchampion numbers were already used in [START_REF] Nicolas | Sur l'ordre maximum d'un élément dans le groupe S n des permutations[END_REF][START_REF] Nicolas | Ordre maximal d'un élément du groupe des permutations et highly composite numbers[END_REF][START_REF] Massias | Majoration explicite de l'ordre maximum d'un élément du groupe symétrique[END_REF][START_REF] Massias | Evaluation asymptotique de l'ordre maximum d'un élément du groupe symétrique[END_REF][START_REF] Massias | Effective Bounds for the Maximal Order of an Element in the Symmetric Group[END_REF][START_REF] Nicolas | On Landau's function g(n), The Mathematics of Paul Erdős[END_REF][START_REF] Nicolas | Comparaison des ordres maximaux dans les groupes S n et GL(n, Z)[END_REF]. The first ones are (with, in the third column, the corresponding values of ρ) shown in Fig. 2. Lemma 3. If N is an ℓ-superchampion, the following property holds:

N = g(ℓ(N )). (4.2)
Proof. Indeed, let N be any positive number and n = ℓ(N ); it follows from (1.4) that N ≤ g(n) = g(ℓ(N )). If moreover N is a ℓ-superchampion, then, for all M such that ℓ(M ) ≤ n = ℓ(N ), from (4.1), we have 

ρ log M ≤ ρ log N + ℓ(M ) - ℓ(N ) ≤ ρ log N which implies M ≤ N ,

And we define

E ′ = p∈P E ′ p , E ′′ = p∈P E ′′ p and E = E ′ ∪ E ′′ . (4.4) 
Remark: Note that all the elements of E p are distinct at the exception, for p = 2, of 2 log 2 = 2 2 -2 log 2 and that, for p = q, E p ∩ E q = ∅ holds.

Lemma 4. Let ρ a real number.

1. If ρ ∈ E p , ρ = 2 log 2 , there exist exactly 2 superchampion numbers associated to ρ. Let be N ρ the smaller one and N + ρ the bigger one. Then N + ρ = pN ρ and

N ρ = p/ log p <ρ p αp with α p =          1 if p log p < ρ ≤ p 2 -p log p i if p i -p i-1 log p < ρ ≤ p i+1 -p i log p (4.5) N + ρ = p/ log p ≤ρ p α + p with α + p =          1 if p log p ≤ ρ < p 2 -p log p i if p i -p i-1 log p ≤ ρ < p i+1 -p i log p (4.6) 2. If ρ = 2 log 2 = 2 2 -2 log 2
∈ E, there exist 3 superchampion numbers associated to ρ: N ρ defined by (4.5) is equal to 3, N + ρ defined by (4.6) is equal to 12 and the third one is 6.

3. If ρ ∈ E, there exists a unique superchampion number N ρ = N + ρ associated to ρ. Its value is given by both formulas (4.5) and (4.6). Let ρ ′ and ρ ′′ be the two consecutive elements of E such that ρ ′ < ρ < ρ ′′ . Then we have

N ρ = N ρ ′′ = N + ρ ′ .
4. Let us consider the sequence ρ (i) defined by 2) , ρ (4) = 5/ log 5 and such that 4) = 60, etc... is the increasing sequence of all superchampion numbers, it satisfies:

ρ (0) = -∞, ρ (1) = 3/ log 3, ρ (2) = 2/ log 2, ρ (3) = (2 2 -2 1 )/ log 2 = ρ (
ρ (i) , i ≥ 1 = E and ρ (i) > ρ (i-1) for i ≥ 4. If N (0) = 1, N (1) = 3, N (2) = 6, N (3) = 12, N ( 
(i) For i ≥ 0, N (i) divides N (i+1) and the quotient N (i+1) /N (i) is a prime number. The number of prime factors of N (i) , counting them with multiplicity, is equal to i.

(ii) For i = 2, we have

N (i) = N + ρ (i) = N ρ (i+1)
where N + ρ (i) and N ρ (i+1) are defined respectively in (4.5) and (4.6).

(iii) For all i ≥ 0, N (i) is associated to ρ if and only if ρ (i) ≤ ρ ≤ ρ (i+1) . (iv) If i = 1 (i.e., N (i) = 3), then v p (N (i) ) is a non-increasing function of the prime p.
Proof. We are looking for an N = p αp which minimizes

F (N ) = ℓ(N ) - ρ log N . An arithmetic function h is said additive if h(M 1 M 2 ) = h(M 1 ) + h(M 2 )
when M 1 and M 2 are coprime. The functions log and ℓ are additive. Thus F is additive, and to minimize F (N ) = p | N F (p vp(N ) ) we have to minimize F (p α ) on α for each p ∈ P. We have F (1) = 0 and for p prime and i ≥ 1,

F (p i ) = p i -ρ i log p. The difference F (p i+1 ) -F (p i ) =    p -ρ log p if i = 0 p i (p -1) -ρ log p if i > 0 (4.7)
is a non decreasing function of i that tends to +∞ with i. Thus if

F (p) = F (p)-F (0) = p-ρ log p > 0, the smallest value of F (p α ) is 0 obtained for α = 0. If F (p) ≤ 0 let i be the largest positive integer such that F (p i ) -F (p i-1 ) ≤ 0. Then the smallest value of F (p α ) is obtained on the set j ≤ i | F (p j ) = F (p i )
and the number of choices for α p is the cardinal of this set. This proves that we have more than one choice for the exponent α p if and only if there exists i ≥ 0 such that F (p i ) = F (p i+1 ). Due to (4.7) this is the case if and only if ρ ∈ E p . Moreover, the sets E p being disjoint, there exists at most one p for which there are more than one choice for α p .

If p ≥ 3 we have p < (p 2p) < (p 3p 2 ) < • • • and there is at most one i such that F (p i+1 ) -F (p i ) = 0, so there are at most two choices for α p .

For

p = 2 we have 2 = 2 2 -2 < 2 3 -2 2 < • • • and for ρ = 2/ log 2 we have F (1) = F (2) = F (2 2
), so we can choose for α 2 every one of the three values . This proves 1., 2., 3. and 4.; for more details, see [START_REF] Nicolas | Ordre maximal d'un élément du groupe des permutations et highly composite numbers[END_REF].

N ℓ(N ) 1 0 -∞ < ρ ≤ 3/ log 3 ≈ 2.73 3 3 3/ log 3 ≤ ρ ≤ 2/ log 2 ≈ 2.89 6 5 ρ = (2 2 -2 1 )
Lemma 5. Let ρ satisfy ρ ≥ 5/ log 5 ≈ 3.11. There exists a unique decreasing sequence (x j ) = (x j (ρ)) such that x 1 ≥ exp(1) and, for all j ≥ 2, x j satisfies x j > 1 and

x j j -x j-1 j log x j = x 1 log x 1 = ρ. (4.8) 
We have also

x 1 ≥ 5 and x 2 > 2. ( 4.9) 
Proof. The uniqueness of x 1 results from ρ > exp(1) and the fact that t → t/ log t is an increasing bijection of [exp(1), +∞[. The uniqueness of x j for j ≥ 2 comes from the fact that t → (t jt j-1 )/ log t = t j-1 (t -1)/ log t is an increasing bijection of ]1, +∞[. The inequality x j > x j+1 for j ≥ 2 comes from the increase of j → (t jt j-1 )/ log t for each t > 1.

Let us prove that x 1 > x 2 . The definition (4.8) of x 2 implies

x 2 2 -x 2 log x 2 = ρ > 2 log 2 = 2 2 -2 log 2 ≈ 2.89 .
With the increase of t → (t 2t)/ log t this proves x 2 > 2. Thus x 2 2x 2 > x 2 , and therefore

x 2 log x 2 < x 2 2 -x 2 log x 2 = ρ = x 1 log x 1 which, with the increase of t → t/ log t on [exp(1), +∞[ yields x 2 > x 1 and the decrease of (x n ). Finally x 1 / log x 1 = ρ ≥ 5/ log 5 gives x 1 ≥ 5.
Proposition 1. Let ρ be a real number satisfying ρ ≥ 5/ log 5, N ρ the smallest superchampion number associated to ρ and N + ρ the largest superchampion number associated to ρ (cf. Lemma 4). Then, with x j as introduced in Lemma 5, we have 

N ρ = j≥1 xj+1≤p<xj p j and N + ρ = j≥1 xj+1<p≤xj p j . (4.10) i T [i].q T [i].j T [i].p T [i].
p i -p i-1 log p < x i i -x i-1 i log x i and x i+1 i+1 -x i i+1 log x i+1 ≤ p i+1 -p i log p or x i+1 ≤ p < x i .
This proves the first equality (4.10). The second one can be proved by the same way.

5 First step of the computation of g(n): getting ρ, N, N ′ .

Fixing our notation

When ρ = 5/ log 5 we have N ρ = 12 and ℓ(N ρ ) = 7 (see Fig. 2).

Definition 4. From now on, n ≥ 7 will be a fixed integer, and our purpose is to compute g(n). We will denote by ρ the unique real number ρ ∈ E such that ρ ≥ 5/ log 5 and ℓ(N ρ ) ≤ n < ℓ(N + ρ ).

(5.1)

We will also fix the following notation.

1. N = N ρ , N ′ = N + ρ and N = p p αp is the standard factorization of N .
2. We define x 1 = x 1 (ρ) ≥ 5 and x 2 = x 2 (ρ) > 2 by (4.8).

3. Let p k be the largest prime factor of N = N ρ . It follows from (4.10) that

p k < x 1 ≤ p k+1 (5.2)
and, actually,

x 1 = p k+1 unless ρ ∈ E ′′ (in this case p k < x 1 < p k+1 ).
4. Let us define B 1 by

B 1 = min x 2 2 -2x 2 , x 1 2 - √ x 1 > 0. (5.3) We have 2 < x 2 < √ x 1 < ρ < x 1 . (5.4) 
Let us prove (5.4). Inequalities (4.9) give 2

< x 2 . With Lemma 2, Point 2., it yields x 2 < √ x 1 . Since for all t > 1, √ t/ log t > e/2 > 1 we have √ x 1 / log x 1 > 1 and thus ρ = x 1 / log x 1 > √ x 1 .

