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Constants of concentration for a simple recurrent random walk on

random environment

Pierre Andreoletti ∗

January 22, 2009

Abstract: We clarify the asymptotic of the limsup of the size of the neighborhood of concentration
of Sinai’s walk improving the result in [And07]. Also we get the almost sure limit of the number of
points visited more than a small but fixed proportion of a given amount of time.

1 Introduction, and Results

The one-dimensional recurrent random walk on random environment (thereafter abbreviated RWRE)
we treat here, also called Sinai’s walk, has the property to be localized at an instant n in a neighborhood
of a point of the lattice. This point can be described from the random environment and depends on
n (see [Sin82], [Gol86], [Zei01], [And05]), its limit distribution is also known (see [Gol84], [Kes86]).
In addition to this aspect of localization, this random walk has the property to spend a large amount
of time in a single point of the lattice, this property was first en-lighted by [R8́9]. To be more precise,
let us define the local time (L) of the random walk (Xn, n ∈ N). Let k ∈ Z and n ∈ N

∗

L(k, n) =
n
∑

i=1

11Xi=k,

L(A, Z) =
∑

k∈A

L(k, n), A ⊂ Z,

L∗(n) = sup
k∈Z

L(k, n).

[R8́9] shows that lim supn
L∗(n)

n ≥ const > 0, P a.s. and more recently [GPS] get the more precise

result lim supn
L∗(n)

n = c1, P a.s. giving an explicit formula for c1 as a function of the support of the
distribution of the random environment.
In this paper we mainly answer one of the question asked in [And07], more precisely we are interested
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in random variables related to the local time: let x ∈ Z, 0 ≤ β ≤ 1, r ∈ N, Ir(x) = {x − r, x − r +
1, · · · , x, · · · , x + r}, we define

Yn,β = inf
x∈Z

inf(r > 0,L(Ir(x), n) ≥ βn).

Yn,β measure the size of a neighborhood where the walk spends more than a proportion β of the total
amount of time n. We call Yn,β the concentration variable of (Xn, n ∈ N), the concentration is the
property of the random walk to spend a large amount of time in a negligible interval comparing to a
typical fluctuation of the walk. The first asymptotics for Yn,β can be found in [And06], more recently
[And07] get the following

lim inf
n

Yn,β ≤ const(1 − β)−2, P a.s. (1.1)

Some more work was needed to improve the inequality 1.1 into an equality, and especially to show
that (1 − β)−2 is not the good behavior. We get it here mainly by applying a method of [GPS].
In this paper we are also interested in a second variable that we define below, let δ > 0:

Zn,δ =
∑

x∈Z

11{L(k,n)≥δn}.

Zn,δ counts the number of points of the lattice visited more than δn times. Our second result give the
function m that satisfies for δ small enough lim supn Zn,δ = m(δ), P.a.s..
It is time now to define the model and present the results. The simple random walk on random envi-
ronment we are dealing with is defined from two processes, the first one, called random environment,
is a sequence of i.i.d. random variables α ≡ (αi, i ∈ Z) with distribution P , each of the αi belonging
to the interval (0, 1). The second one (Xn, n ∈ N) is a birth and death process for all fixed α, with
transition of probabilities given by P

α[Xn+1 = i+ 1|Xn = i] = 1−P
α[Xn+1 = i− 1|Xn = i] = αi. The

whole process is defined on the probabilty space (Ω × Z
N,F × G, P) where Ω := (0, 1)Z is the state

space of the random enviromnent equiped with its Borel σ-field F , G is the Borel σ-field associated
to Z

N and for all F ∈ F and G ∈ G, P[F × G] = P ⊗ P
α[F × G] =

∫

F P (dw1)
∫

G P
α(w1)(dw2). The

one-dimensional RWRE we are interested in is almost surely recurrent for almost all environment.
[Sol75] proved that the necessary and sufficient hypothesis to get such a process is

E[ǫ0] = 0, (1.2)

where (ǫi ≡ log 1−αi

αi
, i ∈ Z). We also add the hypothesis

V ar[ǫ0] > 0 (1.3)

to get a non-tivial RWRE, and

P (|ǫ0| ≤ η) = 1, η > 0 (1.4)

for simplicity. We can now give the results which depend on the following constants,

Ā := sup{x : x ∈ supp(α0)} ∈ (1/2, 1], and ᾱ := inf{x : x ∈ supp(α0)} ∈ [0, 1/2),

α̃ = ᾱ/(1 − ᾱ) and Ã = (1 − Ā)/Ā.

