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A neuro-fuzzy monitoring system. Application

to flexible production systems.

N. Palluat, D. Racoceanu, N. Zerhouni

Laboratoire d’Automatique de Besançon, UMR CNRS 6596, 24 rue Alain Savary,
25000 Besançon, France.

Abstract

The multiple reconfiguration and the complexity of the modern production system
lead to design intelligent monitoring aid systems. Accordingly, the use of neuro-
fuzzy technics seems very promising. In this paper, we propose a new monitoring
aid system composed by a dynamic neural network detection tool and a neuro-fuzzy
diagnosis tool. Learning capabilities due to the neural structure permit us to update
the monitoring aid system. The neuro-fuzzy network provides an abductive diagno-
sis. Moreover it takes into account the uncertainties on the maintenance knowledge
by giving a fuzzy characterization of each cause. At the end, we illustrate the in-
dustrial usefulness of the proposed dynamic neuro-fuzzy monitoring system trough
a flexible production system monitoring application.

Key words: UML, neural network, neuro-fuzzy, diagnosis, monitoring,
maintenance, SCADA, CMMS, FMECA, fault tree.
PACS: 07.05.Mh, 87.57.Ra

1 Introduction

The improvement of the complexity of real production systems in a hard
concurrent marketing context encourages the managers to give more impor-
tance to the maintenance functions. The industrial monitoring, which is one
of the most significant of them, is divided into two tasks: the failure detection,
and the failure diagnosis (failure localization and failure causes identification)
(Pencolé, 2002; Tromp, 2000; Wan et al., 1999). More the system is complex,
more the monitoring is difficult. An efficient monitoring system must be easy
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to improve due to system reconfiguration and experts / operators experiences
feedbacks.

The heterogeneity of maintenance and production information is taken into
account for the creation of our monitoring system. These information can be
provided by:

• Failure Modes Effects and Critical Analysis - FMECA,
• Fault Tree - FT,
• Functional analysis,
• Production and maintenance operators and managers experiences,
• Computerized Maintenance Management System - CMMS,
• Supervisory Control And Data Acquisition - SCADA,
• . . .

The proposed method concern all phases of the monitoring function: the fault
detection and the fault diagnosis.

• Dynamic detection tool. The input of the detection system is given by sensors
data. These data are treated dynamically. The output gives the operating
mode (symptom) of the supervised system.
• Diagnosis tool. The input of the diagnosis system will be the degree of mem-

bership of each operating mode given by the detection. We find also external
qualitative or quantitative inputs such as information given by operators to
improve diagnosis. The output gives a list of possible causes ordered by
credibility degree 1 , and as complementary information: the severity degree.
These degrees help the maintenance manager to evaluate and to plan the
maintenance actions.

Fig. 1. Overview of the monitoring aid system.

During the process, the dynamic detection tool scans continuously the system.
When a failure or a degradation occurs, an alarm is raised and the diagnosis
tool starts. According to the information provided by the detection tool, the
diagnosis tool proposes to the operator the possible causes of the symptom as
well as the fuzzy interpretation of these causes. This point of view enables us
to predict a possible failure.

1 Credibility value / degree = membership degree of a variable to a membership
function. In our work, the membership degree can be seen as a belief indicator
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Our design approach follows the Unified Modelling Language (UML) (Larman,
2002; Rumbaugh et al., 1998). Several reasons led us to this choice (Morley
et al., 2003):

(1) UML is a language normalized by OMG 2 (OMG, 2003) and UML spec-
ifications are free access.

(2) Interest shown by computer specialists for this modelling language.
(3) Possibility to use the same language since the requirements expression

until the application generation.
(4) Ability to use the object oriented concepts to improve the design ap-

proach.

The requirements of the monitoring aid system are:

(1) ability to use an incomplete database and knowledge base;
(2) possibility to take into account new knowledge;
(3) ability to identify false alarms;
(4) easy to use;
(5) interfacing with industrial tools for maintenance management (FMECA,

Fault Tree, CMMS);
(6) interfacing with industrial data acquisition tools (SCADA - Supervisory

Control And Data Acquisition, Ethernet . . . );
(7) integration of the tool in an industrial platform.
(8) possibility to interface with HMI (Human-Machine Interface) on PDA,

laptop . . . ;

The paper is structured in four parts. The following paragraph presents the
UML method to design our tool, three important use cases are developed. In
a second time, we present important criteria to choose detection and diagnosis
tools. In a third part, we briefly describe the two tools. At last, an industrial
problem will be treated.

