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Abstract

We consider an optimal control problem for the obstacle problem with an elliptic variational

inequality. The obstacle function which is the control function is assumed in H
2. We use an ap-

proximate technique to introduce a family of problems governed by variational equations. We prove

optimal solutions existence and give necessary optimality conditions.
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1 Introduction

The study of variational inequalities and free boundary problems finds application in a variety of dis-
ciplines including physics, engineering, and economies as well as potential theory and geometry. In the
past years, the optimal control of variational inequalities has been studied by many authors with differ-
ent formulations. For example optimal control problems for obstacle problems (where the obstacle is a
given (fixed) function) were considered with the control variables in the variational inequality. Roughly
speaking, the control is different from the obstacle, see for example works by [4], [8], [15], [16] and the
references therein.
Here we deal with the obstacle as the control function. This kind of problem appears in shape optimization
for example. It may concern a dam optimal shape. The obstacle gives the form to be designed such that
the pressure of the fluid inside the dam is close to a desired value. This is equivalent in some sense to
controlling the free boundary [10].
The main difficulty of this type of problem comes from the fact that the mapping between the control
and the state (control-to-state operator) is not differentiable but only Lipschitz-continuous and so it is
not easy to get first order optimality conditions.
These problems have been considered from the theoretical and/or numerical points of view by many
authors (see for example Adams and Lenhart [3], Ito and Kunisch [12]). They have used either an ap-
proximation of the variational inequality by penalization-regularization or a complementarity constraint
formulation. Adams et Lenhart [3] consider optimal control problem governed by a linear elliptic varia-
tional inequality without source terms. The main result is that any optimal pair must satisfy ”state =
obstacle”. Adams and Lenhart [2] treat control of H1− obstacle, and convergence results in [2], [3] are
given under implicit monotonicity assumptions.
Ito and Kunisch [12] consider the optimal control problem to minimize a functional involving the H1

norm of the obstacle, subject to a variational inequality of the type y ∈ argmin{a(z) − 〈f, z〉|z ≤ ψ}
in a Hilbert lattice H . Under appropriate conditions, they show that the variational inequality can be
expressed by the system Ay + λ = f, λ := max(0, λ + c(y − ψ)). Smoothing the max-operation, this
system is approximated by a semilinear elliptic equation containing only smooth expressions. Passing to
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the limit, the optimality system of the associated differentiable optimal control problem is used to derive
an optimality system of the original nonsmooth control problem with only H1-regularity for the obstacle.
Bergounioux and Lenhart [6], [7] have studied obstacle optimal control for semilinear and bilateral obstacle
problem, where the admissible controls (obstacles) are H2-bounded and the convergence results are given
with a compactness assumption. Yuquan and Chen [17], consider an obstacle control problem in a
elliptic variational inequality without source terms. We can see also quote the paper of Lou [14] for more
generalized regularity results. In this paper we consider an optimal control problem: we seek an optimal
pair of optimal solution (state, control), when the state is close to a desired target profile and satisfies
an unilateral variational inequality with a source term, and the control function is the lower obstacle.
Convergence results are proved with compactness techniques.
The new feature in this paper is the regularity on the control function (obstacle) and an optimality
conditions system more complete than the one given in [17].
Let us give the outline of the paper. Next section, is devoted to the formulation of the optimal control
problem, we give assumptions for the state equation, and give preliminaries results. In section 3 we
study the variational inequality, give control-to-state operator properties and assert an existence result
for optimal solution. The last section is devoted to optimality condition system.

2 Optimal control problem

Let Ω be an open bounded set in R
n (n ≤ 3), with lipschitz boundary ∂Ω. We adopt the standard

notation Hm(Ω) for the Sobolev space of order m in Ω with norm ‖·‖Hm(Ω), where

Hm(Ω) :=
{
v | v ∈ L2(Ω), ∂qv ∈ L2(Ω) ∀q, |q| 6 m

}
,

and

Hm
0 (Ω) :=

{
v | v ∈ Hm(Ω),

∂kv

∂ηk

∣∣∣∣
∂Ω

= 0, 0 ≤ k ≤ m− 1

}
,

defined as the closure of D (Ω) in the space Hm (Ω), where D (Ω), the space of C∞ (Ω)-functions, with
compact support in Ω (see for example [1]). We shall denote by ‖·‖V , the Banach space V norm, and

‖·‖Lp(Ω) the p− summable functions u : Ω → R endowed with the norm ‖u‖Lp(Ω) :=

(∫

Ω

|u (x) |pdx

)1/p

for 1 ≤ p < ∞ and ‖u‖L∞(Ω) := ess sup
x∈Ω

|u (x) | for p = ∞. In the same way, 〈·, ·〉 denotes the duality

product between H−1(Ω) and H1
0 (Ω), and (·, ·) the Lp(Ω) inner product. It is well known that H1

0 (Ω) →֒
L2(Ω) →֒ H−1(Ω) with compact and dense injection. We consider the bilinear form a(·, ·) defined on
H1

0 (Ω) ×H1
0 (Ω) by

a(u, v) :=

n∑

i,j=1

∫

Ω

aij
∂u

∂xi

∂v

∂xj
dx+

n∑

i=1

∫

Ω

ai
∂u

∂xi
v dx+

∫

Ω

a0u v dx, (2.1)

where





a0, ai, aij ∈ L∞ (Ω) ,

n∑
i,j=1

aijθiθj ≥ m
n∑

i=0

θ2i , m > 0, a.e. in Ω, ∀θ ∈ R
n.