First le us recall one of the results of [GPS], and give the explicit formula for c1 that will be useful in
the sequel:
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Theorem 1.1. ([GPS]) Assume that 1.2, 1.3 and 1.4 are verified, then

P a.s. lim inf
n

L∗(n)

n
= c1,

where c1 = (2Ā − 1)(1 − 2ᾱ)/(2(Ā − ᾱ)min(Ā, 1 − ᾱ)).

Our first result is the following,

Theorem 1.2. Assume that 1.2, 1.3 and 1.4 are verified, for all 0 ≤ β ≤ 1,

P a.s. lim inf
n

Yn,β =







0 if 0 ≤ β ≤ c1,
f(β) if c1 < β < 1,
+∞ if β = 1,

(1.5)

where f(β) is the smallest integer that satisfies

(1 − α̃)(1 − Ã)

2(1 − α̃Ã)
sup
x∈Z





∑

k∈If(β)(x)

F (k) + F (k − 1)



 ≥ β,with (1.6)

F (l) =











α̃l(α̃11{α̃<Ã} + 11{α̃≥Ã}) if l > 0,

α̃11{α̃<Ã} + 11{α̃≥Ã} if l = 0,

Ã−l−1(11{α̃<Ã} + Ã11{α̃≥Ã}) if l < 0,

(1.7)

and 11 the indicator function.
Moreover if Ā = 1 − ᾱ, the result get simpler and f(β) is the smallest integer that satisfies:

1 −
(1 + α̃)α̃f(β)−1

2
≥ β. (1.8)

Notice that max(F (k), k ∈ Z) = 1, we can achieve this maximum by taking l = 0 if α̃ ≥ Ã or
l = −1 if α̃ < Ã. Notice also that the site, say a+, where the supremum in 1.6 is achieved depends on
α̃ and Ã: if α̃ ≥ Ã then a+ ≥ 0 otherwise a+ ≤ 0. For the random walk this means that the center
of the interval of concentration in the infinite valley, defined in the next section, is not necessarily the
site 0, and is likely to be in a region where the environment is the flattest.

The other interesting part of Theorem 1.2 is that it leads directly to the asymptotic case when β
gets close to one:

Corollary 1.3. Assume that 1.2, 1.3 and 1.4 are verified,

P a.s. lim
β→1−

lim inf
n

Yn,β

| log(1 − β)|
= max

(

1

| log Ã|
,

1

| log α̃|

)

. (1.9)

Remark 1.4. The upper bound obtained in [And07] (see 1.1) was pretty far from reality. The case
β = 1 can be easily deduce from 1.9, the case 0 ≤ β ≤ c1 is a direct consequence of Theorem 1.1.

The second theorem deals with Zn,δ

Theorem 1.5. Assume that 1.2, 1.3 and 1.4 are verified,

P a.s. lim
δ→0+

δ lim sup
n

Zn,δ = 1. (1.10)
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This therorem shows that when δ is small, lim supn Zn,δ behaves like 1/δ, that is we get the same limit
behavior than for a simple symmetric random walk with finite state space given by {1, 2, · · · , 1/δ}
with reflecting barrier at 1 and 1/δ.

Remark 1.6. Notice that by definition of the random walk lim supn Zn,0 = +∞, P.a.s. Thanks to
Theorem 1.1 for all δ > c1 lim supn Zn,δ = 0, P.a.s, finally regarding to (1.12) in [GPS], lim infn Zn,δ =
0, P.a.s.