The superchampion algorithm

Given n, as already said, the first step in our computation of g(n) is to calculate ρ, N, N ′ , x 1 , x 2 , p k , B 1 as introduced in Definition 4. We begin by precomputing in increasing order the first elements of E ′′ and stop when we get the first r ∈ E ′′ such that ℓ(N + r ) > 10 15 . We get a set E 2 with 1360 elements,

E 2 = 2 2 -2 log 2 , 3 2 -3 log 3 , 2 3 -2 2 log 2 , • • • .
We construct a table T , indexed from 1 to card(E 2 ) = 1360. Let r = (q j+1q j )/ log q the i th element of E 2 . Then T [i] = [q, j, p, l] where l = ℓ(N + r ) and p is the largest prime p such that p/ log p < r. The superchampions following N + r are obtained by multiplying it successively by the primes following p. Figure 3 Let M = p p βp be the standard factorization of M . We define

i := the largest index such that T [i].ℓ ≤ n. ℓ ′ := T [i + 1].ℓ, q ′ = T [i + 1].q, j ′ = T [i + 1].j. {r ′ = (q ′ j ′ -q ′ (j ′ -1) )/ log q ′ is the smallest element in E 2 such that ℓ(N r ′ ) > n} t := ℓ ′ -q ′(j ′ -1) (q ′ -1); {This is the value ℓ(N ) of the superchampion N preceding N + r } if t ≤ n then ρ := r ′ else n 0 := T [i].ℓ + nextprime(T [i].
ben p (M ) = ℓ(p βp ) -ℓ(p αp ) -ρ(β p -α p ) log p ≥ 0, (6.2) 
which implies ben (M ) = p ben p (M ). (

Geometrically, if we represent log M in abscissa and ℓ(M ) in ordinate, the straight line of slope ρ going through the point (log M, ℓ(M )) cuts the y axis at the ordinate y M = ℓ(M )-ρ log(M ) and so, the benefit is the difference y My N (see Fig. 4). Note that 

ρ = ℓ(N ′ ) -ℓ(N ) log N ′ -log N with N = N ρ and N ′ = N + ρ .

ben (N/p

γ ) = ργ log p + ℓ(p α-γ ) -ℓ(p α ) is non-decreasing for 0 ≤ γ ≤ α. Proof. 1. If γ + α ≥ 1, we have ben (p γ+1 N ) -ben (p γ N ) = log p p γ p α+1 -p α log p -ρ
which is non-negative from (4.5) and tends to infinity with γ.

If α = γ = 0, we have ben (pN )ben (N ) = log p(p/ log pρ) which is also non-negative from (4.5). Lemma 7. Let U/V be an irreducible fraction such that V divides N (as fixed in Definition 4) and

U = U 1 U 2 , V = V 1 V 2 with (U 1 , U 2 ) = (V 1 , V 2 ) = 1. Then we have 1. ℓ U N V -ℓ(N ) = ℓ U 1 N V 1 -ℓ(N ) + ℓ U 2 N V 2 -ℓ(N ). (6.4) 2. ben U N V = ben U 1 N V 1 + ben U 2 N V 2 • (6.5)
Proof. Observing that a prime p divides at most one of the four numbers (6.4). By the additivity of the logarithm, (6.5) follows.

U 1 , U 2 , V 1 , V 2 we get
The following proposition will be useful in the sequel.

Proposition 2. Let M be a positive integer such that ℓ(M ) ≤ n (thus, from

(1.4), M ≤ g(n) holds). Then, ben g(n) ≤ ben M + ℓ(g(n)) -ℓ(M ) and ben g(n) ≤ ben g(n) + n -ℓ(g(n)) ≤ ben M + n -ℓ(M ). (6.6)
Proof. From (6.1), we have ben

g(n) -ben M = ℓ(g(n)) -ℓ(M ) -ρ log g(n) M ≤ ℓ(g(n)) -ℓ(M )
which implies the first inequality while the second one follows from (1.3).

We shall use Proposition 2 to determine an upper bound B such that

ben g(n) ≤ ben g(n) + n -ℓ(g(n)) ≤ B. (6.7) 
It has been proved in [START_REF] Massias | Effective Bounds for the Maximal Order of an Element in the Symmetric Group[END_REF] that B ≤ x 1 and

B = O x 1 log x 1 = O(ρ), (6.8) 
and, by the method of [START_REF] Nicolas | Champion numbers for the number of representations as a sum of six squares[END_REF], it is possible to show that B = o(ρ). The largest quotient (ben g(n)+ n-ℓ(g(n)))/ρ that we have found up to n = 10 12 is 1.60153 for n = 45055780.

The benefit of large primes

Proposition 3. Let N, B 1 , x 1 and x 2 as in Definition 4. If M is an integer satisfying ben (M ) = ℓ(M ) -ℓ(N ) -ρ log(M/N ) < B 1 , we have 1. if √ x 1 ≤ p then v p (M ) ≤ 1 2. if x 2 ≤ p < √ x 1 then v p (M ) ≤ 2.
Proof.

1. Let us assume that the prime p satisfies p ≥ √ x 1 and divides M with exponent k ≥ 2. With (5.4), we have p > x 2 and, from (4.10), the exponent α p of p in N = N ρ is 0 or 1. If α p = 1, from (6.2) and (4.5) we have ben

p (M ) = p k -p -ρ(k -1) log p = log p k i=2 p i -p i-1 log p -ρ ≥ log p p 2 -p log p -ρ = p 2 -p -ρ log p (6.9) while, if α p = 0, ben p M = p k -ρ k log p = log p p log p -ρ + k i=2 p i -p i-1 log p -ρ ≥ log p p 2 -p log p -ρ = p 2 -p -ρ log p.
So, in both cases, (6.3) and (6.2) yield ben M ≥ ben p M ≥ f (p) with f (t) = t 2tρ log t. We have f ′ (t) = 2t -1ρ/t, f ′′ (t) > 0 and, as x 2 > 2 holds, (4.8) implies

f ′ (x 2 ) = 2x 2 -1 - x 2 -1 log x 2 ≥ x 2 2 - 1 log x 2 -1 ≥ 2 2 - 1 log 2 -1 > 0 and f (t) is increasing for t ≥ x 2 . Thus, since p ≥ √ x 1 , ben M ≥ f (p) ≥ f ( √ x 1 ) = x 1 - √ x 1 - x 1 log x 1 log √ x 1 = x 1 2 - √ x 1 ≥ B 1
in contradiction with our hypothesis, and 1. is proved.

2. Let p satisfy 2 < x 2 ≤ p < √ x 1 so that, from (4.10), α p = v p (N ) = 1; let us assume that k = v p (M ) ≥ 3; one would have as in (6.9

) ben M ≥ log p k i=2 p i -p i-1 log p -ρ ≥ p 3 -p 2 -ρ log p. The function f (t) = t 3 -t 2 -ρ log t is easily shown to be increasing for t ≥ x 2 . From (4.8), f (x 2 ) = x 3 2 -x 2 2 -(x 2 2 -x 2 ) and thus ben M ≥ x 3 2 -x 2 2 -(x 2 2 -x 2 ) = x 2 (x 2 2 -2x 2 + 1) > x 2 2 -2x 2 . From (5.
3), it follows that ben M > B 1 holds, in contradiction with our hypothesis, and 2. is proved.

Prefixes

7.1 Plain prefixes and suffixes Definition 6. Let j be a positive integer.

1. For every positive integer M let us define the fraction

π (j) (M ) = p≤pj p vp(M)-vp(N ) = p≤pj p vp(M)-αp (7.1)
and call π (j) (M ) the j-prefix of M .

2. We note T j , and call it the set of j-prefixes, the set of fractions

T j =    δ = p≤pj p zp ; z p ≥ -α p    . (7.2)
3. For B ′ ≥ 0, we define Let us show that, for each j such that p j < √ x 1 , we have ben (N π (1) (M )) ≤ . . . ≤ ben (N π (j) (M )) ≤ . . . ≤ ben (N π(M )) ≤ ben M. (7.6) Indeed, (6.3) yields ben (N π (j) ) = i≤j ben pi M and ben M = p ben p M , which implies (7.6), since, by (6.2), ben p M is non-negative.

T j (B ′ ) = {δ ∈ T j ; ben (N δ) ≤ B ′ } . ( 7 
Definition 8. From now on, we shall note

π (j) = π (j) (g(n)), π = π(g(n)), ξ = ξ(g(n)) (7.7) 
so that g(n) = N πξ and our work is to compute π and ξ.

Note that π and ξ are coprime and (6.5) implies ben g(n) = ben (N πξ) = ben (N π) + ben (N ξ). (7.8) Lemma 8. Let j be a positive integer and δ 1 < δ 2 be two elements of T j satisfying ℓ δ 2 N ≤ ℓ δ 1 N . (7.9)

Then, δ 1 is not the j-prefix of g(n) ; in other words, π (j) = δ 1 .

Proof.

If δ 1 = π (j) , equation g(n) = N πξ may be written g(n) = N δ 1 π π (j) ξ. Set M = N δ 2 π π (j) ξ = (δ 2 /δ 1 )g(n)
. From (6.4), (7.9) and (1.3), we get

ℓ(M ) = ℓ δ 2 N + ℓ N π π (j) + ℓ(N ξ) -2ℓ(N ) ≤ ℓ δ 1 N + ℓ N π π (j) + ℓ(N ξ) -2ℓ(N ) = ℓ(g(n)) ≤ n which, from (1.4), implies M ≤ g(n)
and therefore δ 2 ≤ δ 1 , in contradiction with our hypothesis. Note that our hypothesis implies ben (δ 2 N ) < ben (δ 1 N ).

Computing plain prefixes

Let us suppose that we know an upper bound B such that (6.7) holds. Then from (7.6) and (6.7), for every j such that p j < √ x 1 , ben (N π (j) ) ≤ B holds. Let p j1 be the largest prime less than

√ x 1 . Then π = π (j1) (g(n)) is an element of T j1 (B).
But, we are faced to 2 problems: First, for the moment, we do not know B. Secondly, for a given value B ′ , the sets T j (B ′ ) are too large to be computed efficiently.

What we can do is the following. Let B ′ < B 1 . We shall construct two non-decreasing sequences of sets U j = U j (B ′ ) and D j = D j (B ′ ) with D j ⊂ U j ⊂ T j (B ′ ) satisfying the following property: D j contains the j-prefix π (j) of g(n), provided that ben g(n) ≤ B ′ holds.