(H)

Moreover, we suppose that aij ∈ C0,1(Ω̄) (the space of lipschitz continuous functions in Ω, where Ω̄ is
the closure of Ω) and that a0 is nonnegative to ensure a good regularity of the solution (see for example
[13]). We suppose that the bilinear form a(·, ·) is continuous on H1

0 (Ω) ×H1
0 (Ω)

∃M > 0, ∀ϕ, ψ ∈ H1
0 (Ω), |a(ϕ, ψ)| ≤M ‖ϕ‖H1

0
(Ω) ‖ψ‖H1

0
(Ω) , (2.2)
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and coercive on H1
0 (Ω) ×H1

0 (Ω)

∃m > 0, ∀ϕ ∈ H1
0 (Ω), a(ϕ,ϕ) ≥ m ‖ϕ‖2

H1
0
(Ω) . (2.3)

We call A ∈ L(H1
o (Ω), H−1(Ω)) the linear (elliptic) operator associated to a(·, ·) such that 〈Au, v〉 :=

a(u, v). We note that the coercivity assumption (2.3) on a implies that

∀ ϕ ∈ H1
0 (Ω), 〈Aϕ,ϕ〉 ≥ m ‖ϕ‖2

H1
0
(Ω) .

For any ϕ ∈ H1
0 (Ω), we define

K(ϕ) :=
{
y ∈ H1

0 (Ω) | y ≥ ϕ a.e. in Ω
}
,

and consider the following variational inequality

a (y, v − y) ≥ (f, v − y) , ∀v ∈ K(ϕ), (2.4)

where f belongs to L2 (Ω) as a source term. In addition c or C denotes a general positive constant
independent of δ.

Theorem 2.1. Under the hypothesis (2.2) and (2.3), for any f ∈ L2 (Ω) and ϕ ∈ H1
0 (Ω), the variational

inequality (2.4), has a unique solution y in K (ϕ). In addition if ϕ belongs to H2 (Ω), the solution y belongs
to H2(Ω) ∩H1

0 (Ω).

Proof. See [9].

From now we define the operator T (control-to-state) from H2(Ω)∩H1
0 (Ω) to H2(Ω)∩H1

0 (Ω), such that
y := T (ϕ) is the unique solution to the variational inequality (2.4).
Now, we consider the optimal control problem (P), defined as follows

min

{
J(ϕ) := 1

2

∫

Ω

(T (ϕ) − z)
2
dx + ν

2

(∫

Ω

(∆ϕ)
2
dx

)
, ϕ ∈ Uad

}
, (P)

where ν is a given positive constant, z ∈ L2 (Ω) and Uad (the set of admissible control) is a closed convex
subset of H2(Ω) ∩H1

0 (Ω): we seek an obstacle (optimal control) ϕ∗ in Uad, such that the corresponding
state is close to a target profile z. In the sequel we set U := H2(Ω) ∩H1

0 (Ω).

3 Approximation of problem (P)

3.1 Approximation of operator T

The obstacle problem (2.4) can be equivalently written as follows

Ay + ∂IK(ϕ) (y) ∋ f in Ω, y = 0 on ∂Ω, (3.1)

where

∂IK(ϕ) (y) = ∂IK+(y−ϕ) (y) :=
{
v ∈ L2 (Ω) | v ∈ βo (y − ϕ) , a.e. in Ω

}
,

and

K+ :=
{
y ∈ H1

0 (Ω) | y ≥ 0, a.e. in Ω
}
,

and βo : R −→2R is the maximal monotone (multivalued) graph,
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βo(r) :=





0 if r ≥ 0

R
− if r = 0

∅ if r < 0.

Equation (3.1), can be approximated by the following smooth semilinear equation

Ay + βδ (y − ϕ) = f in Ω, y = 0 on ∂Ω, (3.2)

where βδ is an approximation of βo. One possible approximation of βo si given as follow

βδ(r) := 1
δ





0 if r ≥ 0

−r2 if r ∈
[
− 1

2 , 0
]

r + 1
4 if r ≤ − 1

2 ,

Where δ > 0 and we note that r−δ := 1
δ min{0, r} ≤ βδ (r) ≤ 0 and β ∈ C∞ (R) and β′

δ is given by

β′
δ(r) := 1

δ





0 if r ≥ 0

−2r if r ∈
[
− 1

2 , 0
]

1 if r ≤ − 1
2 .

As βδ(· − ϕ) is nondecreasing, it is well known (see for example [11]), that the boundary value problem
(3.2) admits a unique solution yδ in H2(Ω) ∩H1

0 (Ω) for a fixed ϕ in H2(Ω) ∩H1
0 (Ω) and f in L2 (Ω). In

the sequel, we set yδ := T δ (ϕ). We recall the following continuity results [7]

Theorem 3.1. For any pair (yi, ϕi) in U × U , that satisfies (3.2) where i = 1, 2. We get

‖y2 − y1‖H1(Ω) ≤ Lδ ‖ϕ2 − ϕ1‖L2(Ω) ,

where Lδ := max
{
1, 2

mδ

}
and m is the coercivity constant of a.