2 Proof of the results

A fundamental notion for the study of Sinai’s random walk is the random potential (Sk, k ∈ Z)
associated with the random environment:

Sk :=

{ ∑

1≤i≤k ǫi, if k = 1, 2, · · ·
∑

k+1≤i≤0 −ǫi, if k = −1,−2, · · ·

S0 := 0,

recall that ǫi = 1−αi

αi
for all i ∈ Z. Let (W+(x), x ∈ Z) be a collection of random variables distributed

as S conditioned to stay non-negative for all x > 0 and strictly positive for x < 0, and in the same way
(W−(x), x ∈ Z) is a collection of random variables distributed as S but conditioned to stay strictly
positive for all x > 0 and non-negative for x < 0. Notice that under 1.2, W+ and W− are well defined
and

∑

x∈Z
exp(−W±(x)) < ∞, a.s. (see [Ber93] or [Gol84]). From W+ and W− we define two random

probability measures, µ+ and µ− as follows, let x ∈ Z,

µ±(x) = µ±(x,W±) :=
exp(−W±(x − 1)) + exp(−W±(x))

2
∑

x∈Z
exp(−W±(x))

. (2.1)

Let Q+ (resp. Q−) the distributions of µ+ (resp. µ−), define Q = 1/2(Q+ + Q−) the distribution of a
random measure called µ. Let l1 = {l : Z → R, ||l|| :=

∑

x∈Z
|l(x)| < +∞}, a main ingredient in the

proof of the theorems is the following result ([GPS] Corollary 1.1), for all functions, f : l1 → R which
is shift-invariant,

lim
n→+∞

E

[

f

(

L(x, n)

n
, x ∈ Z

)]

= E[f({µ(x), x ∈ Z})]. (2.2)

2.1 Proof of Theorem 1.2

Define

Rn(r) = sup
x∈Z

∑

k∈Ir(x)

L(k, n)

n
,

where Ir(x) is defined above 1.1, from 2.2 we get

Rn(r) → sup
x∈Z

∑

k∈Ir(x)

µ(x), in law. (2.3)

Moreover it was proven in [And06] (see also [GS02]) that

lim sup
n

Rn(r) = const ∈ [0,+∞), P.a.s., (2.4)
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then 2.3 and 2.4 yield the, easy to get fact

lim sup
n

Rn(r) ≥ g(r) := sup







z, z ∈ supp



sup
x∈Z

∑

k∈Ir(x)

µ(k)











, P.a.s. (2.5)

The next step is to determine which environment maximizes supx∈Z

∑

k∈Ir(x) µ(k). It is not surprising
that this environment is almost the same of the media that maximizes sup {z, z ∈ supp (supx∈Z µ(x))}
in [GPS]. We will restrict our analysis to µ+ (the restriction of µ to Q+), and shortly discuss what
happens under Q−.
The definition of the maximizing environment (the infinite valley) is given by : for all x ∈ Z

∗
+ assume

α+
x := ᾱ, for all x ∈ Z

∗
−, α+

x := Ā and α+
0 = ᾱ11{1−Ā≥ᾱ} + Ā11{1−Ā<ᾱ} ≡ ᾱ11{Ã≥α̃} + Ā11{Ã<α̃}. Notice

that in [GPS], the value of α0 is chosen in such a way that the random walk starting from 0 is pushed
on the site (+1 or -1) from where it as a better chance to get back to 0. Here things are a bit different,
and the value of α0 is taken in such a way that the walk starting from 0 is pushed to the side where
it will encounter the center of the interval of concentration.

With this choice we have the following expression for the exponential of the maximizing potential
W̄+:

exp(−W̄+(x)) =











α̃x if x > 0,
1 if x = 0,

Ã−x−1
(

1
α̃11{α̃<Ã} + Ã11{α̃≥Ã}

)

if x < 0.
(2.6)

From 2.6 we easily get the following expression for g(r):

g(r) =
(1 − α̃)(1 − Ã)

2(1 − α̃Ã)
sup
x∈Z





∑

k∈Ir(x)

F (k) + F (k − 1)



 , where we recall (2.7)

F (l) =











α̃l(α̃11{α̃<Ã} + 11{α̃≥Ã}) if l > 0,

α̃11{α̃<Ã} + 11{α̃≥Ã} if l = 0,

Ã−l−1(11{α̃<Ã} + Ã11{α̃≥Ã}) if l < 0.