2 UML specification of the monitoring aid system

UML is articulated around several types of diagrams, each one of them being
dedicated to the representation of the particular concepts of a software system.
Our study focuses on use case . In order to develop the computing code of the
monitoring aid system from the user requirements, we use the method given
in Roques (2002).

2 OMG web site: http://www.omg.org/,
OMG web site about UML: http://www.uml.org/
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2.1 Use cases

Use cases enable to define the limits of the system and its relations with the
environment. A use case is a specific manner to use the system. To lead to the
use cases, we follow the next modelling approach:

• Identify the actors;
• Identify the use cases;
• Structure the use cases in packages;

2.1.1 Identification of the monitoring aid system actors

In our case, human actors are:

• Maintenance Manager;
• Tool Expert;
• Maintenance Operator.

We also take into account non-human actors 3 :

• SCADA - Supervisory Control And Data Acquisition;
• FT - Fault Tree;
• CMMS - Computerized Maintenance Management System;
• FMECA - Failure Modes Effects and Critical Analysis.

2.1.2 Identification of the use cases

We define a set of use cases that corresponds in different ways according to
the actors that interacts with the monitoring aid system.

For the Maintenance Manager, we can define a set of four use cases:

• create a new tool, which allows to send to the Tool Expert all necessary data
for the creation of the tool (configuration and initialization);
• update the configuration of the tool, allowing the Maintenance Manager to

add a sensor to the detection tool;
• update the model of the tool, updating the settings of the tool when new

maintenance information come from the CMMS;
• raise an alert, occurring when the monitoring aid system detects or predicts

a failure.

3 to simplify using UML, we do not make the distinction between methods, tools
and systems; all of them are informational actors.
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For the Maintenance Operator, we have only one use case:

• ask for a diagnosis aid, which allows to the Maintenance Operator to ask
an assistance to the monitoring aid system.

At last, for the Tool Expert, we have four use cases:

• create a new tool, already presented in Maintenance Manager use cases;
• configure the tool, which allows to the Tool Expert to configure the moni-

toring aid system with the data extracted from the SCADA and the FT;
• initialize the tool, which allows to the Tool Expert to initialize the configured

monitoring aid system with the data acquired from the FMECA and the
CMMS, and to launch the data acquisition from the SCADA;
• update the configuration of the tool, already presented in Maintenance Man-

ager use cases.

2.1.3 Packages

To improve our system, we will organize the use cases and group them in
coherent functional sets. We thus create three packages:

• Actors package, set of all actors;
• Off-line package, set of use cases used when the monitoring aid system does

not work : Create a new tool, Configure the tool, and Initialize the tool;
• On-line package, set of use cases when the monitoring aid system is used:

Update the configuration, Update the model, Raise an alert and Ask for a
diagnosis aid.

Three use cases have ”include links”:

• between the creation of the new tool and the configuration.
• between the configuration of the tool and the initialization.
• between the creation of the new tool and the initialization.

We regroup all informations 4 in figures 2(a) and 2(b).

2.2 Detailed specification of the requirements

We specify the use cases, established previously, in a detailed textual descrip-
tion inspired by (Cockburn, 2000).

4 We show the Actors inside the Off-line and On-line package to simplify the com-
prehension of the figures.
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(a) Off-line package (b) On-line package

Fig. 2. Packages

We present three important use cases: Configure the tool, Initialize the tool
and Ask for a diagnosis aid. These use cases define the principal characteristics
of our monitoring aid system.

2.2.1 Configure the tool

We assume that as hardware as software are installed and functional and
the Maintenance Manager knows the system. Main Scenario of the diagnosis
tool configuration starts with the request of the Fault Tree. The Tool Expert
translates the Fault Tree into a diagnosis tool. The architecture of the tool
will also take into account the sensors availability through the SCADA.