Proof. From (3.4a), we obtain

a (y2 − y1, v) + (βδ (y2 − ϕ2) − βδ (y1 − ϕ2) , v) = 0, ∀v ∈ U .

with v = y2 − y1, we write

a (y2 − y1, y2 − y1) + (βδ (y2 − ϕ2) − βδ (y1 − ϕ2) , y2 − y1) = 0.

Since βδ is nondecreasing, by the hypothesis (2.2) and (2.3), we deduce

‖y2 − y1‖H1(Ω) ≤ Lδ ‖ϕ2 − ϕ1‖L2(Ω) ,

where Lδ := max
{
1, 2

m δ

}
.

Theorem 3.2. Let ϕδ in H2(Ω) ∩H1
0 (Ω) be a strongly convergent sequence in H1

0 (Ω) to some ϕ as δ
tends to 0. Then the sequence yδ := T δ

(
ϕδ
)

strongly converges to y := T (ϕ) in H1
0 (Ω).

Proof. For every ϕδ in H2(Ω) ∩ H1
0 (Ω), we set yδ := T δ

(
ϕδ
)
, then for any yδ in H1

0 (Ω) the equation
(3.2) is equivalent to

a
(
yδ, v

)
+
(
βδ

(
yδ − ϕδ

)
, v
)

= (f, v) , ∀v ∈ H1
0 (Ω) . (3.3)

In the equation (3.3), we choose v = ϕδ − yδ, then we get

a
(
yδ, ϕδ − yδ

)
+

∫

Ω

βδ

(
yδ − ϕδ

) (
ϕδ − yδ

)
dx =

∫

Ω

f
(
ϕδ − yδ

)
dx.
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We know by the definition of βδ, thats if yδ (x) − ϕδ (x) ≥ 0, we have

βδ

(
yδ (x) − ϕδ (x)

)
= 0,

otherwise, we get βδ

(
yδ (x) − ϕδ (x)

)
≤ 0. Then we deduce that in all cases, we have

βδ

(
yδ − ϕδ

) (
yδ − ϕδ

)
≥ 0 a.e. in Ω,

that yields

a
(
yδ, yδ

)
≤ a

(
yδ, ϕδ

)
+
(
f, yδ − ϕδ

)
,

with the hypothesis (2.2) and (2.3), we deduce (estimation regularity)

∥∥yδ
∥∥

H1(Ω)
≤ C

∥∥ϕδ
∥∥

H1(Ω)
, (3.4)

where C is a constant only depending on f and a. We know that if ϕδ is strongly convergent in H1
0 (Ω)

then ϕδ is bounded in H1
0 (Ω), and by (3.4) we deduce that yδ is convergent to some y as δ tends to 0

weakly in H1
0 (Ω) and strongly in L2 (Ω).

Let v in K (ϕ), and choose vδ = max
(
v, ϕδ

)
. We have vδ in K

(
ϕδ
)

and that vδ is convergent to v strongly
in H1

0 (Ω). Equation (3.3) with v = vδ − yδ gives

a
(
yδ, vδ − yδ

)
+

∫

Ω

βδ

(
yδ − ϕδ

) (
vδ − yδ

)
dx =

∫

Ω

f
(
vδ − yδ

)
dx.

• If yδ ≤ ϕδ, therefore βδ

(
yδ − ϕδ

)
< 0 and

(
vδ − yδ

)
≥ 0, we deduces that βδ

(
yδ − ϕδ

) (
vδ − yδ

)
≤

0.

• If yδ ≥ ϕδ, then yδ − ϕδ ≥ 0, therefore βδ

(
yδ − ϕδ

)
= 0.

So we deduce that in all cases we have βδ

(
yδ − ϕδ

) (
vδ − yδ

)
≤ 0, and we get

a
(
yδ, yδ

)
≤ a

(
yδ, vδ

)
−
(
f, vδ − yδ

)
.

Passing to the limit and using the lower semi-continuity of a gives

a (y, y) ≤ lim inf
δ→0

a
(
yδ, yδ

)
≤ lim inf

δ→0
a
(
yδ, vδ

)
−
(
f, vδ − yδ

)
= a (y, v) − (f, v − y) ,

and

a (y, v − y) ≥ (f, v − y) , ∀v ∈ K (ϕ) .

It remains to prove that yδ tends to y, strongly in H1
0 (Ω). By using the fact that wδ = max

(
y, ϕδ

)

converge to y strongly in H1
0 (Ω) it is sufficient to prove that wδ − yδ converge to 0 strongly in H1

0 (Ω).
From equation (3.3) we get

a
(
wδ − yδ, wδ − yδ

)
= a

(
wδ , wδ − yδ

)
− a

(
yδ, wδ − yδ

)

= a
(
wδ , wδ − yδ

)
+

∫

Ω

βδ

(
yδ − ϕδ

) (
wδ − yδ

)
dx−

∫

Ω

f
(
wδ − yδ

)
dx.

As previously we deduce that

a
(
wδ − yδ, wδ − yδ

)
≤ a

(
wδ, wδ − yδ

)
−
(
f, wδ − yδ

)
,

from the hypothesis (2.3), we get

m
∥∥wδ − yδ

∥∥2

H1(Ω)
≤ a

(
wδ, wδ − yδ

)
−
(
f, wδ − yδ

)
.
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As a consequence of the previous theorem, we obtain the following corollaries

Corollary 3.1. For any ϕδ in H2 (Ω) ∩H1
0 (Ω), yδ := T δ

(
ϕδ
)

belongs to H2 (Ω) ∩H1
0 (Ω).