(2.8)

of course the value of the supremum in 2.7 depends on Ã and α̃. Let us denote a+ ∈ Z the coordinate
of this supremum. Notice that a+ is deterministic but not necessarily equal to 0, moreover if a+ < 0
then 0 ∈ Ir(a

+) whereas if a+ > 0 either 0 ∈ Ir(a
+) or 1 = min{x, x ∈ Ir(a

+)}. This because the
maximum of F is 1.

To turn the inequality 2.5 into an equality we have to show that

lim sup
n

Rn(r) ≤ g(r), Q+ ⊗ P
α.a.s.

To get this last inequality we use the same method as in [GPS]. The proof is based on two facts, the
first one says that the distribution of (L(Ir(x), n), n ∈ N) under P

α is stochasticaly dominated by the
distribution of (L(Ir(a

+), n), n ∈ N) under P
W̄+

(Lemma 3.2 in [GPS]). The second fact says that,
under P

W̄+
(Xn, n ∈ N) is a positive recurrent Markov chain with invariant probability measure given

by µ+, therefore, as Ir(a
+) is finite, for all ǫ > 0, P

W̄+
[

∑

k∈Ir(a+)
L(k,n)

n ≥
∑

k∈Ir(a+) µ̄+(x) + ǫ
]

≤

exp(−C(ǫ)n). C(ǫ) is strictly positive constant depending only on ǫ. We finally get that

lim sup
n

Rn(r) = g(r), Q+ ⊗ P
α.a.s. (2.9)
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If we do the same computations with respect to Q−, the above result remains the same, indeed we can
take the same definition for W̄− we took for W̄+ because both are equal to 0 only in 0. In order to get
Theorem 1.2 from 2.9 it suffices to notice that Yn,g(r) is in some sense the dual of supx∈Z

∑

k∈Ir(x)
L(k,n)

n ,
indeed, let 0 < β < 1, γ > 0 we easily get the following assertions,

lim sup
n

Rn(f(β)) ≤ β ⇒ lim inf
n

Yn,β ≥ f(β) − γ, (2.10)

lim sup
n

Rn(f(β)) ≥ β ⇒ lim inf
n

Yn,β−γ ≤ f(β), (2.11)

where f(β) is the smallest integer that satisfies the following inequality:

g(f(β)) ≥ β. (2.12)

By collecting the last four equations and by letting γ goes to 0 (lim infn Yn,β−γ increases when γ ց 0),
we finally get that lim inf Yn(β) = f(β) P.a.s.

2.2 Proof of Theorem 1.5

First we notice that for all fixed δ, Zn,δ is bounded because L(k, n) ≤ n, in fact it is also clear that
Zn,δ ≤ 1/δ, so we can apply the 3 steps of the proof of Lemma 3 of [GS02] (see also Section 2.1 in
[And06]) for Zn,δ instead of L∗(n)/n to show that lim supn Zn,δ = const ∈ [0,+∞), P.a.s., with this
result and 2.2 we easily get that

lim sup
n

∑

x∈Z

11{L(k,n)/n≥δ} ≥ m(δ) = m(δ, µ) := sup

{

z, z ∈ supp

(

∑

x∈Z

11{µ(x)≥δ}

)}

, P.a.s. (2.13)

As before we need to determine a random environment that maximizes
∑

x∈Z
11{µ(x)≥δ}, this time it

is not exactly the same as the preceding one. Indeed we build an infinitely deep valley such that the
asymptotic of the normalized local time reach the level δ and also flat at the bottom of this valley (see
Figure 1) such that there is a large number of points where the normalized local time reach this level
δ. We easily get that such an environment leads us to

exp(−W̄+(x)) =







α̃x if x > g(δ),
1 if 0 ≤ x ≤ g(δ),

Ã−x if x < 0,

under Q+

and

exp(−W̄−(x)) =







α̃x if x > 0,
1 if − g(δ) ≤ x ≤ 0,

Ã−x−1 1
α̃ if x < −g(δ).

