
HAL Id: hal-00263673
https://hal.science/hal-00263673v2

Submitted on 21 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A family of solvable non-rational conformal field theories
Sylvain Ribault

To cite this version:
Sylvain Ribault. A family of solvable non-rational conformal field theories. Journal of High Energy
Physics, 2008, 05, pp.073. �hal-00263673v2�

https://hal.science/hal-00263673v2
https://hal.archives-ouvertes.fr


ha
l-0

02
63

67
3,

 v
er

si
on

 2
 -

 2
1 

M
ay

 2
00

8

Preprint typeset in JHEP style - HYPER VERSION PTA/08-019

A family of solvable non-rational conformal field
theories

Sylvain Ribault

Laboratoire de Physique Théorique et Astroparticules, UMR5207 CNRS-UM2,
Universit́e Montpellier II, Place E. Bataillon,
34095 Montpellier Cedex 05, France
ribault@lpta.univ-montp2.fr

ABSTRACT: We find non-rational conformal field theories in two dimensions, which are solvable
due to their correlators being related to correlators of Liouville theory. Their symmetry algebra
consists of the dimension-two stress-energy tensor, and two dimension-one fields. The theories
come in a family with two parameters: the central chargec and a complex numberm. The special
casem = 0 corresponds to Liouville theory (plus two free bosons), andm = 1 corresponds to the
H+

3 model. In the casem = 2 we show that the correlators obey third-order differentialequations,
which are associated to a subsingular vector of the symmetryalgebra.
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1. Introduction

Conformal field theories in two dimensions have many applications in string theory and condensed-
matter physics. In some applications the system under consideration, say strings in a given space-
time, dictates the theory to be studied. In some other cases however, a CFT is used as a phenome-
logical theory for a system without a known first-principlesdescription. The relevant theory must
then be chosen among the known CFTs according to the desired properties of the system. This
approach relies on the existence of a large enough number of CFTs among which to choose, and on
a good enough knowledge of their properties. Many rational CFTs are known, and their properties
are often well-understood. However most CFTs are non-rational, and only a few non-rational CFTs
have been solved so far, among them Liouville theory [1] and the H+

3 model [2]. It is therefore
interesting to expand the small family of solvable non-rational CFTs.

The inspiration for the present article comes from the relation [3] between the correlation
functions of theH+

3 model and correlation functions of Liouville theory. Namely, correlators
of genericH+

3 primary fields are related to correlators involving both generic Liouville primary
fields, and the particular fieldV− 1

2b
whereb is related to the central charge of Liouville theory

by c = 1 + 6(b + b−1)2. This field is known to be a degenerate field with a null vector at level
two, which implies that Liouville correlators involving this field obey second-order differential
equations [4]. But there is an infinite series of degenerate fields in Liouville theory, which lead to
higher-order differential equations. It is therefore natural to wonder whether Liouville correlators
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involving such degenerate fields – or even generic fields – canbe related to correlators in some
models which would be generalizations of theH+

3 model.
We will propose a positive answer to this question, and sketch some properties of the resulting

models. In contrast to the usual situation in the study of conformal field theory, we start with the
solution of the models, namely an ansatz for their correlators in terms of Liouville correlators. The
problem is then to reconstruct the models, and in particulartheir symmetry algebra, from their
correlators. This is a priori a non-trivial problem, because our ansatz gives us only correlators
of primary fields, but the notion of a primary field is not even defined if we do not know the
symmetry algebra. Fortunately, the correct symmetry algebra will be suggested by the Lagrangian
description of the models, which is very similar to the free-field description of theH+

3 model.
(The new Lagrangians however do not correspond to sigma models.) We will then check that this
symmetry algebra is consistent with the properties of the correlators, in particular in the case when
they obey third-order differential equations.

2. An ansatz for the correlation functions

Our ansatz will be directly inspired by theH+
3 -Liouville relation, we will therefore begin by a

reminder of this relation. More details and references can be found in [3].