Proof. Since βδ

(
yδ − ϕδ

)
and f belongs to L2 (Ω), then Ayδ ∈ L2 (Ω) and yδ ∈ H2 (Ω).

Corollary 3.2. For any ϕ in Uad, the sequence yδ := T δ (ϕ), converges to y := T (ϕ), strongly in H1
0 (Ω).

Corollary 3.3. There exists a constant C depending only on f and a, such that for any ϕ in U , we get

‖T (ϕ)‖H1
0
(Ω) ≤ C(a, f) ‖ϕ‖H1

0
(Ω) .

Proof. We choose ϕδ = ϕ, and yδ := T δ (ϕ), as we know that yδ converges to T (ϕ) strongly in H1
0 (Ω),

we pass to the limit in (3.4).

Theorem 3.3. T is continuous from U endowed with the sequential weak topology of H2 (Ω) to H1
0 (Ω)

endowed with the sequential weak topology.

Proof. Let ϕk be a sequence that converges to ϕ weakly in H2 (Ω). Then the sequence ϕk converges
strongly in H1

0 (Ω). We set yk := T (ϕk). Let v in K (ϕ) and set vk = sup (v, ϕk) ∈ K (ϕk). The sequence
vk converges to v strongly in H1

0 (Ω). As yk := T (ϕk), we get a (yk, vk − yk) ≥ (f, vk − yk), i.e.

a (yk, yk) ≤ a (yk, vk) − (f, vk − yk) .

By Corollary 3.3 the sequence yk is bounded and weakly converges in H1
0 (Ω) to some y. Using the lower

semi-continuity of a, the previous relation gives

a (y, y) ≤ a (y, v) − (f, v − y) .

As yk ≥ ϕk, this implies that y ≥ ϕ, therefore y := T (ϕ).

We obtain the main result of this section.

Theorem 3.4. Problem (P) admits at least one optimal solution ϕ ∈ H2(Ω) ∩H1
0 (Ω).

Proof. Let ϕk a minimizing sequence. As J (ϕk) is bounded, ϕk is H2-bounded and converges to ϕ weakly
in H2 (Ω). By Theorem 3.3, the sequence yk := T (ϕk) converges to y∗ := T (ϕ∗) weakly in H1

0 (Ω) and
using the norms semi-continuity we obtain

J (ϕ∗) := 1
2

∫

Ω

(T (ϕ∗) − z)
2
dx+ ν

2

(∫

Ω

(∆ϕ∗)
2
dx

)
≤ lim inf

k→∞
J (ϕk) = inf (P) .

3.2 An Approximated problem (Pδ)

We use a trick of Barbu [5], and add adapted penalization terms to the approximated functional Jδ (here
we add 1

2‖ϕ− ϕ∗‖2
0) to force the relaxed obstacle family ϕ to converge to a desired solution ϕ∗ of (P) .

So for any δ > 0, we define

Jδ (ϕ) := 1
2

[∫

Ω

(
T δ (ϕ) − z

)2
dx+ ν

(∫

Ω

(∆ϕ)
2
dx

)
+ ‖ϕ− ϕ∗‖2

L2(Ω)

]
.

The approximated optimal control problem
(
Pδ
)

stands

min {Jδ (ϕ) , ϕ ∈ Uad} . (Pδ)

Theorem 3.5. Problem
(
Pδ
)

admits at least one solution ϕδ. Moreover, when δ go to 0, the family ϕδ

converges to ϕ∗ weakly in H2 (Ω), and yδ := T δ
(
ϕδ
)

converges to y∗ := T (ϕ∗), strongly in H1
0 (Ω).

6



Proof. The functional Jδ is coercive, and lower semi-continuous on U . Therefore, the problem
(
Pδ
)

admits at least one solution ϕδ. We set yδ := T δ
(
ϕδ
)
, and note, that for any δ > 0,

Jδ

(
ϕδ
)
≤ Jδ (ϕ∗) := 1

2

[∫

Ω

(
T δ (ϕ∗) − z

)2
dx+ ν

(∫

Ω

(∆ϕ∗)
2
dx

)]
. (3.1)

By Theorem 3.2, we know that T δ (ϕ∗) converges to T (ϕ∗) strongly in H1
0 (Ω), so that Jδ (ϕ∗) converges

to J (ϕ∗) as δ → 0. Consequently, there exist δ0 > 0 and a constant j∗, such that

∀ δ ≤ δ0, Jδ

(
ϕδ
)
≤ j∗ < +∞.

Consequently ϕδ is H2-bounded uniformly, for any δ ≤ δ0. We use the Theorem 3.2, we get ϕδ converge
to ϕ̃ weakly in H2 (Ω) and strongly in H1

0 (Ω) and yδ converge to ỹ := T (ϕ̃) strongly in H1
0 (Ω). As Uad

is weakly closed, we have ϕ̃ in Uad. By (3.1) and the lower semi-continuity of Jδ, we get

J (ϕ̃) + 1
2 ‖ϕ̃− ϕ∗‖2

0 ≤ lim inf
δ→0

Jδ

(
ϕδ
)

≤ lim sup
δ→0

Jδ

(
ϕδ
)

≤ lim
δ→0

Jδ (ϕ∗) ≤ lim
δ→0

J (ϕ∗)

≤ J (ϕ̃) .