Main Actor: Tool Expert.
Secondary Actors: The systems FT and SCADA.
Goal: Configuration of the tool.
Precondition: The maintenance manager asks to the tool expert to create a

new tool.
Postcondition: The tool is configured.
Main scenario:

(1) FT actor provides the fault tree to the Tool Expert;
(2) the Tool Expert configures the diagnosis tool with the fault tree;
(3) the Tool Expert configures the detection tool i.e. subscription to SCADA

in order to access information from useful sensors.

2.2.2 Initialize the tool

The monitoring aid system initialization consists in setting values that were
extracted from the existent FMECA and CMMS. This process will take into
account the criticity (frequency, severity) of the failures and the associated

6



Symptom and Origin given by the CMMS.

Main Actor: Tool Expert.
Secondary Actors: The systems FMECA, CMMS and SCADA.
Goal: Initialization of the tool.
Precondition: The tool is configured.
Postcondition: The tool is initialized.
Main scenario:

(1) FMECA actor provides the FMECA to the Tool Expert;
(2) the Tool Expert analyzes the FMECA and extracts useful data (Oper-

ating modes, causes, frequencies and severities);
(3) the Tool Expert initializes the detection and diagnosis tools with the

extracted data;
(4) the Tool Expert initializes the diagnosis tool i.e. subscription to main-

tenance events of the CMMS.
(5) detection tool receives sensors information from SCADA.

2.2.3 Ask for a diagnosis aid

A failure has been detected or predicted and/or the Maintenance Operator
needs a diagnosis aid. The starting point of the diagnosis is the Maintenance
Operator assistance request. The system will suggest then a diagnosis and,
finally, the Maintenance Operator will validate the diagnosis.

Main Actor: Maintenance Operator.
Goal: The tool gives a diagnosis aid.
Precondition: The tool is working (Configured and Initialized). A failure was

detected or predicted and/or the Maintenance Operator needs the assistance
of the tool.

Main scenario:
(1) Maintenance Operator requests a diagnosis aid;
(2) the system provides a set of possible causes classified by credibility and

severity degrees;
(3) Maintenance Operator validates the diagnosis.

Exceptions:
1a. Maintenance Operator chooses a detailed diagnosis.
(1) Maintenance Operator reaches a specialized form allowing him to add

information which cannot be given by the detection tool (smoked, odors
. . . ) and the use case continue to the step 2 of the main scenario.

3a. Maintenance Operator is not satisfied with the results.
(1) Maintenance Operator returns to the step 1 of the main scenario to

launch a new request.
(1) Maintenance Operator gives up the request. The use case finishes (fail-

ure).
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2.3 Synthesis of UML on the monitoring aid system

We present the seven use cases of the monitoring aid system and we describe
three of them. These descriptions will allow us:

• to determine the optimized tools for the requirements presented earlier, and
• to specify how to use the monitoring aid system.

3 Choice of detection and diagnosis tools

Using the requirements defined before, we can specify tools answering to these
specifications.

Monitoring methodologies are based on two concepts (Dash and Venkatasub-
ramanian, 2000):

• monitoring methods with process model and
• monitoring methods without model.

The model of a system is generally difficult to obtain, especially for complex
systems reconfigurable or subjected to hazard. For flexibility and adaptability
reasons, we choose the class of monitoring methods without model and more
precisely using artificial intelligence technics.

3.1 Choice of the detection tool

Among AI technics, our study focuses on the use of pattern recognition for
the detection with the artificial neural networks. This tool gives interesting
results thanks to:

• their training and parallel computation capabilities,
• their capacity to solve problems inherent to the system non-linearity,
• their computation speed when implemented in hardware.

The training phase uses a data base obtained from industrial maintenance
tools (SCADA, FMECA . . . ) able to give sensors information and associated
operating modes. The use of neural networks for industrial applications such
as dynamic detection requires to take into account the temporal aspect. Ac-
cordingly, we have done a state of art of the temporal neural networks (Palluat
et al., 2005). The conclusion of this state of art permit us to choose the Re-
current Radial Basis Function Neural Network as the most efficient detection
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tool.

3.2 Choice of the diagnosis tool

Diagnosis takes into account numeric and symbolic data. Moreover, diagnosis
needs causal knowledge on the system. Indeed, a failure is described by the
relation between its causes and its effects. Thus, diagnosis problem consists of
finding explanations from the observed symptoms. The inference that allows
to ”go back to the causes” is called Abductive Inference (Monnin et al., 2004;
Peng and Reggia, 1990).