2.1 Reminder of theH+
3 -Liouville relation

In the conformal bootstrap approach, theH+
3 model is defined by its symmetry algebra, and pri-

mary fields which transform in a certain way with respect to this algebra. Solving the model means
finding the correlation functions of the primary fields; these correlation functions are subject to
symmetry and consistency conditions. Let us briefly review these objects. The chiral symme-
try algebra of theH+

3 model is the affine Lie algebrâsℓ2, which is generated by three currents
J3(z), J+(z), J−(z) with the following operator product expansions (OPEs):

J3(z)J3(w) = −
k
2

(z − w)2
+ O(1) , (2.1)

J3(z)J±(w) = ±J±(w)

z − w
+ O(1) , (2.2)

J+(z)J−(w) = − k

(z − w)2
+

2J3(w)

z − w
+ O(1) , (2.3)

wherek > 2 is called the level of the affine Lie algebra. As a consequence, theH+
3 model is a

conformal field theory with central chargec = 3k
k−2 ; the stress-energy tensor which generates the

conformal transformations can be deduced from the currentsby the Sugawara construction [5]

T =
1

2(k − 2)

[
(J+J−) + (J−J+) − 2(J3J3)

]
, (2.4)

where we use the following definition of the normal-ordered product of operators:

(AB)(z) =
1

2πi

∮

z

dx
dx

x − z
A(x)B(z) . (2.5)
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Affine primary operatorsΦj(µ|w) with spinj, isospinµ and worldsheet positionw are defined by
their OPEs with the currents, from which their OPEs with the stress-energy tensor follows:

J−(z)Φj(µ|w) =
µ

z − w
Φj(µ|w) + O(1) , (2.6)

J3(z)Φj(µ|w) =
µ ∂

∂µ

z − w
Φj(µ|w) + O(1) , (2.7)

J+(z)Φj(µ|w) =
µ ∂2

∂µ2 − j(j+1)
µ

z − w
Φj(µ|w) + O(1) , (2.8)

T (z)Φj(µ|w) =
∆j

(z − w)2
Φj(µ|w) +

1

z − w

∂

∂w
Φj(µ|w) + O(1) , (2.9)

where the conformal dimension of the fieldΦj(µ|w) is

∆j = −j(j + 1)

k − 2
. (2.10)

The fieldsΦj(µ|w) have similar OPEs with the antiholomorphic currentsJ̄a(z̄) and stress-energy
tensorT̄ (z̄), but their dependences on̄z and µ̄ will be kept implicit. The spin takes valuesj ∈
−1

2 + iR, corresponding to continuous representations of the algebra ŝℓ2.
In theH+

3 model all fields are either affine primaries or affine descendents thereof, and cor-
relators of affine descendents can be deduced from correlators of affine primaries by the Ward
identities. Therefore, in order to solve the model on the Riemann sphere with coordinatesz, z̄, it is
enough to determine then-point functions of affine primaries for alln:

Ωn ≡
〈

n∏

i=1

Φji(µi|zi)

〉
. (2.11)

Now all such correlators of affine primaries are related to Liouville theory correlators as follows:

Ωn = δ(2)(
∑n

i=1µi)|u|2|Θn|
1
b2

〈
n∏

i=1

Vαi
(zi)

n−2∏

a=1

V− 1
2b

(ya)

〉
, (2.12)

where we consider Liouville theory at parameter

b =
1√

k − 2
, (2.13)

with primary operatorsVα(z) with momenta

α = b(j + 1) +
1

2b
, (2.14)

and conformal dimensions

∆α = α(b + b−1 − α) . (2.15)

The objectsu andΘ are defined by

u =
∑n

i=1µizi , Θn =

∏
i<j zij

∏
a<b yab

∏n
i=1

∏n−2
a=1(ya − zi)

, (2.16)
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while the positionsya of the operatorsV− 1
2b

(ya) are determined in terms ofµi, zi by Sklyanin’s
change of variables

n∑

i=1

µi

t − zi
= u

∏n−2
a=1(t − ya)∏n
i=1(t − zi)

. (2.17)

2.2 Motivation of the ansatz

Let us replace the fieldsV− 1
2b

in the H+
3 -Liouville relation (2.12) with more general fieldsV−m

2b

with m ∈ C, and modify the prefactors as well:

Ω(m)
n = δ(2)(

∑n
i=1µi)|u|2λ|Θn|2θ

〈
n∏

i=1

Vαi
(zi)

n−2∏

a=1

V−m
2b

(ya)

〉
, (2.18)

whereλ andθ are numbers to be determined. Can we still interpretΩ
(m)
n as ann-point function

(2.11) of fieldsΦj(µ|z) in some conformal field theory? In the process we keep the definitions
of u,Θ andya eqs. (2.16,2.17), but the nature of the operatorΦj(µ|z) will be modified: it will
now be a primary field with respect to an unknown symmetry algebra, with an unknown conformal
dimension∆(m)

j with respect to a Virasoro algebra with an unknown central charge.

We hope that this interpretation ofΩ
(m)
n exists for any choice ofm, but we expect the val-

ues of the extra parametersλ, θ in (2.18) to be determined in terms ofm by symmetry and other
requirements. Let us first consider the constraints on the three-point function due to global confor-
mal invariance. This requires that the dependence ofΩ

(m)
3 on the worldsheet coordinatesz1, z2, z3

should be

Ω
(m)
3 ∝ |z12|−2

(
∆

(m)
j1

+∆
(m)
j2

−∆
(m)
j3

)

|z13|−2
(
∆

(m)
j1

+∆
(m)
j3

−∆
(m)
j2

)

|z23|−2
(
∆

(m)
j2

+∆
(m)
j3

−∆
(m)
j1

)

,(2.19)

with an arbitrary prefactor depending onµ1, µ2, µ3. According to our ansatz,Ω(m)
3 is actually

related to a four-point Liouville correlator, which behaves as

〈
Vα1(z1)Vα2(z2)Vα3(z3)V−m

2b
(y1)

〉

= |z12|2∆−
m
2b

−2∆12 |z13|−2∆
−

m
2b

−2∆13 |z23|2∆−
m
2b

−2∆23 |y1 − z2|−4∆
−

m
2b G(z) , (2.20)

where we use the notations∆12 = ∆α1 + ∆α2 −∆α3 for the Liouville conformal dimensions, and
G(z) for a known function of the cross-ratioz = z32(y−z1)

z31(y−z2) whose precise form is not needed here.
From the change of variables (2.17) we haveu(y − z2) = µ2z12z23 (in the limit t → z2), and in
additionz = 1 + µ3

µ2
actually does not depend onz1, z2, z3. Thus, the equations (2.18) and (2.20)

imply

Ω
(m)
3 ∝ |u|2λ+6θ+4∆

−

m
2b |z12|−2θ−2∆

−

m
2b

−2∆12 |z13|−2θ−2∆
−

m
2b

−2∆13 |z23|−2θ−2∆
−

m
2b

−2∆23
.(2.21)

Comparing with the condition (2.19) reveals that global conformal invariance requires

λ + 3θ + 2∆−m
2b

= 0 , ∆
(m)
ji

= ∆αi
+ ∆−m

2b
+ θ . (2.22)
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In order to derive the extra relation which we need for fully determiningλ, θ and∆
(m)
ji

, we will use
a more heuristic reasoning. Consider the behaviour of our ansatz (2.18) nearya = yb. In theH+

3

case (m = 1), correlators are continuous at such points, a property which is particularly important
in the study of theH+

3 model on the disc [6]. More generally, in the cases when the Liouville field
V−m

2b
is degenerate, the leading behaviour of two such fields when coming close is

V−m
2b

(ya)V−m
2b

(yb) ∼
yab→0

|yab|
−4∆

−

m
2b

+2∆
−

m
b V−m

b
(ya) , (2.23)

and the behaviour of our ansatz is thus

Ω(m)
n ∼

yab→0
|yab|

−4∆
−

m
2b

+2∆
−

m
b

+2θ
. (2.24)

Assuming the critical exponent−4∆−m
2b

+ 2∆−m
b

+ 2θ to vanish, and solving eq. (2.22) as well,
we obtain

θ =
m2

2b2
, λ = m(1 + b−2(1 − m)) , ∆

(m)
j = ∆α − m

4
(2 + 2b−2 − b−2m) . (2.25)

These relations will be assumed to hold not only when the Liouville field V−m
2b

is degenerate, but
in all cases. Notice that it is possible to define a “spin” variablej such that

∆
(m)
j = −(j + 1)(b2j + m − 1) , (2.26)

in which case the momentumα of the corresponding Liouville fieldVα(z) is

α = b(j + 1) +
m

2b
. (2.27)

In the following we will argue that the ansatz (2.18), together with the particular values (2.25)
for the parametersλ, θ and the conformal weights of the fieldsΦj(µ|z), has a meaning in terms of
correlators in a conformal field theory.