This yields that ‖ϕ̃− ϕ∗‖2
0 ≤ 0, then ϕ̃ = ϕ∗ and lim

δ→0
Jδ

(
ϕδ
)

= J (ϕ∗) .

In addition this proves that any clusters points of ϕδ is equal to ϕ∗, so that the whole family converges.

3.3 Optimality conditions for problem
(
Pδ
)

We give first necessary optimality conditions for problem
(
Pδ
)
. Les us recall the following result on the

Gteaux-derivative of the operator T δ [1].

Lemma 3.1. The mapping T δ is Gteaux-derivative at any ϕ in Uad:

∀ξ ∈ H1
0 (Ω) ,

T δ (ϕ+ τξ) − T δ (ϕ)

τ

w
⇀ vδ, in H1

0 (Ω) , when τ → 0,

where vδ is the solution of the following equation

Avδ + β′
δ

(
yδ − ϕ

)
vδ = β′

δ

(
yδ − ϕ

)
ξ in Ω, vδ = 0 on ∂Ω.

Proof. See [2].

We define the approximate adjoint state pδ in H1
0 (Ω) as the solution of the following adjoint equation

A∗pδ + β′
δ

(
yδ − ϕ

)
pδ = yδ − z in Ω, pδ = 0 on ∂Ω,

where A∗ is the adjoint operator of A. As ϕδ is the solution of the problem
(
Pδ
)
, we get

∀ϕ ∈ Uad,
d

dt
Jδ

(
ϕδ + t

(
ϕ− ϕδ

))
|t=0

≥ 0.

That is

∀ϕ ∈ Uad,

∫

Ω

(
χδ
(
yδ − z

)
+ ν∆ϕδ∆

(
ϕ− ϕδ

))
dx+

∫

Ω

(
ϕδ − ϕ∗

) (
ϕ− ϕδ

)
dx ≥ 0,
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where χδ ∈ H1
0 (Ω) and satisfies

Aχδ + β′
δ

(
yδ − ϕδ

)
χδ = β′

δ

(
yδ − ϕδ

) (
ϕ− ϕδ

)
in Ω.

from the definition of pδ, we obtain

∫

Ω

χδA∗pδdx +

∫

Ω

β′
δ

(
yδ − ϕδ

)
pδχδdx+ ν

∫

Ω

∆ϕδ∆
(
ϕ− ϕδ

)
dx+

∫

Ω

(
ϕδ − ϕ∗

) (
ϕ− ϕδ

)
dx ≥ 0,

where A∗ denotes the adjoint operator of de A. Then

∫

Ω

Aχδpδdx +

∫

Ω

β′
δ

(
yδ − ϕδ

)
pδχδ dx+ ν

∫

Ω

∆ϕδ∆
(
ϕ− ϕδ

)
dx+

∫

Ω

(
ϕδ − ϕ∗

) (
ϕ− ϕδ

)
dx ≥ 0,

we obtain

∫

Ω

β′
δ

(
yδ − ϕδ

)
pδ
(
ϕ− ϕδ

)
dx+ ν

∫

Ω

∆ϕδ∆
(
ϕ− ϕδ

)
dx+

∫

Ω

(
ϕδ − ϕ∗

) (
ϕ− ϕδ

)
dx ≥ 0.

In the sequel, we set

µδ := β′
δ

(
yδ − ϕδ

)
pδ ∈ L2 (Ω) . (3.1)

Finally, we obtain

Theorem 3.6. If ϕδ is an optimal solution of
(
Pδ
)

and yδ := T δ
(
ϕδ
)
, there exists pδ in H2(Ω)∩H1

0 (Ω)
and µδ in L2 (Ω) such that the following system holds

Ayδ + βδ

(
yδ − ϕδ

)
= f in Ω, yδ = 0 on ∂Ω, (3.2a)

A∗pδ + µδ = yδ − z in Ω, pδ = 0 on ∂Ω, (3.2b)

(
µδ + ϕδ − ϕ∗, ϕ− ϕδ

)
+ ν

(
∆ϕδ,∆

(
ϕ− ϕδ

))
≥ 0, ∀ϕ ∈ Uad. (3.2c)

In the case Uad := L2 (Ω), we make this optimality system more precise.
Let χ in U and choose ϕ = ϕδ ± χ; by the equation (3.2c), we obtain

(
µδ + ϕδ − ϕ∗, χ

)
+ ν

(
∆ϕδ,∆χ

)
= 0, ∀χ ∈ U . (3.3)

Set hδ = ∆ϕδ in L2 (Ω), so that for any χ in D (Ω), the relation (3.3) gives

(
µδ + ϕδ − ϕ∗, χ

)
+ ν

(
hδ,∆χ

)
= 0 (in the distribution sens),

that is

−ν∆hδ = µδ + ϕδ − ϕ∗ ∈ D
′ (Ω) .

Using the same techniques as in [6], we deduce that hδ
|∂Ω = 0. Consequently, hδ ∈ U , and it is the unique

solution of

−ν∆hδ = µδ + ϕδ − ϕ∗ in L2 (Ω) , hδ = 0 on ∂Ω.