These sequences are defined by the following induction rule. The only element of T 0 is 1. We set U 0 = D 0 = {1}. And, for j ≥ 1,

• We define U j = δp γ j | δ ∈ D j-1 , γ ≥ -α pj and ben (N δp γ j ) ≤ B ′ . • By lemma 8, if δ 1 ∈ U j and if there is a δ 2 in U j such that δ 1 < δ 2 and ℓ(N δ 1 ) ≥ ℓ(N δ 2 )
, then δ 1 is not the j-prefix of g(n). The set D j is U j from which are removed these δ 1 's. In other words, D j will be the pruned set of U j (see Section 2.2).

For each δ in D j-1 , δp γ j belongs to U j if γ ≥ -α pj and ben (N δp γ j ) ≤ B ′ which, according to (6.5), can be rewritten as ben (N p γ j ) ≤ B ′ben (N δ).

It results from Lemma 6 that ben (N p γ j ) is non-increasing for -α pj ≤ γ ≤ 0, non-decreasing for γ ≥ 0, vanishes for γ = 0 and tends to infinity with γ. Therefore the solutions in γ of (7.10) form a finite interval containing 0.

Thanks to (7.6), by induction on j, it can be seen that if ben g(n) ≤ B ′ , the j-prefix π (j) of g(n) belongs to U j and also to D j , by Lemma 8.

We set D(B ′ ) = D j1 (B ′ ) and since π = π j1 , D(B ′ ) contains the plain prefix π of g(n), provided that ben g(n) ≤ B ′ holds.

This construction solves our second problem: at each step of the induction, the pruning algorithm makes D j (B ′ ) smaller than U j (B ′ ), and as we progress, D j (B ′ ) becomes much smaller than T j (B ′ ).

Computing B, an upper bound for the benefit

It remains to find an upper bound B such that (6.7) holds. The key is Proposition 2. Every M such that ℓ(M ) ≤ n gives an upper bound for ben g(n

) + n - ℓ(g(n)): ben g(n) ≤ ben g(n) + n -ℓ(g(n)) ≤ ben M + n -ℓ(M ).
We choose some B ′ , a provisional value of B satisfying1 B ′ < B 1 . Then we compute the set D = D(B ′ ), and by using the prefixes belonging to this set we shall construct an integer M to which we apply Proposition 2.

Let us recall that p k denotes the greatest prime dividing N . To an element δ ∈ D(B ′ ) and to an integer ω, we associate

δ ω =      δp k+1 p k+2 . . . p k+ω if ω > 0 δ if ω = 0 δ/(p k p k-1 . . . p k+ω+1 ) if ω < 0 and p k+ω+1 ≥ √ x 1 .
From the definition of prefixes, the prime factors of both the numerator and the denominator of δ ∈ D(B ′ ) are smaller than √ x 1 , and thus smaller than the primes dividing the numerator or the denominator of δ ω /δ.

First, to each δ ∈ D, let ω = ω(δ) be the greatest integer such that ℓ N δ ω ≤ n (if there is no such ω(δ), we just forget this δ). We call δ (0) an element of D which minimizes ben N δ

(0) ω + n -ℓ N δ (0) ω and set M = N δ (0)
ω . From the construction of M , we have ℓ(M ) ≤ n. By Proposition 2, inequality (6.7) is satisfied with B = ben M + nℓ(M ).

If B ≤ B ′ , we stop and keep B; otherwise we start again with B instead of B ′ to eventually obtain a better bound.

For n = 1000064448, the value of ρ defined by ( 5 In this example, if our first choice for B ′ is 0.6ρ, we find B = 1.104ρ. Starting again the algorithm with B ′ = 1.104ρ, we get the slightly better value B = 1.055ρ.

The value of B given by this method is reasonable and less than 10% more than the best possible one: for n = 1000366, we find B ≈ 436.04 while ben (g(n) + nℓ(g(n)) ≈ 406.1; for n = 1000064448, these two numbers are 13361.6 and 13285.7.

How many plain prefixes are there?

Let us denote by B = B(n) the upper bound satisfying (6.7) as computed in Section 7.3. Let us call n the integer in the range ℓ(N )..ℓ(N ′ ) -1 such that B( n) is maximal.

Let us denote by ν = ν(n) the number of possible plain prefixes as obtained by the algorithm described in Section 7.2. Actually, this number ν depends on B = B(n) and we may think that it is a non-decreasing function on B so that the maximal number of prefixes used to compute g(m) for ℓ(N ) ≤ m < ℓ(N ′ ) should be equal to ν( n).

For the powers of 10, the table of Fig. 5 displays n, n, the quotient of the maximal benefit B( n) by ρ, the maximal number of plain prefixes ν( n) and the exponent log ν( n)/ log n. Note that replacing log n by log n will not change very much this exponent, since with the notation of Definition 4, we have

| n -n| ≤ ℓ(N ′ ) -ℓ(N ) ≤ p k+1
√ n log n. The behaviour of ν( n) looks regular and allows to think that 

ν( n) = O(n 0.3 ). (7.11) ν( n) = # of exponent = n n B( n)/ρ

For ben (M) small, prime factors of ξ(M) are large

If the number B computed as explained in Section 7.3 is greater than B 1 our algorithm fails. Fortunately, we have not yet found any n ≥ 166 for which that bad event occurs.

Proposition 4. If B is computed as explained in Section 7.3 (so that (6.7) holds) and satisfies B < B 1 (where B 1 is defined in (5.3)) then, in view of (5.4), there exists a unique real number t 1 such that

2 < x 2 < √ x 1 < ρ = x 1 log x 1 < t 1 < x 1 (7.12) and ρ log t 1 -t 1 = B. (7.13) 
Further, if ben M ≤ B, we have

1. If x 2 ≤ p < t 1 then v p (M ) ≥ 1 = v p (N ). 2. If x 2 ≤ p < √ x 1 then v p (M ) ∈ {1, 2} and v p (N ) = 1. 3. If √ x 1 ≤ p < t 1 then v p (M ) = v p (N ) = 1. 4. If t 1 ≤ p < x 1 then v p (M ) ∈ {0, 1} and v p (N ) = 1. 5. If x 1 ≤ p then v p (M ) ∈ {0, 1} and v p (N ) = 0.
Proof. The function f (t) = ρ log tt is increasing on [x 2 , ρ] and decreasing on [ρ, x 1 ]. From (4.8) and ( 5.3) we have

f (ρ) > f (x 2 ) = x 2 2 -x 2 log x 2 log x 2 -x 2 = x 2 2 -2x 2 ≥ B 1 > B > 0 = f (x 1 )
which gives the existence and unicity of t 1 , which belongs to (ρ, x 1 ). Now we prove points 1,2,3,4,5.

Let p be a prime number satisfying x 2 ≤ p < t 1 . If p does not divide M , from (6.3) and (6.2) we have ben

M ≥ ben p M = ρ log p -p = f (p) > f (t 1 ) = B.
Since ben M ≤ B is supposed to hold, there is a contradiction and 1 is proved.

Since we have assumed that B < B 1 holds, Proposition 3 may be applied. Point 2. follows from point 1. and from item 2. of Proposition 3, while point 3. follows from point 1. and from item 1. of Proposition 3. Finally, points 4. and 5. are implied by item 1. of Proposition 3.

Corollary 1. Let us assume that B is such that (6.7) and B < B 1 hold. Then the suffix ξ = ξ(g(n)) defined in Definition 8 can be written as

ξ = ξ(g(n)) = p i1 p i2 . . . p iu p j1 p j2 . . . p jv u ≥ 0, v ≥ 0 (7.14)
where (we recall that p k is the largest prime factor of N ) The normalized prefix Π of g(n) is defined by

2 < x 2 < √ x 1 < ρ < t 1 ≤ p j1 < p j2 • • • < p jv ≤ p k < p i1 < • • • < p iu . ( 7 
Π = g(n) N σ =      πp k+1 p k+2 . . . p k+ω if ω ≥ 0 π p k . . . p k-ω ′ +1
if ω < 0.

(7.16) Proposition 5. Let σ be the normalized suffix of g(n). Then

σ = Q 1 Q 2 . . . Q s q 1 q 2 . . . q s
where s is a non-negative integer with (p k+i -ρ log p k+i ), (7.17)

ℓ(σ) = s i=1 (Q i -q i ) = p i1 +. . .+p iu -(p j1 +. . .+p jv )-(p k+1 +. . .+p k+ω ) ≥ 0. (7.18) 2. If ω < 0 then v ≤ s ≤ u and, with ω ′ = -ω = v -u, we have ben (N Π) = ben (N π)+ ω ′ -1 i=0 ben N p k-i = ben (N π)+ ω ′ -1 i=0 (ρ log p k-i -p k-i ) (7.19) ℓ(σ) = s i=1 (Q i -q i ) = p i1 +. . .+p iu -(p j1 +. . .+p jv )+(p k +. . .+p k-ω ′ +1 ) ≥ 0. (7.20)
In both cases we have also

√ x 1 < ρ < t 1 < q 1 < • • • < q s ≤ p k+ω < Q 1 < • • • < Q s . (7.21) Proof. If u ≥ v then ω = u -v ≥ 0, σ = p i1 . . . p iu p j1 . . . p jv p k+1 . . . p k+ω = ξ p k+1 . . . p k+ω • (7.22)
Since the prime factors p i1 . . . p iu of the numerator are distinct of the prime factors p j1 . . . p jv of the denominator, σ can be written after simplification

σ = Q 1 Q 2 . . . Q s q 1 q 2 . . . q s (7.23)
where v ≤ s ≤ u and, from (7.15), we have

√ x 1 < ρ < t 1 < q 1 < q 2 < . . . < q s ≤ p k+ω < Q 1 < Q 2 < . . . < Q s
which is (7.21). From (6.5) we get (7.17) while (7.18) follows from (7.22) and (7.23).

Similarly, if u < v holds, ω ′ = vu > 0. So, ω ′ ≤ v, and from (7.15),

p k-ω ′ +1 ≥ p k-v+1 ≥ p j1 > t 1 ; (7.22) and (7.23) become σ = p i1 . . . p iu p k . . . p k-ω ′ +1 p j1 . . . p jv = Q 1 . . . Q s q 1 . . . q s (7.24)
where u ≤ s ≤ v and we have

√ x 1 < ρ < t 1 < q 1 < . . . < q s ≤ p k-ω ′ = p k+ω < Q 1 < . . . < Q s . (7.25)
which is again (7.21). By definition, any prime factor of π is smaller than √ x 1 . Therefore, by (7.25), p k-ω ′ +1 is greater than any prime factor of π, (6.5) can be applied and (7.17) becomes (7.19) while (7.18) becomes (7.20).

