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Abstract. Finite group extensions offer a natural language to quantum computing.

In a nutshell, one roughly describes the action of a quantum computer as consisting of

two finite groups of gates: error gates from the general Pauli group P and stabilizing

gates within an extension group C. In this paper one explores the nice adequacy

between group theoretical concepts such as commutators, normal subgroups, group of

automorphisms, short exact sequences, wreath products... and the coherent quantum

computational primitives. The structure of the single qubit and two-qubit Clifford

groups is analyzed in detail. As a byproduct, one discovers that M20, the smallest

perfect group for which the commutator subgroup departs from the set of commutators,

underlies quantum coherence of the two-qubit system. One recovers similar results by

looking at the automorphisms of a complete set of mutually unbiased bases.

PACS numbers: 03.67.Pp, 03.67.Lx, 03.67.-a, 02.20.-a, 03.65.Fd, 03.65.Vf, 02.40.Dr
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1. Introduction

Currently quantum computing is a very active and respectable area of research at the

interface of the three pillars: quantum physics, mathematics and computer science. If

large-scale quantum computers can be built, they will be able to solve certain problems,

such as quantum factoring, quantum search or the graph isomorphism problem, in a

very efficient way when compared to classical computing. However, one of the main

drawbacks of quantum computing is its extreme sensitivity to the classical environment,

which induces the decoherence of quantum preparations. To overcome this limitation,

many designs have been proposed for correcting the unavoidable errors, or for preventing

them to occur. Since the inception of the field, fault-tolerant procedures such as

universal bases of gates [1], quantum codes [2] or quantum teleportation based protocols

[3] have been proposed. Other approaches relate to topological quantum computation

[4], decoherence free subspaces [5] or are based on sequences of measurements [6].

Despite the number of seemingly different proposals some of them are related: there

is a close relation between the “oldfashioned” quantum gate circuitry, fault tolerant

quantum codes and measurements, already apparent in the stabilizer formalism [7, 8].

It was shown that a few building block gates are enough to simulate any unitary

evolution [2] and a few minimal resources are required for measurement-only quantum

computation [9]. This paper explores the fresh view that the geometry of commutation

relations [10]-[12] between the error operators, their corresponding group of symmetries

(i.e. the automorphisms), and the typology of the stabilizer group in terms of maximal

normal subgroups [13], sustain the explanation of quantum (de)coherence. Although the

approach is performed for a reduced number of qubits, novel pieces of the puzzle appear

such as perfect groups with special group theoretical or geometrical properties, and

new links are established, such as the relevance of mutually unbiased bases to quantum

coherence, or the embedding of quantum topological concepts within the Clifford group.

Several recent papers concern closely related topics, see for example Refs [14]-[17].

Following an outline of useful group theoretical concepts in Sec 2, the structure

of one and two-qubit Clifford groups is unraveled in Sec 3 in terms of split short

exact sequences, which makes use of permutation groups acting on five or six letters.

Calculations are performed using GAP [18] and MAGMA [19].

2. An outline of group commutators, group extensions and groups of

automorphisms

For an introduction to group theory one may use the on-line Ref [20]. A subgroup N of a

group G is called a normal subgroup if it is invariant under conjugation: that is, for each

n in N and each g in G, the conjugate element gng−1 still belongs to N . In particular,

the center Z(G) of a group G (the set of all elements in G which commute with each
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element of G) is a normal subgroup of G. The group G̃ = G/Z(G) is called the central

quotient of G. A second important example of a normal subgroup of G is provided by

the subgroup G′ of commutators (also called the derived subgroup of G). It is defined

as the subgroup generated by all the commutators [g, h] = ghg−1h−1 of elements of G.

The quotient group Hab = G/G′ is an abelian group called the abelianization of G and

corresponds to its first homology group. The set K(G) of all commutators of a group

G may depart from G′ [21].

Our third example relates to group extensions. Let P and C be two groups such

that P is normal subgroup of C. The group C is an extension of P by H if there exists

a short exact sequence of groups

1 → P f1→ C f2→ H → 1, (1)

in which 1 is the trivial (single element) group.

The above definition can be reformulated as follows

(i) P is isomorphic to a normal subgroup N of C,

(ii) H is isomorphic to the quotient group C/N .

Because in an exact sequence the image of f1 is equal to the kernel of f2, then the

map f1 is injective and f2 is surjective.

* Given any groups P and H the direct product of P and H is an extension of P
by H .

* The semidirect product P ⋊ H of P and H is defined as follows. The group C is

an extension of P by H (one identifies P with a normal subgroup of C) and

(i) H is isomorphic to a subgroup of C,

(ii) C=PH and

(iii) P ∩H = 〈1〉.
One says that the short exact sequence splits.