The last relation may be written as

−ν
(
∆2ϕδ, u

)
=
(
µδ, u

)
−
(
ϕδ − ϕ∗, u

)
in Ω, ϕδ = 0 on ∂Ω.
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Thanks to Green’s formula, the previous relation reads

− ν

∫

Ω

∆2ϕu dx−
(
µδ, u

)
−
(
ϕδ − ϕ∗, u

)
=

=

∫

Ω

∆ϕ∆u dx−

∫

Γ

(
∆ϕ

∂u

∂η
− u

∂∆ϕ

∂η

)
−
(
µδ, u

)
−
(
ϕδ − ϕ∗, u

)
.

So ∆ϕ vanishes on the boundary ∂Ω, and we conclude that ϕδ belongs to W := {u |u ∈ H2(Ω) ∩
H1

0 (Ω) et∆u|∂Ω = 0}. Finally we have:

Corollary 3.4. Assume conditions of Theorem 3.6 are fulfilled, and Uad = U , then the optimality system
(Sδ) reads

a
(
yδ, v

)
+
(
βδ

(
yδ − ϕδ

)
, v
)

= (f, v) , ∀v ∈ U , (3.4a)

a∗
(
pδ, w

)
+
(
µδ, w

)
=
(
yδ − z, w

)
, ∀w ∈ U , (3.4b)

ν
(
∆2ϕδ, u

)
−
(
µδ, u

)
=
(
ϕδ − ϕ∗, u

)
, ∀u ∈ W . (3.4c)

Here a∗ denotes the adjoint form of a (associated with the adjoint operator A∗).

4 First order necessary optimality conditions for (P)

In this section, we have to estimate pδ, and gives more convergence results, then we may pass to the limit
in the system (3.4) as δ → 0.

Theorem 4.1. When δ goes to 0, pδ converges to p∗ weakly in H1
0 (Ω) and µδ converges to µ∗ weakly

satr in H−1 (Ω) ∩M (Ω), and

〈µ∗, p∗〉 ≥ 0.

where M (Ω) is the set of all regular signed measures in Ω.

Proof. Using (3.4b), we obtain

a∗
(
pδ, pδ

)
+

∫

Ω

β′
δ

(
yδ − ϕδ

) (
pδ
)2
dx =

(
yδ − z, pδ

)
. (4.1)

As β′ (·) ≥ 0, and thanks to hypothesis (2.2) and (2.3), we get
∥∥pδ
∥∥

H1(Ω)
≤ C

∥∥yδ − z
∥∥

H1(Ω)
,

which implies that pδ converges to p∗ weakly in H1
0 (Ω). Consequently A∗pδ is uniformly bounded in

H−1 (Ω) and
µδ = −A∗pδ + yδ − z. (4.2)

Let γε ∈ C 1 (R) be a family of smooth approximations to the sign function and satisfy the following [17]:

γ′ε (r) ≥ 0 ∀r ∈ R,

and

γ′ε (r) :=





1 if r > ε

0 if r = 0

−1 if r < −ε,
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Then we can multiply (4.2) by γε

(
pδ
)

and integrate it over Ω. As a result, we get

∫

Ω

µδγε

(
pδ
)
dx ≤ C.

Letting ε→ 0, we have

∥∥µδ
∥∥

L1(Ω)
≤ C.

Hence µδ is bounded in L1 (Ω) and consequently it is also bounded in M (Ω), thus, µδ converge to µ∗

weakly star in H−1 (Ω) ∩M (Ω), such that

A∗p∗ + µ∗ = y∗ − z in Ω, p∗ = 0 on ∂Ω. (4.3)

As 0 ≤ β′ ≤ 1, by using (4.1) we get

a∗
(
pδ, pδ

)
≤
(
yδ − z, pδ

)
.

And by the lower semi-continuity of a∗

〈A∗p∗, p∗〉 = a∗ (p∗, p∗) ≤ lim inf
δ→∞

(
yδ − z, pδ

)
= (y∗ − z, p∗) .

From (4.3), we obtain

0 ≤ 〈A∗p∗, p∗〉 = (y∗ − z, p∗) − 〈µ∗, p∗〉 ≤ (y∗ − z, p∗) ,

so that

〈µ∗, p∗〉 ≥ 0.

In the sequel, we set ξδ := βδ

(
yδ − ϕδ

)
, then we obtain the following results.

Theorem 4.2. When δ goes to 0, ξδ converges to ξ∗ weakly in L2 (Ω), where ξ∗ is negative and the state
equation (3.2a) gives

Ay∗ + ξ∗ = f.

Proof. From (3.4a), we obtain with v = βδ

(
yδ − ϕδ

)

〈
A
(
yδ − ϕδ

)
, βδ

(
yδ − ϕδ

)〉
+
(
βδ

(
yδ − ϕδ

)
, βδ

(
yδ − ϕδ

))
=
(
f −Aϕδ, βδ

(
yδ − ϕδ

))
.

For the seek of simplicity, we set rδ := yδ − ϕδ; with (2.1), this gives

n∑

i,j=1

∫

Ω

aij
∂rδ

∂xi

∂rδ

∂xj
β′

δ

(
rδ
)
dx+

∫

Ω

a0r
δβδ

(
rδ
)
dx+

∥∥βδ

(
rδ
)∥∥2

L2(Ω)
+

+

n∑

i=1

∫

Ω

ai
∂rδ

∂xi
βδ

(
rδ
)
dx =

(
f −Aϕδ, βδ

(
rδ
))
. (4.4)

With hypothesis (H), we get

n∑

i,j=1

∫

Ω

aij
∂rδ

∂xi

∂rδ

∂xj
β′

δ

(
rδ
)
dx ≥

∫

Ω

m

n∑

i=0

(
∂rδ

∂xi

)2

β′
δ

(
rδ
)
dx.