The value of the parameter ω can be computed from the following proposition. It is convenient to set S ω = ω i=1 p k+i (for ω ≥ 0) and S ω = --ω-1 i=0 p k-i (for ω < 0). In both cases, from (6.4), we have

S ω = ℓ(N Π) -ℓ(N π).
(7.26) Proposition 6. The relative integer ω which determines the normalized prefix Π of g(n) (cf. (7.16)) satisfies the following inequalities:

n -ℓ(N π) - B 1 -ρ/t 1 ≤ n -ℓ(N π) - B -ben (N Π) 1 -ρ/t 1 ≤ S ω ≤ n -ℓ(N π) (7.27)
where π is the prefix of g(n) and B and t 1 satisfy (6.7) and (7.13).

Proof. Let us prove Proposition 6 for ω ≥ 0; the case ω < 0 is similar. From (7.23), (7.21) and (7.18), Lemma 1 (i) yields = ℓ(σ) 1 -ρ t 1 + ben (N Π)ben (N π) by (7.17).

1 ≤ σ ≤ exp ℓ(σ) t 1 . ( 7 
From (7.18), we have ℓ(σ) ≥ 0. Since, from (7.21), ρ < t 1 holds, the above result together with (7.8), (6.7) and (1.3) implies that

0 ≤ ℓ(σ) ≤ ben (N ξ) -ben (N Π) + ben (N π) 1 -ρ/t 1 = ben g(n) -ben (N Π) 1 -ρ/t 1 ≤ B -ben (N Π) -n + ℓ(g(n)) 1 -ρ/t 1 ≤ B -ben (N Π) 1 -ρ/t 1 -(n -ℓ(g(n))). (7.30)
Now, from (6.4), and (7.29), we get

ℓ(g(n)) = ℓ(N πξ) = ℓ(N π) + ℓ(N ξ) -ℓ(N ) = ℓ(N π) + ℓ(σ) + S ω . (7.31) Further, since n -ℓ(N π) = ℓ(g(n)) -ℓ(N π) + n -ℓ(g(n)) = ℓ(σ) + S ω + n -ℓ(g(n)), (7.32)
we get from (7.30) and (1.3) and

n -ℓ(N π) - B -ben (N Π) 1 -ρ/t 1 ≤ S ω ≤ n -ℓ(N π) (7.
n -ℓ(N π) - B 1 -ρ/t 1 ≤ n -ℓ(N π) - B -ben (N Π) 1 -ρ/t 1 ≤ S ω ≤ n -ℓ(N π) (7.36) with S ω = ω i=1 p k+i (if ω ≥ 0) and S ω = --ω-1 i=0 p k-i (if ω < 0).
Let us denote by N the set of possible normalized prefixes; N has been defined in such a way that the normalized prefix Π of g(n) belongs to N . Indeed, from (7.16), Π has the suitable form, the plain prefix π of g(n) belongs to D(B), (7.36) is satisfied by Proposition 6 and (7.35) by (7.21).

Let us observe that, if ω increases by 1, by (7.21), S ω increases by at least t 1 . In practice, 1ρ/t 1 is close to 1 and B is much smaller than t 1 so that for most of the π's there is no solution to (7.36) and there are few possible normalized prefixes. For n in the range [998001, 1000000], the number of possible normalized prefixes is 1 (resp. 2 or 3) for 1439 values (resp. 547 or 94). For instance, for n = 998555, the three possible normalized prefixes are 1, 43/41, 11/10.

Finally, for a reason given in the next section, for every Π ∈ N , we check that the following inequality holds:

p k+ω+1 -(n -ℓ(N Π)) ≥ √ x 1 . (7.37)
This inequality seems reasonable, since, from (7.35), we have p k+ω+1 ≥ t 1 with t 1 close to x 1 , and, from (7.36

), n -ℓ(N Π) = n -ℓ(N π) -S ω ≤ B/(1 -ρ/t 1 )
which is much smaller than x 1 . We have not found any counterexample to (7.37).

The heart of the algorithm

We have now a list N of possible normalized prefixes containing the normalized prefix Π of g(n). For Π = Π( π, ω) ∈ N let us introduce

g( Π, n) = N ΠG(p k+ω , n -ℓ(N Π)) = N Π Q 1 Q 2 . . . Q s q 1 q 2 . . . q s (7.38)
where

G(p k+ω , n -ℓ(N Π)) = Q 1 Q 2 . . . Q s q 1 q 2 .
. . q s is defined by (1.12). We shall use the following proposition to compute g(n).

Proposition 7. The following formula gives the value of g(n):

g(n) = max Π∈N g( Π, n) = max Π∈N N ΠG(p k+ω , n -ℓ(N Π)). (7.39)
Proof. Note that (1.13) and (1.14) imply either s = 0 or the smallest prime factor q s of G(p k+ω , nℓ(N Π)) satisfies p k+ω+1s ≤ nℓ(N Π) which, from (7.37), implies q s ≥ √ x 1 and thus, the prime factors of π and those of G(p k+ω , nℓ(N Π)) are distinct. Therefore, for any Π = Π( π, ω) ∈ N with ω ≥ 0, we get from (7.38), (6.4) and (1.15)

ℓ(g( Π, n)) = ℓ(N π) + ℓ N p k+1 . . . p k+ω Q 1 . . . Q s q 1 . . . q s -ℓ(N ) = ℓ(N π) + ω i=1 p k+i + s i=1 (Q i -q i ) = ℓ(N Π) + ℓ(G(p k+ω , n -ℓ(N Π))) ≤ ℓ(N Π) + n -ℓ(N Π) = n.
Inequality ℓ(g( Π, n)) ≤ n can be proved similarly in the case ω < 0.

Since ℓ(g( Π, n)) ≤ n holds, (1.4) implies for all Π ∈ N

g( Π, n) ≤ g(n). (7.40) 
From (7.16), we get g(n) = N Πσ where Π is the normalized prefix of g(n). Now, if ω ≥ 0, from (7.18), (7.31), (7.16) and (1.3), we have

ℓ(σ) = s i=1 (Q i -q i ) = ℓ(g(n)) -ℓ(N π) - ω i=1 p k+i = ℓ(g(n)) -ℓ(N Π) ≤ n -ℓ(N Π) (7.41) (ℓ(σ) ≤ n -ℓ(N Π)
still holds for ω < 0). Therefore, in view of (7.21) and of Definition (1.12) of function G, we have

g(n) = N Πσ ≤ N ΠG(p k+ω , n -ℓ(N Π)) = g(Π, n). (7.42) 
Since Π ∈ N , (7.42) and (7.40) prove (7.39).

The fight of normalized prefixes

Let Π 1 and Π 2 two normalized prefixes. By using Inequalities (8.4) below, it is sometimes possible to eliminate Π 1 or Π 2 . Indeed, from (8.4), we deduce a lower and an upper bound for g( Π, n) (defined in (7.38)):

g ′ ( Π, n) ≤ g( Π, n) ≤ g ′′ ( Π, n).
If, for instance, g ′′ ( Π 1 , n) < g ′ ( Π 2 , n) holds, then clearly Π 1 compete in (7.39) to be the maximum. By this simple trick, it is possible to shorten the list N of normalized prefixes. For instance, for n = 10 15 , the number of normalized prefixes is reduced from 9 to 1, while, for n = 10 15 + 123850000, it is reduced from 37 to 2.

8 A first way to compute G(p k , m)

Function G

In this section, we study the function G introduced in (1.12). First, for k ≥ 3 and 0 ≤ m ≤ p k+1 -3, we consider the set

G(p k , m) = F = Q 1 Q 2 . . . Q s q 1 q 2 . . . q s ; ℓ(F ) = s i=1 (Q i -q i ) ≤ m, s ≥ 0 (8.1)
where the primes Q 1 , Q 2 , . . . , Q s , q 1 , q 2 , . . . , q s satisfy (1.13).

The parameter s = s(F ) in (8.1) is called the number of factors of the fraction F . If s = 0, we set F = 1 and ℓ(F ) = 0 so that G(p k , m) contains 1 and is never empty. The definition (1.12) can be rewritten as

G(p k , m) = max F ∈G(p k ,m) F. (8.2) 
Obviously, G(p k , m) is non-decreasing on m and G(p k , 2m + 1) = G(p k , 2m). Note that the maximum in (8.2) is unique (from the unicity of the standard factorization into primes). It follows from (1.13) that, if 0 ≤ m < p k+1p k , the set G(p k , m) contains only 1, and therefore,

0 ≤ m < p k+1 -p k =⇒ G(p k , m) = 1. (8.3) 
Proposition 8.

1. Let q be the smallest prime satisfying q ≥ p k+1m. The following inequality holds

p k+1 q ≤ G(p k , m) ≤ p k+1 p k+1 -m . (8.4) 
Note that if q = p k+1m is prime, then (8.4) yields the exact value of G(p k , m).

Now, let

F = Q 1 Q 2 . . . Q s q 1 q 2 . . . q s be any element of G(p k , m); we have G(p k , m) ≥ F ≥ 1 + ℓ(F ) p k • (8.5)
Proof. The lower bound in (8.4) is obvious. Let us prove the upper bound. If 0 ≤ m < p k+1p k , the upper bound of (8.4) follows by (8.3)

. If m ≥ p k+1 -p k , p k+1 p k ∈ G(p k , m) and thus G(p k , m) ≥ p k+1 p k > 1.
Moreover, with the notation

(8.1), if G(p k , m) = F = Q 1 Q 2 . . . Q s q 1 q 2 . . . q s , we have s ≥ 1 and Lemma 1 (ii) implies G(p k , m) ≤ Q s Q s -ℓ(F ) ≤ Q s Q s -m ≤ p k+1 p k+1 -m (8.6) 
where the last inequality follows from (1.13) and the decrease of t → t/(tm).