Given the complexity of diagnosis problems, many methods have been devel-
oped using different AI tools. In (Monnin et al., 2004), the authors give a
classification of these methods by kind of diagnosis (based on behavioral mod-
els, recognition methods, based on explicative models). They determined four
important criteria to resume the properties of a diagnosis tool:

(1) The model acquisition is the first step to make a diagnosis tool. Thus,
it is necessary to have knowledge on system to diagnose. The explicative
models seem to be the best adapted to express the causal knowledge on
a system, which are essential to carry out a diagnosis.

(2) These knowledge based on human expertise are uncertain. Fuzzy logic is
the best tool to express and take into account these uncertainties.

(3) Moreover, a diagnosis tool has to be robust and relatively generic.
(4) At last whatever tool we use, results have to be validated by an expert.

Taking into account these requirements for the diagnosis, we focus on methods
based on explicative models. They are well adapted for the modelling of the
causal relations essential to the diagnosis.

In our study, we consider a neural network to model relations between fail-
ures/degradations and causes. Moreover, in order to take into account uncer-
tainties linked to the maintenance knowledge, we introduce fuzzy logic, able
to introduce fuzzy degrees of credibility associated to the failures. Finally, we
use an abductive approach that characterizes the causes starting from the ob-
servations. The algorithm corresponds to a downward approach in the fault
tree. Once the top event exists with a certain fuzzy degree of credibility (the
observation is quantitative), it is propagated in the net. So, each fault which
could be at the origin of the top event is characterized by its own fuzzy degree.
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4 Description of the monitoring aid system

4.1 Configuration of the monitoring aid system

4.1.1 Configuration of the detection tool

The detection tool is based on the recurrent RBF neural network (Zemouri
et al., 2001, 2003). The RRBF neural network considers the time as an internal
representation (Chappelier and Grumbach, 1998; Elman, 1990; Zemouri et al.,
2003). The dynamic aspect is obtained using an additional self-connection of
input neurons with a sigmoid activation function. These looped neurons are a
special case of the Locally Recurrent Globally Feedforward architecture, called
local output feedback (Tsoi and Back, 1994). The RRBF neural network can
thus memorize a part of the historic of the input signal. The following figure
shows this architecture:

Fig. 3. RRBF neural network

Inputs are connected to the sensors information through SCADA. These in-
formation are normalized before entering in the neural network. The RRBF
outputs will be defined in the Initialization phase.

The parameters of the input neurons are deducted from the dynamic of the
sensor signal. The output of the neuron i is defined by the next function:

Oi (t) =
1− exp (−ki · Ii (t)− ki · wi ·Oi (t− 1))

1 + exp (−ki · Ii (t)− ki · wi ·Oi (t− 1))
(1)

with Ii the input, wi the self-connection weight and ki the parameter of the
sigmoid.

The two parameters are obtained following the next algorithm:

Algorithm 1 Calculate γ = f (T, I, C, N, So)
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{T normalized training sequences}
{I number of inputs}
{C number of training sequences}
{N number of vectors in a training sequence}
{So forgetting threshold}
{Definition of the local variables}
γ, γnew, γmax, γnew

max, γmin, γnew
min, On−1, On, ∆ : real;

{Initialization of the local variables}
γ ← 1;
γmax ← 2;
γmin ← 0;
On−1 ← 1; {Initialization of the output}
∆← 0, 01; {Precision of γ}
{Calculate γ}
{γ is the product ki · wi constant for all i}
repeat

for i = 1 to N do

On ← 1− exp (−γ ·On−1)

1 + exp (−γ ·On−1)
;

On−1 ← On;
end for
{adjustment of the values of γ, γmax and γmin}
if On−1 ≤ So then

γnew
max ← γ;

γnew ← γmax + γ

2
;

γ ← γnew;
γmax ← γnew

max;
else

γnew
min ← γ;

γnew ← γ + γmin

2
;

γ ← γnew;
γmin ← γnew

min;
end if

until γmax − γmin ≤ ∆
for i = 1 to I do
{Calculate ki}

ki ←
ln
(
2 +
√

3
)

max
j∈C,l=1,...N

∣∣∣T j
i,l

∣∣∣ ;
{Calculate wi}
wi ← γ

ki

;

end for
return k, w;
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4.1.2 Configuration of the diagnosis tool

In the UML description, the transformation of the fault tree create the diag-
nosis tool. We have associated to each type of gate (in this paper, AND and
OR gate) a neuro-fuzzy architecture. The figure 4 shows this transformation.