≥ 0.

(4.5)
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From (4.4), (4.5) and (H), we obtain

∥∥βδ

(
rδ
)∥∥2

L2(Ω)
≤
∥∥f −Aϕδ

∥∥
L2(Ω)

∥∥βδ

(
rδ
)∥∥

L2(Ω)
+

n∑

i=1

‖ai‖L∞(Ω)

(∥∥∇rδ
∥∥

L2(Ω)

∥∥βδ

(
rδ
)∥∥

L2(Ω)

)

≤ max

{
1,

n∑

i=1

‖ai‖L∞(Ω)

}(∥∥f −Aϕδ
∥∥

L2(Ω)
+
∥∥∇rδ

∥∥
L2(Ω)

) ∥∥βδ

(
rδ
)∥∥

L2(Ω)
.

Finally, we get

∥∥βδ

(
yδ − ϕδ

)∥∥
L2(Ω)

≤ α
(∥∥f −Aϕδ

∥∥
L2(Ω)

+
∥∥∇
(
yδ − ϕδ

)∥∥
L2(Ω)

)
,

where α := max

{
1,

n∑
i=1

‖ai‖L∞(Ω)

}
, so that

∥∥βδ

(
yδ − ϕδ

)∥∥
L2(Ω)

≤ α
(∥∥f −Aϕδ

∥∥
L2(Ω)

+
∥∥yδ − ϕδ

∥∥
H1(Ω)

)
.

Since ϕδ and yδ are respectively bounded in H2 (Ω) ∩H1
0 (Ω) and H1

0 (Ω), we deduce that ξδ is bounded
in L2 (Ω), by passing to the limit where δ → 0, we obtain that ξδ converge to ξ∗ weakly in L2 (Ω). Passing
to the limit in (3.2a), gives

Ay∗ + ξ∗ = f.

where ξ∗, is negative and we get y∗ ∈ H2 (Ω) ∩H1
0 (Ω).

Corollary 4.1. As ϕ∗ is in H2 (Ω) ∩H1
0 (Ω), y∗ := T ∗ (ϕ∗) belongs to H2 (Ω) ∩H1

0 (Ω).

Proof. As ξ∗ and f belongs to L2 (Ω), then Ay∗ ∈ L2 (Ω) and y∗ ∈ H2 (Ω).

Now, we give some Lemmas, the proof the below Theorem 4.3.

Lemma 4.1. When δ goes to 0,
(
µδ,
(
yδ − ϕδ

)+)
→ 〈µ∗, y∗ − ϕ∗〉, and 〈µ∗, y∗ − ϕ∗〉 = 0.

Proof. By the definition of β and µδ (3.1), we get

(
µδ,
(
yδ − ϕδ

)+)
= 0,

where v+ := max {0, v}, by Theorem 3.2
(
yδ − ϕδ

)+
converges strongly to (y∗ − ϕ∗) in H1

0 (Ω),
then

(
µδ,
(
yδ − ϕδ

)+)
→ 〈µ∗, y∗ − ϕ∗〉 ,

and

〈µ∗, y∗ − ϕ∗〉 = 0.

Lemma 4.2. When δ goes to 0,
(
ξδ, pδ

)
→ 〈ξ∗, p∗〉, and 〈ξ∗, p∗〉 = 0.
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Proof. As befor, we set rδ := yδ − ϕδ, so that ξδ = βδ

(
rδ
)
. From the definition of β and β′, we get

respectively

(
ξδ, pδ

)
=
(
βδ

(
rδ
)
, pδ
)

=

= 1
δ

[∫
{

rδ≤−
1
2

}
(
rδ + 1

4

)
pδdx−

∫
{
−

1
2≤rδ≤0

}
(
rδ
)2
pδdx

]
,

and

(
µδ, rδ

)
=
(
β′

δ

(
rδpδ

)
, pδ
)

=

= 1
δ

[∫
{

rδ≤−
1
2

} p
δrδdx− 2

∫
{
−

1
2≤rδ≤0

}
(
rδ
)2
pδdx

]
.

from that, we get

(
ξδ, pδ

)
− 1

2

(
µδ, rδ

)
= 1

δ

∫
{

rδ≤−
1
2

}
1
2

(
rδ + 1

2

)
pδdxxx,

Then, we obtain

∣∣(ξδ, pδ
)
− 1

2

(
µδ, rδ

)∣∣ ≤ 1
δ

(∫
{

rδ≤−
1
2

}
1
4

(
rδ + 1

2

)2
dx

)1/2(∫
{

rδ≤−
1
2

}
(
pδ
)2
dx

)1/2

.

As H1 (Ω) →֒ Lq (Ω) with 2 < q ≤ 6, we have

(∫

{rδ≤− 1
2}

(pδ)2dx

)1/2

≤

(∫

{rδ≤− 1
2}

(
pδ
)q
dx

)1/q(∫

{rδ≤− 1
2}
dx

)(q−2)/2q

≤ C
∥∥pδ
∥∥

H1(Ω)

(
meas

{
rδ ≤ − 1

2

})(q−2)/2q
,

where meas {A} is the measure of the set A. Then we write

∣∣(ξδ, pδ
)
− 1

2

(
µδ, rδ

)∣∣ ≤ C
∥∥pδ
∥∥

H1(Ω)
1
δ

(∫
{

rδ≤−
1
2

}
1
4

(
rδ +

1

2

)2

dx

)1/2 (
meas

{
rδ ≤ − 1

2

})(q−2)/2q
.