3. Symmetry algebra of the new theories

We have checked that our ansatz is consistent with global conformal invariance, let us now study the
rest of the conformal symmetry, and the possible extra symmetries which underlie our ansatz. To do
this, it will be convenient to introduce a Lagrangian description of the corresponding theories. We
will therefore propose such a description, check that it reproduces the relation (2.18) with Liouville
theory, and then use it for deriving the symmetries.

3.1 Lagrangian description

We use the same bosonic fields(φ, β, γ) as in theH+
3 model [7], and we propose the following

Lagrangian and stress-energy tensor:

L(m) =
1

2π

[
∂φ∂̄φ + β∂̄γ + β̄∂γ̄ + b2(−ββ̄)me2bφ

]
, (3.1)

T (m) = −β∂γ − (∂φ)2 + (b + b−1(1 − m))∂2φ , (3.2)
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where−ββ̄ is assumed to be real positive.
The interaction termL(m)

int = (−ββ̄)me2bφ is marginal with respect to the stress-energy tensor
T (m). In the casesm = 0 (Liouville theory) andm = 1 (H+

3 model) it is known to be exactly
marginal. This follows from the exponential dependence of the interaction term onφ, a feature
which is still present for arbitrary values ofm. In perturbative calculations, many terms in the
series expansion ofexp−

∫
L(m)

int will then yield vanishing contributions due toφ-momentum con-
servation in the free theory. We therefore expect the interaction to be exactly marginal, which
implies that the corresponding theories have conformal symmetry.

In the casem = 1 of theH+
3 model, integrating out the non-dynamical fieldsβ, β̄ in the path

integral
∫
DφDβDβ̄DγDγ̄ e−

∫
d2w L(m)

yields a sigma model, whose target space is indeedH+
3 .

In the general case, it is still possible to integrate outβ, β̄ if ℜm > 1
2 , but the resulting Lagrangian

has no sigma model interpretation because it involves higher powers of∂̄γ∂γ̄.
The relation betweenH+

3 and Liouville correlators has been rederived by Hikida and Schome-
rus using a path-integral computation [8]. We will now emulate this calculation in order to rederive
our ansatz (2.18) from the path-integral definition of a theory with the Lagrangian (3.1). Of course,
this path-integral definition will be complete only after wespecify the fieldsΦj(µ|z) in terms of
(φ, β, γ):

Φj(µ|z) = |µ|2m(j+1)eµγ−µ̄γ̄e2b(j+1)φ . (3.3)

The path-integral definition of then-point function is then

Ω(m)
n =

∫
DφDβDβ̄DγDγ̄ e−

∫
d2w L(m)

n∏

i=1

Φji(µi|zi) . (3.4)

Let us perform the integrations overγ andγ̄, and thenβ andβ̄:

Ω(m)
n = δ(2)(

∑n
i=1µi)

∫
Dφ e

− 1
2π

∫
d2w

(
∂φ∂̄φ+b2

∣∣∣u
∑

i

µi
w−zi

∣∣∣
2m

e2bφ

)
n∏

i=1

|µi|2m(ji+1)e2b(ji+1)φ ,(3.5)

where we still haveu =
∑n

i=1 µizi. We then perform the change of integration variable

φ → φ − mb−1 log |u| . (3.6)

This produces a global factor|u|2m(1+b−2(1−m)), due to an implicit worldsheet curvature term in the
Lagrangian, which corresponds to the linear dilaton term(b+ b−1(1−m))∂2φ in the stress-energy
tensorT (m), eq. (3.2). (For simplicity we have used flat space as a model of the Riemann sphere
and omitted the worldsheet curvature term. This subtlety isdealt with in [8].) Then, we defineya

as the zeroes of
∑n

i=1
µi

w−zi
as in eq. (2.17), and perform the change of integration variable

ϕ(w) = φ(w) + mb−1 log

∣∣∣∣∣

∏n−2
a=1(w − ya)∏n
i=1(w − zi)