Fig. 4. Transformation of AND and OR gates into a neuro-fuzzy architecture

We can see in this figure two types of neurons with the following activation
functions:

• linear activation function:

f (x, α) = x, ∀x ∈ [0, 1] (2)

• sigmoidal activation function:

f (x, α) =
1− exp (−α · x)

1 + exp (−α · x)
, ∀x ∈ [0, 1] (3)

Concerning the basic events (according to the definition of a fault tree event),
we introduce an additional transformation: each basic event is transformed
into a neuron with linear activation function. We will see the reason of this
transformation in the initialization phase.

4.2 Initialization of the monitoring aid system

4.2.1 Initialization of the detection tool

The RRBF neural network outputs are given by the failure modes of FMECA.

The learning algorithm of the detection tool is based on DDA (Dynamic De-
cay Adjustment) algorithm (Berthold and Diamond, 1995) which has been
modified following three points:

• any prototype can validate a training pattern;
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• a maximum standard deviation is added:

σmax ←
√√√√ − (0.1)2

2 · ln (θ+)
(4)

• conflicting prototypes will be adjusted only when there is an introduction
of a new prototype.

The hidden layer is composed of units with a selective response for some range
of the input variables. Each unit has an overall response function, a Gaussian:

R (x) = exp

(−‖x− r‖2
2 · σ2

)
(5)

Here x is the input, r is the center of the radial basis function (RBF) and σ
determines its standard deviation.

Algorithm 2 Modified DDA algorithm

{θ+ and θ−: two threshold to limit the activation between two conflicting
classes.}
{A is the weight for each RBF}
repeat
{Reset output weights}
for all prototypes i of class k pk

i do
Ak

i ← 0;
end for
{Train one complete epoch}
for all training pattern x of class c do

if ∃pk
i : Rk

i (x) ≥ θ+ then
Ak

i ← Ak
i + 1;

else
{”Commit”: Introduce new prototype}
add new prototype pc

mc+1 with:
rc
mc+1 ← x;
{Note that for the first neuron, the standard deviation will be: σmax}

σc
mc+1 ← min

{
σmax, max

k �=c∧1�j�mk

{
σ : Rc

mc+1

(
rk
j

)
� θ−

}}
;

Ac
mc+1 ← 1;

mc ← mc + 1;
{”Shrink”: Adjusting conflicting prototypes}
for all k 	= c, 1 � j � mk do

σk
j ← min

{
σmax, max

{
σ : Rk

j (x) < θ−
}}

;
end for

end if
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end for
until no further introduction of new prototype

4.2.2 Initialization of the diagnosis tool

In the UML description, the Tool Expert extracts data from FMECA and
introduces these data in the diagnosis tool. All the frequencies in the FMECA
are deducted by fuzzification from the MTBF. To calculate each α correspond-
ing at each frequency, it is necessary to know the number of frequencies. So,
we have s α (α1 . . . αs). We introduce a new α: α0 for causes which have never
happened. To determine each α we consider the following hypothesis:

• α0 is determined by:

f (0.5, α0) = 0.2 (6)

• αs is determined by:

f (0.5, αs) = 0.8 (7)

• all α are linearly distributed.

Following these hypothesis, we obtained all α by:

αi = 2 · ln
(

6 · s + 3 · i
4 · s− 3 · i

)
(8)

For the others α , we make an update of the neighborhood of the output neu-
rons. In Looney and Liang (2002), the authors developed a method for updat-
ing the neighborhood of bayesian network. In this method, the fuzzy influence
propagation is bidirectional. We use this notion of updating the neighborhood
on our study. The neighbors of a neuron N are the neurons directly or not
connected to it. The neighbors have two properties, their level and their fam-
ily link (parents or children). A neighbor of level 1 of a neuron N is directly
connected to this neuron N . A neighbor of level 2 is directly connected to a
neighbor of a level 1. A parent is a neighbor with the connection established
from him to the neuron N and a child is a neighbor with the connection from
the neuron N .