(4.6)
We have

1
δ

(∫
{

rδ≤−
1
2

}
1
4

(
rδ + 1

2

)2
dx

)1/2

≤ 1
δ

(∫
{

rδ≤−
1
2

}
(
rδ + 1

4

)2
dx

)1/2

. (4.7)

As ‖βδ

(
rδ
)
‖L2(Ω) is bounded, we deduce that

1
δ2

∫
{

rδ≤−
1
2

}
(
rδ + 1

4

)2
dx ≤ C,

and

meas
{
rδ ≤ − 1

2

}
≤ Cδ2.
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then, by passing to the limit when δ goes to 0, we have

lim
δ→0

(
meas

{
rδ ≤ − 1

2

})
= 0.

Since ‖pδ‖H1(Ω) is bounded, from (4.6) and (4.7), we obtain

∣∣(ξδ, pδ
)
− 1

2

(
µδ, rδ

)∣∣ ≤ C
(
meas

{
rδ ≤ − 1

2

})(q−2)/2q
,

and

lim
δ→0

∣∣(ξδ, pδ
)
− 1

2

(
µδ, rδ

)∣∣ = 0,

so when δ goes to 0,
(
ξδ, pδ

)
converges to 0, and with Lemma 4.2, we get

〈ξ∗, p∗〉 = 0.

Finally, from the previous convergence results, we obtain the main result of this section

Theorem 4.3. Let ϕ∗, be an optimal solution of problem (P). Then ∆ϕ∗ belong to H1
0 (Ω) and there

exists p∗ in H1
0 (Ω), ξ∗ ≤ 0 in L2 (Ω) and µ∗ in H−1 (Ω)∩M (Ω), such that the following optimality (S)

system holds

Ay∗ + ξ∗ = f in Ω, y∗ = 0 on ∂Ω, (1.a)

A∗p∗ + µ∗ = y∗ − z in Ω, p∗ = 0 on ∂Ω, (2.a)

−ν∆2ϕ∗ + µ∗ = 0 in Ω, ∆ϕ∗ = ϕ∗ = 0 on ∂Ω, (3.a)

〈µ∗, y∗ − ϕ∗〉 = 0, (4.a)

〈ξ∗, p∗〉 = 0, (5.a)

a∗ (p∗, p∗) − (z − y∗, p∗) ≤ 0, (6.a)

〈p∗, µ∗〉 ≥ 0. (7.a)

Remark 4.1. In [12], Ito et Kunish had obtained the following optimality condition system (S̃)

Ay∗ + ξ∗ = f, ξ∗ = max (0, ξ∗ + y∗ − ϕ∗) , (1.b)

A∗p+ µ∗ = y∗ − z in H−1 (Ω) , (2.b)

〈−ν∆ϕ∗ + νϕ∗ + µ∗, χ− ϕ∗〉 ≥ 0 for all χ ∈ Uad, (3.b)

µ∗ (y∗ − ϕ∗) = 0 a.e. in Ω, (4.b)

p∗ξ∗ = 0 a.e. in Ω, (5.b)
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a∗ (p∗, p∗) − (z − y∗, p∗) ≤ 0, (6.a)

〈µ∗, p∗φ〉 ≥ 0 for all φ ∈W 1,q (Ω) , with φ ≥ 0, and q > n. (7.b)

Indeed, they studied the following optimal control problem (P̃)

〈Ay − f, φ− y〉 ≥ 0 for all φ ∈ K (ϕ) ,

with

f ∈ L2 (Ω) , ϕ ∈ Uad with ϕ ≤ 0 in ∂Ω,

such that the cost functional is given by

J̃(ϕ) := 1
2

∫

Ω

(T (ϕ) − z)
2
dx+ ν

2

(∫

Ω

(
|ϕ|2 + |∇ϕ|2

)
dx

)
,

We notices a likeness between the two systems (S) and (S̃) , exepted for the equations (3.a) and (3.b) (are

respectively the differential of the objective function J and J̃); i.e. in [12], the authors treated the optimal

control problem (P̃), such that ϕ belong to Uad := {ϕ ∈ X : ϕ (x) ≥ 0, on ∂Ω and − a (ϕ, v) + (f, v) ≤(
λ, v
)

for all v ∈ V with v ≥ 0} with H1-obstacle (where λ ∈ L2 (Ω) satisfying λ ≥ 0 a.e. on Ω), and
in our work, we had study the optimal control problem (P), where ϕ is in Uad := H2 (Ω) ∩H1

0 (Ω), with
H2-obstacle.

Conclusion

In this work, we treated the theoretical aspect of the problem (P), we proved the existence of optimal
solutions and constructed a necessary optimality conditions system. Additional optimal obstacle regular-
ity has been also provided. Currently we study the numerical aspect of the problem (P), via a numerical
strategy based on the direct resolution of the optimality system and using a fixed point algorithm.
The author is grateful to Prof. M. Bergounioux for their instructive suggestions.
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