The wreath product M ≀H of a group M with a permutation group H acting on n

points is the semidirect product of the normal subgroup Mn with the group H , which

acts on Mn by permuting its components.

* Let G = Z2 ≀ A5, in which A5 is the five letters alternating group, then G′ is a

perfect group with order 960 and one has G′ 6= K(G). Let H = Z5
2 ⋊A5, one can think

of A5 having a wreath action on Z5
2 . The group G′ = H̃ = M20 [26] is the smallest

perfect group having its commutator subgroup distinct from the set of the commutators

[21]. One easily checks that M20 also corresponds to the derived subgroup W ′ of the

Weyl group (also called hyperoctahedral group) W = Z2 ≀ S5 for the Lie algebra of type

B5. For a quantum version, see [22].

Group of automorphisms

Given the group operation ∗ of a group G, a group endomorphism is a function φ from

G to itself such that φ(g1 ∗ g2) = φ(g1) ∗ φ(g2), for all g1, g2 ∈ G. If it is bijective, it is

called an automorphism. An automorphism of G that is induced by conjugation of some

g ∈ G is called inner. Otherwise it is called an outer automorphism. Under composition
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the set of all automorphisms defines a group denoted Aut(G). The inner automorphisms

form a normal subgroup Inn(G) of Aut(G), that is isomorphic to the cental quotient of

G. The quotient Out(G) = Aut(G)/Inn(G) is called the outer automorphism group.

The decoherence problem is related to peculiar outer automorphisms occuring inside

the Clifford group. It turns out that, among symmetric permutation groups, only S6

has a nontrivial automorphism group Out(S6) = Z2. Later it is shown that S6 governs

the symmetries of commutation relations of the two-qubit system and one has to pass

to S5 for restoring quantum coherence.

3. Quantum computing and the Clifford group

Compared to group theory, the science of quantum computing is in its infancy [8]. In

quantum codes and in quantum computing, one is interested in preventing or correcting

errors that may affect one or many physical qubits [23]-[25]. A frequently used error

group is the general Pauli group Pn. It consists of tensor products of the Pauli matrices

[10]

σx =

(

0 1

1 0

)

, σz =

(

1 0

0 −1

)

, σy = iσxσz, (2)

and the unity matrix σ0. Pauli matrices generate the single qubit Pauli group P1 of

order 16 and center Z(P1) = {±1,±i}.
Let us assume a quantum computer in a state |ψ〉, and apply to it an error g

belonging to the Pauli group P so that the new state of the computer is g |ψ〉. One

allows unitary evolutions U so that the new state evolves as Ug |ψ〉 = UgU †U |ψ〉. For

stabilizing the error within the Pauli group P, one requires that UgU † ∈ P. The set of

operators leaving P invariant under conjugation is the normalizer C in the unitary group

U , also known as the Clifford group [7]. Within a unitary group one has the equality

U † = U−1. As a result, the group P is a normal subgroup of C and one may use the

powerful formalism of group extensions to report on it. Additionnaly some subgroups

of C, which have the error group P as a normal subgroup, will play a role for displaying

the quantum coherence.

For a system of n qubits, one denotes the Pauli group as Pn and the Clifford

group as Cn. One learned from Gottesman-Knill theorem that the Hadamard gate

H = 1/
√

2

(

1 1

1 −1

)

and the phase gate P = Diag(1, i) are in the one-qubit Clifford

group C1, and that the controlled-Z gate CZ = Diag(1, 1, 1,−1) is in the two-qubit

Clifford group C2. Any gate in Cn may be generated from the application of gates from

C1 and C2 [7, 14]. Clifford group Cn on n-qubits has order |Cn| = 2n2+2n+3
∏n

j=1 4j − 1

[23].

Below we will concentrate on the properties of the Clifford group related to one

and two qubits, using the group theoretical package GAP4 [18]. Generation of the gates

will be ensured by the use of cyclotomic numbers, as described in Sec 18 of the GAP4
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reference manual. For example the elements 1, −1, i and 21/2 will be modelled as the

roots of unity E(1), E(2), E(4) and as ER(2), respectively.

3.1. The Clifford group on a single qubit

The one-qubit Clifford group is defined as C1 = 〈H,P 〉. It has order |C1| = 192, its center

is Z(C1) = Z8 and the derived subgroup C′
1 equals the special linear group SL(2, 3).

The central quotient is C̃1 = S4 and one obtains the abelianization as the direct product

Cab
1 = Z4 × Z2.

Using the method described in Sec 2 two split extensions follow. The first one is

attached to C′
1 = SL(2, 3) as follows

1 → SL(2, 3)→ C1 → Z2 ×Z3 → 1. (3)

The second one is attached to the Pauli group

1 → P1→ C1 → D12 → 1, (4)

in which D12 = Z2 × S3 is the dihedral symmetry group of a regular hexagon.