Let us now prove (8.5). This inequality holds if ℓ(F ) = 0 (i.e., F = 1 and s = 0). If s > 0, from (1.13), we get

Q i q i = 1 + Q i -q i q i ≥ 1 + Q i -q i p k , i = 1, 2, . . . , s and 
F = s i=1 Q i q i ≥ s i=1 1 + Q i -q i p k ≥ 1 + s i=1 (Q i -q i ) p k = 1 + ℓ(F ) p k • 8.2 Function H Let M ≤ p k+1 -3; we want to calculate G(p k , m) for 0 ≤ m ≤ M .
Let us introduce a family of consecutive primes P 0 < P 1 < . . . < P K = p k < P K+1 < . . . < P R < P R+1 (so that P i = p k+i-K for 0 ≤ i ≤ R + 1) with the properties

P R+1 -P K > M, R ≥ K + 1, P K+1 -P 0 > M, P 1 ≥ 3. (8.7) 
It follows from (8.1) and (1.13) that the prime factors Q 1 , . . . , Q s , q 1 , . . . , q s of any element of G(p k , m) = G(P K , m) should satisfy

P 1 ≤ q s < . . . < q 1 ≤ P K = p k < P K+1 ≤ Q 1 < . . . < Q s ≤ P R . (8.8) 
Of course, in (8.7) we may choose P R (resp. P 1 ) as small (resp. large) as possible, but it is not an obligation. Let us denote by

Q ′ 1 , Q ′ 2 , . . . , Q ′ R-K-s the primes among P K+1 , . . . , P R which are different of Q 1 , . . . , Q s ; we have Q ′ 1 + Q ′ 2 + . . . + Q ′ R-K-s = P K+1 + . . . + P R -(Q 1 + . . . + Q s ) (8.9) 
and (8.2) becomes

G(P K , m) = max P K+1 P K+2 . . . P R Q ′ 1 . . . Q ′ R-K-s q 1 . . . q s = P K+1 P K+2 . . . P R min(q ′ 1 . . . q ′ R-K ) (8.10)
where the minimum is taken over all the subsets {q ′ 1 , q ′ 2 , . . . , q ′ R-K } of R -K elements of {P 1 , . . . , P R } satisfying from (1.14) and (8.9)

q ′ 1 + q ′ 2 + . . . + q ′ R-K = Q ′ 1 + Q ′ 2 + . . . + Q ′ R-K-s + q 1 + q 2 + . . . + q s = P K+1 + P K+2 + . . . + P R - s i=1 (Q i -q i ) ≥ P K+1 + P K+2 + . . . + P R -m. (8.11) 
(Note that, from (8.7), R -K ≥ 1 holds).

Proposition 9. For j = 1, from (8.12), (8.13) and (8.14), we have

H(1, P r ; m) =                    P 1 if m ≥ M 1 (P r ) = P K+1 -P 1 . . . P i if 1 < i < r and P K+1 -P i ≤ m < P K+1 -P i-1 . . . P r if m 1 (P r ) = P K+1 -P r ≤ m < P K+1 -P r-1 ∞ if m < m 1 (P r ) = P K+1 -P r . (8.19) 
Further, we have the induction formula:

H(j, P r ; m) = min (H(j, P r-1 ; m), P r H(j -1, P r-1 ; m -P K+j + P r )) . (8.20)

Proof. The calculation of H(1, P r ; m) is easy. Let us show the induction formula (8.20). Either P r does not divide H(j, P r ; m) and H(j, P r ; m) = H(j, P r-1 ; m) or P r = q ′ j is the greatest prime factor of H(j, P r ; m) = q ′ 1 q ′ 2 . . . q ′ j and from (8.14), we get q ′ 1 + . . . + q ′ j-1 ≥ P K+1 + . . .

+ P K+j-1 -(m -P K+j + P r ).
Note that if m ≥ m j (P r ), m -P K+j + P r ≥ m j-1 (P r-1 ) since m j (P r ) = m j-1 (P r-1 ) + P K+j -P r so that H(j, P r ; m) and H(j -1, P r-1 ; m -P K+j + P r ) are simultaneously finite or infinite. (8.18) implies that m j (P r ) and m j (P r-1 ) are both infinite or m j (P r-1 ) > m j (P r ). For m j (P r ) ≤ m < m j (P r-1 ), (8.20) reduces to H(j, P r ; m) = P r H(j -1, P r-1 ; m -P K+j + P r ) (8.21) while, for m ≥ m j (P r-1 ), the three values of the function H in (8.20) are finite. From (8.19), we may remark that, if we set H(0, P r ; m) = 1 for all r ≥ 1 and m ≥ 0, (8.22) the induction formula (8.20) still holds for j = 1.

In view of (8.16), for 1 ≤ r ≤ R, 1 ≤ j ≤ min(r, R -K) and m j (P r ) ≤ m ≤ M , we calculate H(j, P r ; m) by induction, using for that (8.22), (8.20) and (8.21). If K + 2 ≤ r ≤ R, it is useless to calculate H(j, P r ; m) for j < r -K.

Finally, after getting the value of H(R -K, P R ; m) for m R-K (P R ) = 0 ≤ m ≤ M , we compute G(p k , m) by (8.16).

Bounding the largest prime

It turns out that the largest prime used in the computation of G(p k , m) for 0 ≤ m ≤ M is much smaller than P R defined in (8.7). For instance, for p k = P K = 150989 and M = 5000, R defined by (8.7) is at least equal to K + 425 while only the primes up to p k+5 = P K+5 = 151027 are used.

So, the idea is to replace R by a smaller number R, K + 1 ≤ R < R, and to calculate by induction H( R -K, P R ; m) instead of H(R -K, P R ; m). We get the fraction F = P K+1 P K+2 . . . P R H( R -K, P R ; m) which satisfies F ≤ G(p k , m). Now we have the following lemma.

Lemma 9. Let F be a real number satisfying

1 < F ≤ G(p k , m) = Q 1 Q 2 . . . Q s q 1 q 2 . . . q s .
Then, the largest prime factor Q s of the numerator of G(p k , m) is bounded above by

Q s ≤ min p k + m, mF F -1 • (8.23)
Proof. Using Lemma 1 and (1.15), we write

F ≤ G(p k , m) = Q 1 Q 2 . . . Q s q 1 q 2 . . . q s ≤ Q s Q s -ℓ(G(p k , m)) ≤ Q s Q s -m which yields Q s ≤ mF F -1 .
On the other hand, Inequality (1.13) together with gives a reasonably good upper bound for Q s . In the program, our first choice is R = K + 10.

(1.14) implies Q s -p k ≤ Q s -q s ≤ m

Conclusion

The running time of the algorithm described in sections 8.3 and 8.4 to calculate G(p, m) for m ≤ M grows about quadratically in M , so, it is rather slow when M is large. For instance, the computation of g(10 15 -741281) leads to the evaluation of G(p, 688930) for p = 192678883, and this is not doable by the above combinatorial algorithm.

In the next section, we present a faster algorithm to compute G(p k , m) when m is large, but which does not work for small m's so that the two algorithms are complementary. 9 Computation of G(p k , m) for m large

The algorithm described in this section starts from the following two facts:

• if G(p k , m) = Q 1 Q 2 . . . Q s q 1 q 2 . . . q s
and m is large, the least prime factor q s of the denominator is close to p k+1 -m while all the other primes Q 1 , . . . , Q s , q 1 , . . . , q s-1 are close to p k . More precisely, G(p k , m) is equal to

p k+1 q s G(p k+1 , d)
where d = mp k+1 + q s is small.

Note that when m is small G(p k , m) is not always equal to p k+1 q s G(p k+1 , mp k+1 + q s ). • In (8.5), we have seen that ℓ(G(p, m)) = m implies G(p, m) ≥ 1 + m p k , and it turns out that this last inequality seems to hold for m large enough.

A second way to compute G(p k , m)

We want to compute G(p k , m) for a large m. The following proposition says that if, for some small δ, p km + δ is prime and such that G(p k+1 , δ) is not too small, then the computation of G(p k , m) is reduced to the computation of G(p k+1 , m ′ ) for few small values of m ′ . Proposition 10. We want to compute G(p k , m) as defined in (1.12) or (8.2) with p k odd and p k+1p k ≤ m ≤ p k+1 -3. We assume that we know some even non-negative integer δ satisfying

p k+1 + δ -m is prime, (9.1) 
G(p k+1 , δ) ≥ 1 + δ p k+1 (9.2) and δ < 2m 9 < 2p k+1 9 • (9.3) If δ = 0, we know from Proposition 8 that G(p k , m) = p k+1 p k+1 -m • If δ > 0, we have G(p k , m) = max q prime p k+1 -m ≤ q ≤ q p k+1 q G(p k+1 , m -p k+1 + q), (9.4) 
where q is defined by

q = p k+1 p k+2 (p k+1 -m + δ) (p k+1 + δ)(p k+1 -3δ/2) ≤ p k+2 -m + 3δ 2 • (9.5)
Before proving Proposition 10 in Section 9.3, we shall first think to the possibility of applying it to compute G(p k , m). Below, we give some values of ∆(x):

Large differences between consecutive primes

x 10 2 10 3 10 

= p k+1 + δ 1 (p k ) -m. We have a = p k+1 + δ 1 (p k ) -m ≤ p k+1 - 7 2 δ 1 (p k ) ≤ p k+1 - 7 2 ∆ < p k+1 .
Since δ 1 ≥ ∆ and m ≤ p k+1 -3, a ≥ ∆ + 3 holds. From the definition of ∆ = ∆(p k+1 ), there exists an even number b,

0 ≤ b ≤ ∆ -2 such that a -b = p k+1 -m + (δ 1 -b) is prime. From the definition of δ 1 (p k ), we know that G(p k+1 , δ 1 -b) ≥ 1 + δ1-b p k+1 . Therefore, δ = δ 1 -b satisfies (9.1), (9.
2), (9.3) and 0 ≤ δ ≤ δ 1 (p k ). The last upper bound of (9.9) follows from (9.8). Note that (9.10) and (9.11) imply

Proof of Proposition 10

T 1 + δ ≤ T 1 T 2 T 2 -δ • (9.12)
Let m be a parameter satisfying

0 ≤ 9δ 2 ≤ m < T 1 . (9.13)
We set

E(X) = X 2 -(T 1 + T 2 -m)X + T 1 T 2 (T 1 + δ -m) T 1 + δ • (9.14)
1. The equation E(X) = 0 has two roots X 1 and X 2 satisfying

0 < X 1 < T 1 + T 2 -m 2 < X 2 ≤ T 2 -δ. (9.15)
2. For T 1 , T 2 and δ fixed and m in the range (9.13), X 2 is a non-decreasing function of m.