under Q−

where g(δ) is a positive integer that will be determined later. Under Q+, we get that

µ̄+(x) := µ+(x, W̄+) =
exp(−W̄+(x − 1)) + exp(−W̄+(x))

2(α̃g(δ)+1/(1 − α̃) + g(δ) + 1 + Ã/(1 − Ã))
(2.14)

and a similar expression for µ̄− := µ−(x, W̄−). Notice that for all x ∈ G(δ) := {1, · · · , g(δ)}, µ̄+(x)
reaches its maximum which is equal to 1/(ᾱg(δ)+1/(1− ᾱ) + g(δ) + 1 + Ā/(1− Ā)). Let us decompose

6



0 0
Trajectory of W̄+ in Theorem 1.2

x ∈ Z

W̄+(x)W̄+(x)

x ∈ Z

Trajectory of W̄+ in Theorem 1.4

Figure 1: Infinite valleys, (1 − ᾱ < Ā)

m̄(δ) := m(δ, µ̄+) in the following way

m̄(δ) := m̄S(δ) + m̄L(δ), with

m̄S(δ) :=
∑

x∈ZrG(δ)

11{µ̄+(x)≥δ}, and

m̄L(δ) :=
∑

x∈G(δ)

11{µ̄+(x)≥δ}.

We easily get that

m̄L(δ) = 0 ⇒ m̄S(δ) = 0,

m̄L(δ) > 0 ⇒ m̄L(δ) = g(δ),

therefore

m̄(δ)11{m̄(δ)>0} = g(δ) + m̄S(δ) ≥ g(δ). (2.15)

Moreover to get m̄(δ) as large as possible, g(δ) must be the largest integer that satisfies the following

1/(α̃g(δ)+1/(1 − α̃) + g(δ) + 1 + Ã/(1 − Ã)) ≥ δ,

and therefore the largest integer such that

g(δ) ≤
1

δ
− 1 −

α̃g(δ)+1

1 − α̃
−

Ã

1 − Ã
.

The same computations lead to a similar expression under Q− (g(δ) ≤ 1
δ−1− 1

α̃
Ãg(δ)

1−Ã
− α̃

1−α̃ ). Assembling

what we did above yields to

1

δ
− 1 − max

(

1

α̃

Ãg(δ)

1 − Ã
+

α̃

1 − α̃
,
α̃g(δ)+1

1 − α̃
+

Ã

1 − Ã

)

≤ lim sup
n

Zn,δ ≤
1

δ
, P.a.s.

As Ã < 1 and α̃ < 1, we get the theorem.

7



REFERENCES

[And05] P. Andreoletti. Alternative proof for the localisation of Sinai’s walk. Journal of Statistical
Physics, 118:883–933, 2005.

[And06] P. Andreoletti. On the concentration of Sinai’s walk. Stoch. Proc. Appl., 116:1377–1408,
2006.

[And07] P. Andreoletti. Almost sure estimates for the concentration neighborhood of Sinais walk.
Stoch. Proc. Appl., 117, 2007.

[Ber93] J. Bertoin. Spliting at the infimum and excursoins in hal-lines for random walks and lvy
processes. Stoch. Proc. Appl., 47: 17–35, 1993.

[Gol84] A. O. Golosov. Localization of random walks in one-dimensional random environments.
Communications in Mathematical Physics, 92: 491–506, 1984.

[Gol86] A. O. Golosov. On limiting distribution for a random walk in a critical one-dimensional
random environment. Com. of the Mosc. Math. Soc., pages 199–200, 1986.

[GPS] N. Gantert, Y. Peres, and Z. Shi. The infinite valley for a recurrent random walk in random
environment. Preprint.

[GS02] N. Gantert and Z. Shi. Many visits to a single site by a transient random walk in random
environment. Stoch. Proc. Appl., 99: 159–176, 2002.

[Kes86] H. Kesten. The limit distribution of Sinai’s random walk in random environment. Physica,
138A: 299–309, 1986.
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