3.2. The Clifford group on two qubits

The two-qubit Pauli group may be generated as

P2 = 〈σx ⊗ σx, σz ⊗ σz, σx ⊗ σy, σy ⊗ σz , σz ⊗ σx〉. It is of order 64 and has center

Z(P2) = Z(P1). The two-qubit Clifford group, of order 92160, may be generated

from H , P and CZ as C2 = 〈H ⊗H,H ⊗ P,CZ〉. Its center is Z(C2) = Z(C1) and the

central quotient C̃2 is found to satisfy the exact sequence

1 → U6 → C̃2 → Z2 → 1, (5)

in which we introduced the notation U6 = C̃′
2 = Z×4

2 ⋊ A6. Another important

relationship is U6 = Aut(P2)
′, i.e. U6 encodes the commutators of the Pauli group

automorphisms. It turns out that the group C̃2 only contains two normal subgroups

Z×4
2 and U6. The group U6, of order 5760, is a perfect group. It can be seen as a parent

of the six element alternating group A6. Its outer automorphism group Out(U6) is the

same, equal to the Klein group Z2 × Z2.

The group U6 is an important maximal subgroup of several sporadic groups. The

group of smallest size where it appears is the Mathieu group M22. Mathieu groups are

sporadic simple groups, so that U6 is not normal in M22. It appears in the context of a

subgeometry of M22 known as an hexad. Let us recall the definition of Steiner systems.

A Steiner system S(a, b, c) with parameters a, b, c, is a c-element set together with a set

of b-element subsets of S (called blocks) with the property that each a-element subset

of S is contained in exactly one block. A finite projective plane of order q, with the

lines as blocks, is an S(2, q + 1, q2 + q + 1), because it has q2 + q + 1 points, each line

passes through q + 1 points, and each pair of distinct points lies on exactly one line.

Any large Mathieu group can be defined as the automorphism (symmetry) group of a

Steiner system [27]. The group M22 stabilizes the Steiner system S(3, 6, 22) comprising
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22 points and 6 blocks, each set of 3 points being contained exactly in one block‡. Any

block in S(3, 6, 22) is a Mathieu hexad, i.e. it is stabilized by the general alternating

group U6.

There is a relationship between the two-qubit Clifford and Pauli groups

C2/P2 = Z2 × S6 (6)

which features the important role of the six-letter symmetric group S6. The latter

governs the Pauli graph attached to the two-qubit system, being the automorphism

group of generalized quadrangle of order two W (2) [10]. The group S6 is peculiar

among the symmetric permutation groups as having an outer automorphism group Z2.

3.3. Quantum coherence within the two-qubit system

Topological quantum computing based on anyons has been proposed as way of encoding

quantum bits in nonlocal observables that are immune of decoherence [4, 28]. The basic

idea is to use pairs |v, v−1〉 of “magnetic fluxes” playing the roles of the qubits and

permuting them within some large enough nonabelian finite group G such as A5. The

“magnetic flux” carried by the (anyonic) quantum particle is labeled by an element of

G, and “electric charges” are labeled by irreducible representation of G [29].

The exchange within G modifies the quantum numbers of the fluxons according to

the fundamental logical operation

|v1, v2〉 →
∣

∣

∣v2, v
−1

2 v1v2

〉

, (7)

a form of Aharonov-Bohm interactions, which is nontrivial in a nonabelian group. This

process can be shown to produce universal quantum computation. It is intimately

related to topological entanglement, the braid group and unitary solutions of the Yang-

Baxter equation [30]

(R⊗ I)(I ⊗ R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R), (8)

in which I denotes the identity transformation and the operator R: V ⊗ V → V ⊗ V

acts on the tensor product of the bidimensional vector space V . One elegant unitary

solution of the Yang-Baxter equation is a universal quantum gate known as the Bell

basis change matrix

R = 1/
√

2













1 0 0 1

0 1 −1 0

0 1 1 0

−1 0 0 1













. (9)

‡ There exists up to equivalence a unique S(5,8,24) Steiner system called a Witt geometry. The group

M(24) is the automorphism group of this Steiner system, that is, the set of permutations which map

every block to some other block. The subgroups M(23) and M(22) are defined to be the stabilizers of

a single point and two points respectively.
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It is straightforward to see two-qubit topological quantum computing as another group

extension of the Pauli group. One may introduce a subgroup of the Clifford group, of

order 15360, that we denote the Bell group as follows

B2 = 〈H ⊗H,H ⊗ P,R〉 . (10)

The Bell group has center Z8 and its central quotient only contains two normal subgroups

Z×4
2 and M20 = Z×4

2 ⋊ A5. The group M20 was already quoted in Sec 2 as being the

smallest perfect group having the set of commutators departing from the commutator

subgroup. The relationship between the Bell and Pauli groups

B2/P2 = Z2 × S5 (11)

displays the important role of the five letters symmetric group S5. At this point, it may

be useful to mention that A5 is the automorphism group of the icosahedron. Icosahedral

symmetry and quantum coherence seems to be related in recent fullerene experiments

[31].