We define some principles which enable the determination of all α:

(1) each neuron have three states (”not tested”, ”testing” and ”tested”);
(2) each neuron with no children is in state ”tested”, the others are in state

”not tested”;
(3) each neuron with no children have is α determined by equation 8;
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(4) for all neighbor ”not tested” of level 1 and parent of a neuron ”tested”,
their states become ”testing”;

(5) for all neurons ”testing”, their α is determined by the maximum of the α
of their child of level 1 and their states become ”tested”;

(6) for all neurons ”tested”, if there are two neurons with the same name of
α 5 , then all the corresponding α takes the maximum value of α with the
same name.

In the example of the figure 5(b), the neurons N6, N10 and N11 have no chil-
dren and their states becomes ”tested” (condition 2). The corresponding α are
determined by the FMECA (condition 3). The states of neurons N4, N8, N9

and N2 become ”testing” (condition 4). αB of N4 is equal to the α of N6, αE

of N8 is equal to the α of N10 and αF of N9 and N2 is equal to the α of
N11 and the states of these three neurons become ”tested” (condition 5). The
condition 6 is verified in case of αF .

The advantage of this system is the link between the detection tool, RRBF
neural network, and the diagnosis tool, the neuro-fuzzy network. To connect
the two tools, we used the FMECA. The detection tool’s outputs are the
failure modes found in the FMECA. For each failure mode, we can find one
or many causes. These causes are present in the fault tree. So, the link is on
the state witch is the parent of all causes. For example, in the figure 5(a), if
C and E are the causes of the failure mode M, then the link will be on B.
All the output of the detection tool will be linked on the diagnosis tool. These
links will be the inputs of the neural networks. We will modify the network
to take this new information. The modification will modify the propagation
sens of the information. So, all causes will have a degree of credibility for each
ask for diagnosis aid. This modification of sens will affect also the neurons.
We introduce a new activation function which is used for the modification of
a neuron with sigmöıdal activation function. The new activation function is
logarithmic and is defined by:

f (x, α) = min
(
1,
−1

α
· ln

(
1− x

1 + x

))
, ∀x ∈ [0, 1] (9)

To modify the network we establish principles based on the update of the
neighborhood.

(1) each neuron have three states (”not tested”, ”testing” and ”tested”);
(2) all neurons are in state ”not tested”;
(3) each neuron linking with the detection tool or with an external event is

a neuron with linear activation function and its state is ”testing”;
(4) all neighbor ”not tested” of level 1 of a neuron ”tested” become the child

5 it’s the case for a AND gate, figure 4
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of this last one (modification of propagation sens if necessary) and their
states become ”testing”;

(5) for each neurons ”testing”, if all its parents are ”tested” its state become
”tested” else it is necessary to change the activation function 6 before it
become ”tested”.

In the example of figure 5, the event D is linked to the detection tool by
the degree fD. The state of the neuron N7 become ”tested” (condition 3).
The neurons N5, N8 and N9 become ”testing” and the propagation sens is
inversed between N7 and N5 (condition 4). N8 and N9 become ”tested”without
modification, but N5 change his activation function because his parent N3 is
”not tested” (condition 5). The modified network is on the figure 5(c).

In the figure 5(d), we add an external input that can be given by the operator
for a detailed diagnosis.

(a) Fault
Tree

(b) neuro-fuzzy
network

(c) neuro-fuzzy
network linked
with detection
tool

(d) neuro-fuzzy
network linked
with detection
tool and with
external input

Fig. 5. Example of transformation of the fault tree in a neuro-fuzzy network showing
the link with the detection tool and the addition of an input

After configuration and initialization phases, the monitoring aid system is
autonomous.

6 the neurons with linear activation function will not change, but the neurons with
sigmöıdal activation function become neurons with logarithmic activation function
and vice-versa
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5 Example

The proposed monitoring aid system was validated using a flexible production
system, available to the ”Institut de Productique”7 of Besançon (France). This
platform is equipped with several PLC communicating between them through
a local industrial network. The flexible system permits to move pallets which
can receive components to assembly.

The network allows to exchange the information received by the PLC concern-
ing the changes of states of the sensors, the sequences of the control program,
and operations made on the pallets.

The platform is divided into five stations. Each station has its own PLC. They
work independently.