∣∣∣∣∣ . (3.7)

This yields

Ω(m)
n = δ(2)(

∑n
i=1µi) |u|2m(1+b−2(1−m)) |Θn|

m2

b2

×
∫

Dϕ e−
1
2π

∫
d2w(∂ϕ∂̄ϕ+b2e2bϕ)

n∏

i=1

e(2b(ji+1)+ m
b

)ϕ(zi)
n−2∏

a=1

e−
m
b

ϕ(ya) , (3.8)
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whereΘn was defined in eq. (2.16). The second line of this formula is the path-integral version of
the Liouville theory correlator which appears in our ansatz(2.18), with the expected values for the
Liouville momentaαi = b(ji +1)+ m

2b
. And the prefactors also agree with the expectations (2.25).

Therefore, the path-integral calculation provides a Lagrangian definition (3.1) for the new the-
ories whose correlators we conjectured. This definition will allow us to easily study the symmetries
of these theories.

3.2 Symmetry algebra

Let us interpret the theories with Lagrangian (3.1) as free theories of the fields(φ, β, γ, β̄, γ̄) with
contractions

〈φ(z)φ(w)〉 = − log |z − w| , 〈β(z)γ(w)〉 =
1

w − z
, (3.9)

deformed by the interaction termL(m)
int = (−ββ̄)me2bφ. The chiral symmetry algebra is then the

set of holomorphic fields whose OPEs withL(m)
int vanish up to total derivatives. Such chiral fields

can be constructed from the basic holomorphic fields∂φ, β, γ by using the normal-ordered product
(2.5), see for instance [9] for the rules of computing with this product.

We already know one chiral field, namely the stress-energy tensorT (m) (3.2), which generates
a Virasoro algebra with central charge

c(m) = 3 + 6(b + b−1(1 − m))2 . (3.10)

But in the case of theH+
3 model (m = 1) we know that the creation modes of this Virasoro

algebra are not enough for generating the full spectrum of the model from the fieldsΦj(µ|z). These
fields are indeed affine primaries, that is primary fields withrespect to the much larger symmetry
algebraŝℓ2. Can we find a larger algebra for general values ofm? Let us introduce the following
holomorphic currents:

J− = β , (3.11)

J3 = −βγ − mb−1∂φ , (3.12)

J+ = βγ2 + 2mb−1γ∂φ − (m2b−2 + 2)∂γ , (3.13)

where normal ordering is implicitly assumed when needed. The OPEs of these currents obey the
relations (2.1-2.3) of an̂sℓ2 algebra at levelk = 2 + m2b−2. However, only the currentsJ− and
J3 are symmetries of our model. The currentJ+ indeed has a nontrivial OPE withL(m)

int , and is no
symmetry. And the stress-energy tensor which we could buildfrom J−, J3, J+ by the Sugawara
construction (2.4) is therefore also no symmetry. It actually differs from the stress-energy tensor
(3.2), with respect to which the interactionL(m)

int is marginal. The chiral symmetry algebra is
therefore generated by the three fieldsT, J3, J− (where from now on we omit the superscipt of
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T (m)), and we compute their OPEs as

T (z)T (w) =
1
2c(m)

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

z − w
+ O(1) , (3.14)

T (z)J−(w) =
J−(w)

(z − w)2
+

∂J−(w)

z − w
+ O(1) , (3.15)

T (z)J3(w) =
(1 − m)(1 − mb−2)

(z − w)3
+

J3(w)

(z − w)2
+

∂J3(w)

z − w
+ O(1) , (3.16)

J−(z)J−(w) = O(1) , (3.17)

J3(z)J−(w) =
J−(w)

w − z
+ O(1) , (3.18)

J3(z)J3(w) = −1 + 1
2m2b−2

(z − w)2
+ O(1) . (3.19)