3.4. Quantum coherence within mutually unbiased bases

To our knowledge the relationship between mutually unbiased bases (MUBs) of the

Pauli group and the Clifford group has not yet been established. Two orthonormal

bases are said to be mutually unbiased if each common state of one basis gives rise to

the same probability distribution when measured with respect to the other basis. For

prime power dimensions pm, complete sets of MUBs have cardinality pm + 1 and can

be determined using different techniques such as the additive characters over a Galois

field [32] §. In composite dimensions, MUBs strongly rely on projective lines over finite

rings [35]. In addition, the continuous variable case was addressed recently [36].

Commuting/non-commuting relations between the Pauli operators of the two-qubit

system have been determined [10]. The Pauli graph admits several decompositions: one

of them is based on its minimum vertex cover (the Petersen graph) and a maximal

independant set (of size five). If one uses a geometrical representation, operators

correspond to the points of the geometry, maximal sets of mutually commuting

operators, i.e. MUBs, correspond to the lines of the geometry, and a complete set of

MUBs corresponds to an ovoid (the maximum number of mutually disjoint lines). The

geometry of the two-qubit system is the smallest non-trivial generalized quadrangle.

Due to the perfect duality between the fifteen points and fifteen lines of the quadrangle,

the cardinality of a maximal independant set and the one of an ovoid is the same.

These graph theoretical and geometrical features of MUBs have a group theoretical

counterpart that one may find in the group of automorphisms attached to an

independant set. Let us denote mi (i = 1..5) the elements of such a maximal set,

one forms groups of increasing size g2 = 〈m1, m2〉, ... g4 = 〈m1, m2, m3, m4〉. (g1

is the trivial group and g5 = g4). The groups gi and the corresponding groups of

§ Power of prime dimensions also play a pivotal role in the number theoretical approach of 1/f noise

developed by one of us [33, 34].
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automorphisms Aut(gi) are identified in Table 1. One readily observes that the group of

automorphisms of an independant set/ovoid of the two-qubit system is isomorphic to the

wreath product Z2 ≀ A5 encountered in the context of topological quantum computing.

One concludes that the symmetries in a complete set of MUBs also provide a signature

of quantum coherence. Let us mention that the hyperoctahedral group Z2 ≀ S5, of order

3840, corresponds to the automorphism group of the code ((5, 6, 2)), the first instance

of a non-additive quantum code [37].

gi g2 g3 g4 g5 g6

G Z×2
2 (Z4 ×Z2) ⋊ Z2 (Z2 ×Q8) ⋊ Z2 Z2 × ((Z2 ×Q8) ⋊ Z2) g6

Aut(G) D8 Z2 × S4 Z2 ≀ A5 Z×2
2 ≀ A5 Z×3

2 ≀ A5

|Aut(G)| 8 48 1920 61440 1966080

Table 1. Group structure of an independant set of the two-qubit (g2 to g4) and three-

qubit systems (g2 to g6). G denotes the identified group and Aut(G) the corresponding

automorphism group. Q8 and D8 are the eight-element quaternion and dihedral groups.

The same approach can be applied to the three-qubit system and higher-order qubit

systems. For the three-qubit system, the size of a maximal independant set is seven (it

is different from the size 9 = 23 + 1 of a complete set of MUBs). The corresponding

automorphism group encompasses the one of the two-qubit system as shown in Table 1.

The group Aut(gn) (n > 4) is found to be isomorphic to the wreath product Z×m
2 ≀ A5,

with m = n− 3. Its central quotient equals its derived subgroup and may be identified

to the perfect group (Z×4
2 )⋊m

⋊A5. All these perfect groups of order 960, 15360, 245760

are found to contain at least one element, which is not a commutator ‖.

4. Conclusion

Advanced group theoretical tools may be used to explore fault tolerance in quantum

computing. We found some fingerprints of quantum (de)coherence in exceptional groups

such as U6 (the stabilizer of an hexad inM22), in the groupM20, and in the automorphism

groups of mutually unbiased bases. Using this approach, disparate concepts such as

the stabilizer formalism, topological quantum computing [38] and the mathematical

approach of quantum complementary, tend to merge. Future work will be devoted to

arbitrary n-qudit systems and composite systems, and the link to quantum codes.
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