For this example, we limit the study to the input of one station, involving the
actors SCADA, FT and FMECA. We can find below the extracted overview
of this critical part (Fig. 6), the extracted fault tree (Fig. 7) and the extracted
FMECA (Table 1).
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Fig. 6. Extracted overview of the critical part

We use the development software LabVIEW to implement our tool. We choose
LabVIEW because his environment is built to combine signal acquisition, mea-
surement analysis and data presentation, thus avoiding the intermediate stor-
age of those. We implement our monitoring aid system in an industrial com-
puter PXI proposed by National Instrument. The integration is thus simplified.
The figure 8 shows the prototype of our monitoring aid system.

7 Institut de Productique, Besançon, France http://www.
institutdeproductique.com/
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Fig. 7. Flexible manufacturing sub-system fault tree

Table 1
Flexible manufacturing sub-system extracted FMECA

Failure Modes Cause Frequency Severity

Pallet jam to the inner jack D1 sensor failure 4 2

Pallet jam to the inner jack S1 actuator jam up 3 4

Pallet jam to the inner jack Jack actuator failure 1 2

Fig. 8. Overview of the monitoring aid system prototype

Given the AND and OR influences and the link with the detection tool, we
obtain the neuro-fuzzy network shown in figure 9. AND/OR dependencies are
given with only two types of neurons with linear and sigmoidal activation. The
link with the detection adds a new type of neurons with logarithmic activation.

We assume that the detection tool gives the failure mode ”Pallet jam to the
inner jack” with the membership degree 0.57. These information are treated
by the diagnosis tool and the results are given in the figure 10.

This degree is propagated through the fuzzy neural network. The maintenance
knowledge of the FMECA and the causal relations of the fault tree used in
the fuzzy neural network allow to suspect the event corresponding to fE:
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Fig. 9. Neuro-fuzzy network of specified zone aith link with the detection tool

Fig. 10. Result of the diagnosis

”D1 sensor failure” as the fault origin with a credibility degree of 84.12%. This
information is pertinent with the learning information. it aids the maintenance
operator in his diagnosis.

No comparison with other approaches has been added in this article because
we develop a method which represents both part of monitoring (detection
and diagnosis) and we weren’t able to identify a technique with the same
property. We shall do a comparison for each part of the monitoring aid system.
Concerning the detection tool, a comparative study has been made in Palluat
et al. (2005). For the diagnosis tool, we can’t find a benchmark for diagnosis.
Diagnosis tools comparison is not easy because of the learning phase data, the
inputs and the outputs of the different techniques are not always of the same
type. For all these reasons, we make choice to not include a comparison in this
article.
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6 Conclusion

In this article, we present a new monitoring aid system designed using an UML
approach. Our system is divided into two parts: a dynamic neural network
detection tool and a neuro-fuzzy diagnosis tool.

Before using the neuro-fuzzy system, two steps are necessary: the first one is
the configuration where data are collected and extracted to create the tools
and the second one is the initialization where data are learned by the tools.

In use, the tools are in detection state where the dynamic neural network
determines in which mode the system works, with an associated membership
degree. When a failure or a degradation occurs, the detection tool raises an
alert. When a diagnosis is requested, the diagnosis tool uses data from the
detection tool to give possible locations and causes of the problem, classified
by credibility and severity degrees. During the monitoring, the maintenance
manager can improve the tools by configuration and/or model updating.

We illustrate the use of our monitoring aid system on an industrial flexible
platform. No comparison with other approaches has been added in this article.
The difficulties are to find a benchmark of diagnosis and to find monitoring
tools.

The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes
into account the uncertainties of the maintenance knowledge by giving a fuzzy
characterization of each causes. So, location and identification of the fault
causes are implicitly given by the events in the fault tree. Learning capabilities
due to the neural structure permit us to update the configuration and the
model, according to the new events given by the CMMS.

Further work will investigate methods to improve the on-line learning of the
monitoring aid system. Some comparison with other approaches must be in-
tegrate.
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OMG, March 2003. Unified Modeling Language Specification. Version 1.5.
Object Management Group.

Palluat, N., Racoceanu, D., Zerhouni, N., 2005. Utilisation des réseaux de
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Artificielle, RSTI série RIA, 19 (6), 913–950.
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