This looks very much like the subalgebra of the affine algebraŝℓ2 obtained by removing the current
J+, except that there is now a central term in theTJ3 OPE, so thatJ3 is no longer a primary field.
Notice that this algebra, unlike the LagrangianL(m), is invariant under the duality

b → b−1 , m → mb−2 . (3.20)

Notice also that settingJ− = 0 yields a smaller algebra generated byT andJ3, which might be
interesting as well.1

It can be checked that the fieldsΦj(µ|z) are primary with respect to our chiral algebra. We
can indeed compute the OPEs of their free-field realization (3.3) with J−, J3 andT , which re-
spectively reproduces the OPEs (2.6), (2.7) and (2.9) with however the conformal dimension∆(m)

j

(2.26). And we can check that the correlators (2.18) have thecorrect behaviour under global sym-
metry transformations. We already performed this analysisin the case of the global conformal
transformations of the three-point functionΩ

(m)
3 , this is how we found∆(m)

j in the first place. The

global Ward identity forJ− is (
∑n

i=1 µi)Ω
(m)
n = 0, which is obviously satisfied. We furthermore

compute
(∑n

i=1 µi
∂

∂µi

)
Ω

(m)
n = −(1 − m)(1 − mb−2)Ω

(m)
n . This is what is expected knowing

thatJ3 is no longer primary, see theTJ3 OPE (3.16).
These simple consistency checks leave two questions about our determination of the symmetry

algebra:

1. Is the symmetry algebra large enough?We still have to show that the descendent fields ob-
tained by repeatedly acting on the primariesΦj(µ|z) with the creation modes ofT, J3, J− do
span the spectrum. In particular, can theΦj1(µ1|z1)Φ

j2(µ2|z2) OPE be written as a sum over
such descendents? In principle, we could address this issueby studying thez12 → 0 expan-
sion of our ansatz (2.18) for the correlatorsΩ

(m)
n . This would however be tedious. Instead, let

us focus on them = 1 case. The spectrum of theH+
3 model is known to be generated by the

1We could even consider a three-parameter family ofT, J3 algebras with arbitrary central termsT (z)T (w) =
1

2
c

(z−w)4
+ · · · , T (z)J3(w) = Q

(z−w)3
+ · · · andJ3(z)J3(w) = −

k

2

(z−w)2
+ · · · . The relationc = 1− 6Q2

k
defines a

subfamily where the identificationT = −

1
k
(J3J3)+ Q

k
∂J3 is allowed. After introducing a bosonϕ such thatJ3 = ∂ϕ

this corresponds to a linear dilaton theory. Our parametersm, b parametrize a different subfamily.
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modes ofJ3, J+, J−, but we will now argue that the modes ofT, J3, J− are actually enough.
Let us define these modes byT (z) =

∑
n∈Z

Lnz−n−2 andJa(z) =
∑

n∈Z
Ja

nz−n−1; cre-
ation modes areJa

n<0 andLn<0, while primary fieldsΦj(µ|z) correspond to primary states
|p〉 such thatLn>0|p〉 = Ja

n>0|p〉 = 0. Any level oneJ+-descendent state can by definition
be written as|d〉 = J+

−1|p′〉 with |p′〉 an affine primary state in theH+
3 spectrum. The spec-

trum being made of continuous representations, this primary can be rewritten as|p′〉 = J−
0 |p〉

with |p〉 another primary. Using the Sugawara construction (2.4), wethen have

|d〉 = J+
−1J

−
0 |p〉 =

[
−J−

−1J
+
0 + 2J3

−1J
3
0 + (k − 2)L−1

]
|p〉 , (3.21)

which is manifestly a combination ofL−1, J
3
−1, J

−
−1-descendents of affine primary states.

This reasoning can be iterated to higher levelJ+-descendent states. This proof is special to
m = 1 and cannot be generalized, but it demonstrates that ourT, J3, J− symmetry algebra
is likely large enough.