3. We have 

T 1 - 3δ 2 < T 1 + 2T 2 3 - 3δ 2 ≤ X 2 ≤ T 2 -δ. ( 9 
Y 1 < Y 2 , Y 1 + Y 2 = T 1 + T 2 -m and T 1 T 2 Y 1 Y 2 ≥ T 1 + δ T 1 + δ -m • (9.17)
We have

Y 2 ≥ X 2 ≥ T 1 - 3δ 2 and Y 1 ≤ X 1 ≤ T 2 -m + 3δ 2 . ( 9 

.18)

Proof.

1. The discriminant D of (9.14) can be written as

D = (T 1 + T 2 -m) 2 -4 T 1 T 2 (T 1 + δ -m) T 1 + δ = (m + T 2 -T 1 ) 2 1 - 4δ m m 2 T 2 (m + T 2 -T 1 ) 2 (T 1 + δ) , (9.19) 
since, from (9.10) and (9.13), m + T 2 -T 1 does not vanish. If δ = 0, the above bracket is 1 while if δ ≥ T 2 -T 1 > 0, the fractions T 2 T 1 + δ and m m + T 2 -T 1 are at most 1, so that in both cases (9.19) yields

D ≥ (m + T 2 -T 1 ) 2 1 - 4δ m . (9.20) 
Therefore, from (9.13) and (9.10), D ≥ (m + T 2 -T 1 ) 2 9 > 0 holds.

The sum X 1 +X 2 of the two roots is T 1 +T 2 -m which explains the second and the third inequality of (9.15). Further, since T 1 < T 2 and m ≥ 2δ,

T 1 + T 2 -m 2 
≤ T 2δ holds. By (9.14), (9.13) and (9.12),

E(T 2 -δ) = (T 1 + δ -m) T 1 T 2 T 1 + δ -(T 2 -δ) ≥ 0
which proves the last inequality of (9.15).

Remark: If δ = 0, the roots of (9.14) are

X 1 = T 1 -m and X 2 = T 2 . If δ = T 2 -T 1 , they are X 1 = T 2 -m and X 2 = T 1 .
2. By (9.14), X 2 is implicitely defined in terms of m and, through (9.12), we have

d X 2 d m = -∂E ∂m ∂E ∂X = T1T2 T1+δ -X 2 2X 2 -(T 1 + T 2 -m) ≥ T 2 -δ -X 2 2X 2 -(T 1 + T 2 -m)
which is non-negative from (9.15).

For

m = 9δ 2 , (9.20) yields √ D ≥ m+T2-T1 3 = 3δ 2 + T2-T1 3 
and

X 2 = T 1 + T 2 -m + √ D 2 ≥ T 1 + 2T 2 3 - 3δ 2 ≥ T 1 - 3δ 2 •
Further, for m ≥ 9δ 2 , the upper bound in (9.16) follows from (ii).

4. Conditions (9.17

) imply E(Y 1 ) = E(Y 2 ) = -Y 1 Y 2 + T 1 T 2 (T 1 + δ -m) T 1 + δ ≥ 0 so that Y 1 ≤ X 1
and Y 2 ≥ X 2 ; (9.18) follows from (9.16) and from

X 1 = T 1 + T 2 -m -X 2 .
Structure of the fraction G(p k , m) Lemma 12. Let k and m be integers such that k ≥ 3 and p k+1p k ≤ m ≤ p k+1 -3. We write

G(p k , m) = F = Q 1 Q 2 . . . Q s q 1 q 2 . . . q s (9.21)
with s ≥ 1 and Q 1 , . . . , Q s , q 1 , . . . , q s primes satisfying

3 ≤ q s < q s-1 < . . . < q 1 ≤ p k < p k+1 ≤ Q 1 < . . . Q s-1 < Q s , (9.22) 
p k+1 -p k ≤ ℓ(F ) = s i=1 (Q i -q i ) ≤ m ≤ p k+1 -3 < p k+1 (9.23)
and we assume that there exists an integer δ such that 0 ≤ δ < 2m 9 , and (δ = 0 or δ ≥ p k+2p k+1 ) (9.24)

and F ≥ p k+1 + δ p k+1 -m + δ • (9.25)
We apply Lemma 11 with T 1 = p k+1 and T 2 = p k+2 , δ and m, and we denote by X 1 and X 2 the two roots of equation (9.14), E(X) = 0. Then we have

1. Q s ≤ p k+1 + δ, 2. for s ≥ 2 and 1 ≤ i ≤ s -1, λ i def == Q i -q i ≤ p k+2 -X 2 , 3. for s ≥ 2 and 1 ≤ j ≤ s -1, Λ j def == j i=1 λ i ≤ p k+2 -X 2 .
Moreover, if we write F = U V with

U = Q 1 Q 2 . . . Q s-1 Q s q 1 q 2 . . . q s-1 p k+1 and V = p k+1 q s , (9.26) 
we have, for s ≥ 1

4. ℓ(U ) = Λ s-1 + Q s -p k+1 ≤ p k+2 -X 2 ≤ p k+2 -p k+1 + 3δ 2 and 5. p k+1 -m ≤ q s ≤ q = p k+1 p k+2 (p k+1 -m + δ) (p k+1 + δ)(p k+1 -3δ/2) • Proof.
1. First, we observe that (9.22) implies 

Q i ≥ p k+i ≥ p k+1 , 1 ≤ i ≤ s. ( 9 
p k+1 + δ p k+1 + δ -m ≤ F ≤ Q s Q s -ℓ(F ) ≤ Q s Q s -m which, with the decrease of t → t t-m , gives Q s ≤ p k+1 + δ. 2.
From the definition of λ i and (9.22), λ i is positive and increasing on i, and it suffices to show λ s-1 ≤ p k+2 -X 2 . We write F = F 1 F 2 with F 1 = Qs-1 qs-1

and F 2 = i =s-1 Qi qi . From (9.23) and (9.22), we have 

p k+1 > m > m -λ s-1 ≥ ℓ(F ) -λ s-1 = λ 1 + . . . + λ s-2 + λ s ≥ λ s > λ s-1 which implies p k+2 -λ s-1 > p k+1 -λ s-1 > p k+1 -(m -λ s-1 ). ( 9 
F 2 ≤ Q s Q s -ℓ(F 2 ) = Q s Q s -(ℓ(F ) -λ s-1 ) ≤ Q s Q s -(m -λ s-1 ) ≤ p k+1 p k+1 -(m -λ s-1 ) • (9.29) If s ≥ 3 or Q 1 ≥ p k+2 , (9.22) implies Q s-1 ≥ p k+2 which yields F 1 = Qs-1 Qs-1-λs-1 ≤ p k+2
p k+2 -λs-1 so that, from (9.25) and (9.29), we get p k+2 -(Q2-q2) . Here we set Y 2 = q 1 and Y 1 = p k+2 -(Q 2q 2 ) = q 2 -(Q 2p k+2 ); by (9.22) and (9.23), we get

p k+1 + δ p k+1 + δ -m ≤ F = F 1 F 2 ≤ p k+2 p k+2 -λ s-1 p k+1 p k+1 -(m -λ s-1 ) • (9.30) Let us set Y 2 = p k+2 -λ s-1 , Y 1 = p k+1 -(m -λ s-
Y 2 = q 1 > q 2 ≥ Y 1 = q 2 -(Q 2 -p k+2 ) = p k+2 -λ 2 ≥ p k+2 - 2 i=1 λ i = p k+2 -ℓ(F ) ≥ p k+2 -m > 0;
we may still apply Lemma 11 Point 4. to get Y 2 = q 1 = p k+1λ 1 ≥ X 2 , which implies 2.. Qi qi so that ℓ(F 1 ) = Λ j and ℓ(F 2 ) = ℓ(F ) -Λ j ≤ m -Λ j . For 2 ≤ j ≤ s -1, from (9.25), Lemma 1, (9.27), and (9.23) we get

p k+1 + δ p k+1 + δ -m ≤ F = F 1 F 2 ≤ Q j Q j -ℓ(F 1 ) Q s Q s -ℓ(F 2 ) ≤ p k+2 p k+2 -Λ j p k+1 p k+1 -(m -Λ j )
• Therefore, we apply Lemma 11 Point 4., but we do not know whether p k+2 -Λ j is greater than p k+1 -(m -Λ j ), so that, either

p k+2 -Λ j ≥ X 2 (9.31) 
or p k+2 -Λ j ≤ X 1 . (9.32)

For j = 1, as Λ 1 = λ 1 , (9.31) holds, from 2.. Since Λ j is increasing on j, if (9.31) holds for some j = j 0 , it also holds for j ≤ j 0 . If (9.31) holds for j = s -1, 3. is proved; so, let us assume that the greatest value j 0 for which (9.31) holds satisfies 1 ≤ j 0 < s -1; we should have p k+2 -Λ j0 ≥ X 2 and p k+2 -Λ j0+1 ≤ X 1 . (9.33) From 2., (9.33) and because X 1 , X 2 are solutions of (9.14), we should get

p k+2 -X 2 ≥ λ j0+1 = Λ j0+1 -Λ j0 ≥ X 2 -X 1 = 2X 2 + m -p k+1 -p k+2
which, would imply m ≤ 2p k+2 + p k+1 -3X 2 and, through the second inequality of (9.16), m ≤ 9δ 2 , in contradiction with (9.24). Therefore, j 0 ≥ s -1 and 3. is proved. 4. If s = 1 we have to show ℓ(U ) = Q 1 -p k+1 ≤ p k+2 -X 2 which is true since, from 1., Q 1p k+1 ≤ δ and from (9.16), with T 2 = p k+2 , δ ≤ p k+2 -X 2 .