2. Are the chiral fields algebraically independent?In theH+
3 model, the fact that the chiral

fields T, J+, J3, J− are not independent but related by the Sugawara construction implies
that the correlators obey Knizhnik–Zamolodchikov differential equations. In our generalized
theories with parameterm, correlators (2.18) do obey differential equations for values ofm
such that the fieldV−m

2b
is a Liouville degenerate field. This happens if

m = p + b2q , p, q = 0, 1, 2 · · · (3.22)

We therefore expect that the structure of our chiral algebrabecomes in some sense reducible
for these values ofm, so that differential equations can be derived for the correlators. This
is what we will explicitly demonstrate in the casem = 2.

4. Differential equation in the casem = 2

We will first derive the third-order differential equationssatisfied by the correlatorΩ(2)
n from the

Belavin–Polyakov–Zamolodchikov equations satisfied by the corresponding Liouville correlators,
and then check that these equations can be recovered from oursymmetry algebra.

4.1 Third-order BPZ equation

The Virasoro module generated by the Liouville fieldV− 1
b

has a null vector at level three [4]:

χ3 =

[
(−1 + 2b−2)L−3 + 2L−1L−2 +

1

2
b2L3

−1

]
V− 1

b
. (4.1)

Assuming that this null vector vanishes implies that correlators involvingV− 1
b

obey third-order
BPZ differential equations. In particular, let us write theBPZ equation associated to a degenerate
field V− 1

b
(y) in the Liouville correlator which appears in our ansatz (2.18). We callyb 6= y the

insertion points of the other degenerate fields so thatya = (y, yb); moreover we callzI = (zi, yb)
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the positions of all fields exceptV− 1
b
(y). The BPZ equation then involves the following differential

operator:

D =
b2

2

∂3

∂y3
+
∑

I

[
∂

∂y

2

y − zI

∂

∂zI
+

2∆αI

(y − zI)2
∂

∂y

]
+
∑

I

[
∆− 1

b
+ 2

(y − zI)2
∂

∂zI
+

2∆− 1
b
∆αI

(y − zI)3

]
.(4.2)

This BPZ equation impliesD′Ω
(2)
n = 0 whereD′ = Θ

2
b2
n DΘ

− 2
b2

n , with Θn defined by eq. (2.16).
We thus wish to computeD′; at the same time we should perform the change of variables(zi, ya) →
(zi, µi) defined by eq. (2.17). In particular we should rewrite∂

∂zi
= ∂

∂zi

∣∣∣
ya

in terms of δ
δzi

≡
∂

∂zi

∣∣∣
µj

. This will be done thanks to the identity [3]

n∑

i=1

1

y − zi

∂

∂zi
+
∑

b

1

y − yb

∂

∂yb
− X

∂

∂y
=

n∑

i=1

1

y − zi

δ

δzi
, (4.3)

where we defined

X ≡
∑

b

1

y − yb
−

n∑

i=1

1

y − zi
= −

∑n
i=1

µi

(y−zi)3∑n
i=1

µi

(y−zi)2
. (4.4)

We also use

∂

∂y
=

n∑

i=1

µi

y − zi

∂

∂µi
. (4.5)

Explicit calculations yield

D′ =
b2

2

∂3

∂y3
− X

∂2

∂y2
+ 2

∂

∂y
L−2(y) − 4b−2XL−2(y)

+ (2b−2 − 1)

[
L−3(y) −

∑

i

µi

(y − zi)3
∂

∂µi
− X

∑

i

µi

(y − zi)2
∂

∂µi

]
, (4.6)

where we defined

L−2(y) =
∑

i

1

y − zi

(
δ

δzi
+

∆
(2)
ji

y − zi

)
, (4.7)

L−3(y) = −
∑

i

1

(y − zi)2

(
δ

δzi
+

2∆
(2)
ji

y − zi

)
, (4.8)

where the conformal dimensions∆(2)
ji

and∆αi
are related by eq. (2.25).

The operatorD′ can be understood as a generalization of thesℓ2 Knizhnik–Zamolodchikov
differential operator, which in our notations can be written as [3]

DKZ = b2 ∂2

∂y2
+ L−2(y) . (4.9)
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4.2 Reformulation of the BPZ equation in terms of symmetry generators

If our identification of the symmetry algebra is correct, thedifferential equationD′Ω
(2)
n = 0 should

have a reformulation in terms of the chiral fieldsT, J3, J−. This is a non-trivial requirement on
D′, and we will now show that it is satisfied.