So, we assume s ≥ 2. If Q 1 = p k+1 , U simplifies itself; and, in all cases, from (9.22), the prime factors of the numerator of U are at least p k+2 and those of the denominator are at most p k+1 . So, we may apply Lemma 1 which, with (9.27) and the decrease of t → t/(tℓ(U ), yields But, from 1. and 3., we have ℓ(U ) = Λ s-1 + Q sp k+1 ≤ p k+2 -X 2 + δ which, together with (X 1 , X 2 ) solutions of (9.14), the second inequality in (9.16) and (9.24), give

U ≤ Q s Q s -ℓ(U ) ≤ p k+2 p k+2 -ℓ(U ) , V = p k+1 p k+1 -ℓ(V ) • ( 9 
X 1 + ℓ(U ) -p k+2 ≤ X 1 -X 2 + δ = δ + p k+1 + p k+2 -m -2X 2 ≤ δ + p k+1 + p k+2 -m - 2 3 (p k+1 + 2p k+2 ) + 3δ = 4δ + p k+1 -p k+2 3 -m < 0.
Therefore, p k+2ℓ(U ) ≤ X 1 does not hold, and, from (9.35), we have p k+2ℓ(U ) ≥ X 2 which shows the first inequality in 4.. The second inequality comes from (9.16).

5. From (9.22) and (9.23), we have ℓ(V ) = p k+1q s ≤ Q sq s ≤ ℓ(F ) ≤ m which proves the lower bound of 5.. A hint is to apply Proposition 2 with M = P1Px2...Pr q1q2...q2r for some r, where the P i 's are the r smallest primes not dividing N and the q i 's are the 2r largest primes such that v qi (N ) = 2, and, further, to apply effective results on the Prime Number Theorem like those of [START_REF] Rosser | Approximate Formulas for Some Functions of Prime Numbers[END_REF] or [START_REF] Dusart | The k th prime is greater than k(log k + log log k -1) for k ≥ 2[END_REF].

Increasing subsequences of g(n)

An increasing subsequence of g is a set of k consecutive integers {n, n+1, . . . , n+ k -1} such that g(n -1) = g(n) < g(n + 1) < . . . < g(n + k -1) = g(n + k).

(11.1)

Due to a parity phenomenom, these maximal sequences are rare. For n ≤ 10 6 , there are only 9 values on n with k ≥ 7. The record is n = 35464 with k = 20. Are there arbitrarily long maximal sequences? It seems to be a very difficult question. In [START_REF] Nicolas | On Landau's function g(n), The Mathematics of Paul Erdős[END_REF], (1.7), it is conjectured that there are infinitely many maximal sequences with k ≥ 2.

The second minimum

Let us write g 1 (n) = g(n) > g 2 (n) > . . . > g I (n) = 1 all the integers such that, if σ ∈ S n , the order of σ is equal to g i (n) for some i ∈ {1, 2, . . . , I}. From (1.5), I is equal to the number of positive integers M satisfying ℓ(M ) ≤ n.

We might be interested in the computation of g 2 (n) or more generally, in the computation of g i (n) for 1 ≤ i ≤ i 0 where i 0 is some (small) fixed constant.

The basic algorithm (see Section 2) can be easily adapted for this purpose. It seems reasonnable to think that our algorithm, as sketched in 1.3, can also be extended to get g i (n).

Computing h(n)

Let h(n) be the maximal product of primes p i1 , p i2 , . . . , p ir under the condition p i1 + p i2 + . . . + p ir ≤ n (r is not fixed); h(n) can be interpreted as the maximal order of a permutation of the symmetric group S n such that the lengths of its cycles are all primes.

A formula similar to (1.2) can be written:

h(n) = max M squarefree ℓ(M)≤n M.
The superchampion numbers are the product of the first primes.

A related problem is to find an algorithm to compute h(n) for n up to 10 15 .

Maximum order in GL(n, Z)

Let G(n) be the maximum order of torsion elements in GL(n, Z). It has been shown in [START_REF] Levitt | On the Maximum Order of Torsion Elements in GL(n, Z) and Aut(F n )[END_REF] that

G(n) = max L(M)≤n M (11.2)
where L is the additive function defined by L(1) = L(2) = 0 and L(p α ) = ϕ(p α ) = p αp α-1 if p α ≥ 3.

4 .

 4 Determine D(B), a set containing the plain prefix of g(n). If B < B ′ , to get D(B), we just have to remove from D(B ′ ) the elements whose benefit is bigger than B. If B > B ′ , we start again the algorithm described in Section 7.2 to get D(B ′ ) with a new value of B ′ greater than B.

Figure 1 :

 1 Figure 1: The points (log(N ), ℓ(N )), with ℓ(N ) ≤ 50, for 1 ≤ N ≤ 60060.

Figure 2 :

 2 Figure 2: The first ℓ-superchampion numbers.

  p); while n 0 ≤ n do p := nextprime(p); n 0 := n 0 + p end while ρ := p/ log p end if 6 Benefits 6.1 Definition and properties Definition 5. Let ρ ∈ E and N = N ρ (as defined in Definition 4). If M is a positive integer, from (4.1), we have ℓ(M )ρ log M ≥ ℓ(N )ρ log N . We call benefit of M the non-negative quantity ben (M ) = ℓ(M )ℓ(N )ρ log M N • (6.1)

Lemma 6 .Figure 4 :

 64 Figure 4: A = (log N, ℓ(N )) and B = (log M, ℓ(M )).

2 .

 2 If α ≥ 2 and 0 ≤ γ ≤ α -2, we have ben N p γ+1ben N p γ = log p ρ -1 p γ p αp α-1 log p which is non-negative from (4.5). If α ≥ 1 and γ = α -1, ben N p γ+1ben N p γ = log p ρ -p log p yields the same conclusion.

. 3 ) 7 .

 37 Definition Le M be a positive integer. Let us defineπ(M ) = p< √ x1 p vp(M)-αp = π (j1) (M ) (7.4)where p j1 is the largest prime less than √ x 1 , and ξ(M ) = M/(N π(M )). Thus we haveM = N π(M ) ξ(M ).(7.5)π(M ) will be called the plain prefix of M , and ξ(M ) the suffix of M .

.15) 7 . 6 Definition 9 . 2 .

 7692 Normalized prefix of g(n) Let u and v be as defined in(7.14) and ω = uv. We define the normalized suffix σ of g(n) by 1. If ω ≥ 0 σ = p i1 . . . p iu p j1 . . . p jv p k+1 . . . p k+ω = ξ p k+1 . . . p k+ω • If ω < 0, we set ω ′ = -ω and σ = p i1 . . . p iu p k . . . p k-ω ′ +1 p j1 . . . p jv = ξp k . . . p k-ω ′ +1 .

1 .

 1 If ω ≥ 0 then u ≤ s ≤ v and ben (N Π) = ben (N π)+ ω i=1 ben (N p k+i ) = ben (N π)+ ω i=1

. 28 )

 28 From(7.14) and(7.18), we haveℓ(N ξ)ℓ(N ) = p i1 + . . . + p iu -(p j1 + . . . + p jv ) = ℓ(σ) + S ω . (7.29) So, we get successively ben (N ξ) = ℓ(N ξ)ℓ(N )ρ log ξ by (6.1) = ℓ(σ) + ω i=1 (p k+iρ log p k+i )ρ log σ by (7.22) ≥ ℓ(σ) + ω i=1 (p k+iρ log p k+i ) -ρℓ(σ) t 1 by (7.28)

  For instance, G(103,

For x ≥ 3 ,

 3 let us define ∆(x) = max pj ≤x (p jp j-1 ).(9.6) 

A polynomial equation of degree 2 Lemma 11 .

 211 Let us consider real numbers T 1 , T 2 , δ satisfying 0 < T 1 < T 2 (9.10) and (δ = 0 or δ ≥ T 2 -T 1 ) and δ <

3 .

 3 This time, we writeF = F 1 F 2 with F 1 = j i=1 Qi qi and F 2 = s i=j+1

  .34) It follows from(9.23) that ℓ(U ) + ℓ(V ) = ℓ(F ) ≤ m and, from (9.25), we getp k+1 + δ p k+1 + δm ≤ F = U V ≤ p k+2 p k+1 (p k+2ℓ(U ))(p k+1 -(mℓ(U ))) • Applying Lemma 11 Point 4. with (Y 1 , Y 2 ) = (p k+2ℓ(U ), p k+1 -(mℓ(U ))) yields p k+2ℓ(U ) ≥ X 2 or p k+2ℓ(U ) ≤ X 1 . (9.35) 

If s = 1 and Q 1 =

 1 p k+1 , U = 1 and F = V so that, from(9.25),q s = p k+1 F ≤ p k+1 (p k+1m + δ) p k+1 + δ ≤ q = p k+1 p k+2 (p k+1m + δ) (p k+1 + δ)(p k+1 -3δ/2) • If s ≥ 2 or Q 1 ≥ p k+2 , (9.34) holds and gives with (9.25) and 4.q s = p k+1 V = p k+1 U F ≤ p k+1 p k+2 (p k+1m + δ) (p k+1 + δ)(p k+2ℓ(U )) ≤ q.Proof of Proposition 10Let us assume δ > 0. (9.2) and (8.3) implyδ ≥ p k+2p k+1 .(9.36)First, we prove the upper bound (9.5). We have to show that the quantity below is positive:(p k+2m + δ)(p k+1 + δ) p k+1 -3δ 2 p k+1 p k+2 (p k+1m + δ).

  The first elements of table T associated to E 2 .

						ℓ
		1	2	2	3	7
		2	3	2	13	49
		3	2	3	13	53
		4	2	4	43	301
		5	5	2	47	368
		6	3	3	67	626
		7	7	2	97 1160
		8	2	5	107 1487
		9	11	2	251 6307
	10	2	6	251 6339
	11	3	4	271 7453
	Figure 3: p log p	< ρ ≤	p 2 -p log p	,	(4.11)
	p log p	<	x 1 log x 1	and	x 2 2 -x 2 log x 2

Proof. Due to

(4.5)

, α p = 1 holds if and only we have and by the definition (4.8) of x 1 and x 2 , this is equivalent to ≤ p 2p log p • By the increase of t → t/ log t on [exp(1), +∞[ and t → (t 2t)/ log t on [1, +∞[, this proves that for p ≥ exp(1), α p = 1 holds if and only if x 2 ≤ p < x 1 . It remains to prove that, when p = 2, this equivalence is still true. In this case, 2/ log 2 = (4 -2)/ log 2, and (4.11) is never satisfied. By (4.9) we have x 2 > 2, and x 2 ≤ 2 < x 1 is false. Thus, for every prime p, we have α p = 1 if and only if x 2 ≤ p < x 1 . For i ≥ 2, α p = i if and only if p ip i-1 log p < ρ ≤ p i+1p i log p , and, by the definition (4.8) of x i and x i+1 this is equivalent to

  gives the first values of T [i]. (In the Maple program the T [i]'s are the elements of the tablelistesuperchE2).The superchampions that are not of the form N + r for an r ∈ E 2 can easily be obtained from this table. For instance, the successive values of ℓ(N ) between 368 and 626 are 368 + 53 = 421, 421 + 59 = 480, 480 + 61 = 541 and 541 + 67 = 608.Two elements of E can be close. For instance, the smallest difference between two consecutive elements of E less than 8 • 10 9 is working with 20 decimal digits is enough to distinguish the elements of E. For any n up to 10 15 , Algorithm 2 below determines the superchampion N = N ρ as defined in Defintion 4.Algorithm 2: : computes N = N ρ for a given n ≤ 10 15 . Construct table T .

	and thus,		
	43083996283 log 43083996283	-	144589 2 -144589 log 144589
	= 1759505912.7146899772 -1759505912.7146800938 = 0.0000098834

  .1) is equal to ρ ≈ 12661.7; the table below displays some values of B ′ /ρ and the corresponding values of Card(D(B ′ )) and B/ρ given by the above method.

	B ′ /ρ	0	0.2 0.4	0.6	0.7	0.8	0.9	1	1.1
	11 7.5 1.15 1.13 1.104 1.098 1.082 1.074 1.055 1.055 34 76 109 139 165 194 224 |D(B ′ )| 1 B/ρ

  In Section 7.2, we have computed B such that (6.7) holds and a set D = D(B) containing the plain prefix π of g(n). By construction, we know that any prime factor of π ∈ D is smaller than √ x 1 and thus, from (7.12), smaller than t 1 .

		33)
	and (7.27) follows, since ben (N Π) ≥ 0. Note that (7.33) implies	
	ben (N Π) ≤ B.	(7.34)
	7.7 Computing possible normalized prefixes	

Definition 10

. We call possible normalized prefix a positive rational number Π = Π( π, ω) of the form Π = πp k+1 . . . p k+ω (with ω ≥ 0) or Π = π/(p k . . . p k+ω+1 ) (with ω < 0), where π ∈ D(B) is a plain prefix, and satisfying p k+ω+1 ≥ t 1

(7.35) 

  which completes the proof of (8.23).

	If F = from Lemma 9 that G(p k , m) = F . If not, we start again by choosing a new P K+1 P K+2 . . . P R H( R -K, P R ; m) > 1 and if P R > min P K + m, m F , it follows F -1
	value of P R greater than min P K + m,	m F F -1	. Actually, Inequality (8.23)

  4 10 5 10 6 10 7 10 8 10 9 10 10 10 11 10 12 • 10 16 , ∆(x) ≤ 0.93(log x) 2 holds.Let us set ∆ = ∆(p k+1 ); let us denote by δ 1 = δ 1 (p k ) the smallest even integer such that δ 1 ≥ ∆ andG(p k+1 , d) ≥ 1 + d p k+1 , d = δ 1 -∆ + 2, δ 1 -∆ + 4, . . . ,δ 1 . (9.7) By using the combinatorial algorithm described in 8.3, we have computed that for all primes p k ≤ 3 • 10 8 , we have δ 1 (p k ) ≤ 900 = δ 1 (252314747) and δ 1 (p k ) ≤ 2.55(log p k ) 2 . (9.8) To compute the suffix of g(n) for n ≤ 10 15 , we do not have to deal with larger values of p k . However, for larger p k 's, we conjecture that δ 1 (p k ) exists and is not too large. Lemma 10. Let p k satisfy 5 ≤ p k ≤ 3 • 10 8 , m be an even integer such that p k+1p k ≤ m ≤ p k+1 -3, and δ 1 = δ 1 (p k ) defined by (9.7). If m ≥ 9 2 δ 1 (p k ), then there exists an even non-negative integer δ = δ(p k , m) ≤ δ 1 (p k ) ≤ 2.55(log p k )

	∆(x) 8	20 36 72 114 154 220 282 354 464 540
	(log x) 2 21 48 85 133 191 260 339 429 530 642 763
	A table of ∆(x) up to 4 • 10 12 calculated by D. Shanks, L.J. Lander, T.R. Parkin and R. Brent can be found in [26], p. 85. There is a longer table (up to 8 • 10 16 ) on the web site [16]. H. Cramér conjectured in [4] that lim x→∞ ∆(x) (log x) 2 = 1. For
	x ≤ 8	

2 

(9.9) such that (9.1), (9.2) and (9.3) hold. Therefore, Proposition 10 can be applied to compute G(p k , m).

Proof. Let us set a

  .16) 4. Let Y 1 and Y 2 be two positive real numbers satisfying

  1 ); from(9.28), Y 2 > Y 1 holds and, in view of (9.30), we may apply Lemma 11, Point 4. to get Y 2 = p k+2λ s-1 ≥ X 2 which implies 2.. If s = 2 and Q 1 = p k+1 , F = p k+1 From (9.27) we have Q 2 ≥ p k+2 and F ≤

	q1 Q2-(Q2-q2) • p k+1 Q2 q2 = p k+1 q1 Q2 p k+2
	q1

In view of (6.8) and after some experiments, our choice is B ′ = ρ for

≤ n ≤ 10 10 while, for greater n's, we take B ′ = ρ/2, and for smaller n's, B ′ = B 1 -ε where ε is some very small positive number.

* Research partially supported by INRIA and by CNRS.

 Definition 11. For 1 ≤ r ≤ R, 1 ≤ j ≤ min(r, R -K) ≤ R and m ≥ 0, we define H(j, P r ; m) = min(q ′ 1 q ′ 2 . . . q ′ j ) (8.12) where the minimum is taken over the j-uples of primes (q ′ 1 , q ′ 2 , . . . , q ′ j ) satisfying P 1 ≤ q ′ 1 < q ′ 2 < . . . < q ′ j ≤ P r (8.13) and q ′ 1 + q ′ 2 + . . . + q ′ j ≥ P K+1 + P K+2 + . . . + P K+jm. (8.14) If there is no (q ′ 1 , q ′ 2 , . . . , q ′ j ) such that (8. [START_REF] Massias | Effective Bounds for the Maximal Order of an Element in the Symmetric Group[END_REF]) and (8.14) hold, we set

By the unicity of the standard factorization into primes, the minimum in (8.12) is unique and (8.10) and (8.12) yield

For j = R -K and r = R, the j-uple q ′ 1 , q ′ 2 , . . . , q ′ j defined by q ′ i = P K+i satisfies (8.13) and (8.14) for all m ≥ 0; so, H(R-K, P R ; m) is at most P K+1 P K+2 . . . P R and is finite.

A combinatorial algorithm to compute H and G

Definition 12. For every integers (r, j), 1 ≤ r ≤ R and 1 ≤ j ≤ R -K, we define m j (P r ) = P K+1 + P K+2 + . . . + P K+j -(P r + P r-1 + . . .

(8.17)

Remark: If j ≥ r+1, (8.13) cannot be satisfied and, from (8.15), H(j, P r ; m) = +∞ for all m ≥ 0. If j ≤ r, from (8.14), it follows that, if m ≥ m j (P r ), H(j, P r ; m) ≤ P r P r-1 . . . P r-j+1 while, by (8.15), if m < m j (P r ), H(j, P r ; m) = +∞. So that, in all cases, if m < m j (P r ), H(j, P r ; m) = +∞. Note that, for j fixed, m j (P r ) is non-increasing on r since, for j ≤ r,

and, for j ≥ r + 1, m j (P r-1 ) and m j (P r ) are both +∞. On the other hand, if j ≤ min(r, R -K) for every m such that m ≥ M j (P r ) = P K+1 + P K+2 + . . . + P K+j -(P 1 + P 2 + . . . + P j ), H(j, P r ; m) is equal to P 1 P 2 . . . P j .

But this quantity is equal to

which is clearly positive since, from (9.3), p k+1 > m > 9δ 2 holds and (9.5) is proved.

Let q be a prime satisfying p k+1m ≤ q ≤ q. In view of proving (9.4), let us show that

holds. Let q ′ be any prime dividing the denominator of G(p k+1 , mp k+1 + q); we should have p k+2q ′ ≤ mp k+1 + q i.e., q ′ ≥ p k+1 + p k+2mq which yields from (9.5), (9.36) and ( 9.3)

Therefore, q ′ = q, and after a possible simplification by p k+1 , p k+1 q G(p k+1 , mp k+1 + q) ∈ G(p k , m) (defined in (8.1)), which, from (8.2), implies (9.37).

From (9.36) and ( 9.3), we have 0 < 2δ < m, and the prime p = p k+1 + δm satisfies p < p k+2δ, and thus is smaller than any prime factor of the denominator of G(p k+1 , δ). Therefore, after possibly simplifying by p k+1 , the fraction Φ = p k+1 p G(p k+1 , δ) belongs to G(p k , m) and we have from (8.2) and (9.2)

So, hypotheses (9.24) and (9.25) being fullfilled, we may apply Lemma 12, (v) which, under the notation (9.26), asserts that

, and (9.38) gives

which, with (9.37), completes the proof of (9.4) and of Proposition 10. 

Some results

With the maple program available on the web-site of J.-L. Nicolas, the factorization of g(n) has been computed for some values of n. The results for n = 10 6 , 10 9 , 10 12 , 10 15 are displayed in Fig. 6. For primes q 1 < q 2 let us denote by [q 1 -q 2 ] the product q1≤p≤q2 p. The bold factors in the values of g(n) are the factors of the plain prefix π of g(n), defined in (8). On a 3GHz Pentium 4, the time of computation of g(n) is about 0.02 second for an integer n of 6 decimal digits and 10 seconds for 15 digits.

Open problems 11.1 An effective bound for the benefit

Let us define ben g(n) by (6.1) with N and ρ defined by (5.1) and (4.10). Is it possible to get an effective form of (6.7), i.e., ben g(n) + nℓ(g(n)) ≤ Cρ for some absolute constant C to determine? From (11.2) and (1.2), it follows that g(n) ≤ G(n) holds for all n's and it has been shown in [START_REF] Nicolas | Comparaison des ordres maximaux dans les groupes S n et GL(n, Z)[END_REF] that lim n→∞ G(n)/g(n) = ∞.

Is it possible to adapt the algorithm described in this paper to compute G(n) up to 10 15 ?