Let us denote〈Q〉 =
〈∏

Φji(µi|zi)
〉
. The actions of differential operators∂

∂y
, L−2(y) and

L−3(y) on 〈Q〉 have immediate interpretations as insertions of the chiralfields J3(y), T (y) and
∂T (y), for instance

∂

∂y
〈Q〉 =

〈
∑

i

∮

zi

dt
J3(t)

y − t
Q
〉

=

〈∮

y

dt
J3(t)

t − y
Q
〉

=
〈
J3(y)Q

〉
, (4.10)

where we used the formula (4.5) for∂
∂y

and the OPE (2.7) ofJ3 with Φj(µ|z). Iterating the actions
of such differential operators yields results like

∂

∂y
L−2(y) 〈Q〉 =

∂

∂y
〈T (y)Q〉 = 〈∂TQ〉 +

〈
(J3T )(y)Q

〉
, (4.11)

where the normal-ordered product(J3T ) is defined as previously, see eq. (2.5). Moreover, we have

∑

i

µi

(y − zi)3
∂

∂µi
〈Q〉 =

1

2

〈
∑

i

∮

zi

dt
∂2J3(t)

y − t
Q
〉

=
〈

1
2∂2J3(y)Q

〉
. (4.12)

Finally, the factors ofX in D′ can be related to insertions of∂J− and∂2J−, thanks to eq. (4.4)
and identities of the type

∑

i

µi

(y − zi)3
〈P(y)Q〉 =

1

2

〈∮

y

dt
∂2J−(t)

t − y
P(y)Q

〉
=
〈

1
2(∂2J−P)(y) Q

〉
, (4.13)

which is valid for any operatorP.
Therefore, the equationD′Ω

(2)
n = 0 with the operatorD′ given in eq. (4.6) can be rewritten as〈

R(y)
∏

Φji(µi|zi)
〉

= 0, where

R = 1
2b2(∂J−(J3(J3J3))) + 2(∂J−(J3T )) + [2b−2 + 1](∂J−∂T )

+ 3
2b2(∂J−(J3∂J3)) + 1

2 [b2 + 1 − 2b−2](∂J−∂2J3)

− 1
2(∂2J−(J3J3)) + [−1 + b−2](∂2J−∂J3) − 2b−2(∂2J−T ) . (4.14)

We can already conjecture that, for all the values (3.22) ofm such that the fieldsV−m
2b

is degenerate,
the BPZ equations can similarly be rewritten in terms of operatorsT, J−, J3. It is however not
clear how to deduce our operatorR from a null vector like (4.1), without performing the explicit
calculations as we did.

The equation
〈
R(y)

∏
Φji(µi|zi)

〉
= 0 of course does not mean that the operatorR should

be set to zero, because this equation is valid only at specialpointsy = y1 · · · yn−2. These points
were defined (2.17) as the zeroes ofϕ(t) =

∑n
i=1

µi

t−zi
; they can be characterized in terms of the

operatorJ− by
〈

J−(y)
n∏

i=1

Φji(µi|zi)

〉
= 0 . (4.15)
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Actually, for any operatorP we have
〈
(J−P)(y)

∏n
i=1 Φji(µi|zi)

〉
= 0. Therefore, the operator

R is expected to vanish modulo operators of the type(J−P).
In other words, we expect that this operator corresponds to asubsingular vectorR|0〉 in the

vacuum module of our symmetry algebra. That is, if we would set the singular vectorJ−|0〉 to
zero, thenR|0〉 would become a singular vector in the resulting coset module. We are actually not
settingJ−|0〉 to zero, but the presumptive subsingular vectorR|0〉 is nevertheless associated to dif-
ferential equations satisfied by the correlation functions. Relations between subsingular vectors and
differential equations were found previously by Dobrev [10] in the context of finite-dimensional
symmetry algebras, but they do not seem widespread in conformal field theory so far.2

4.3 Subsingular vectors of the symmetry algebra

In order to show that the third-order differential equationcan be deduced from our symmetry alge-
bra, we still have to prove that the operatorR (4.14) corresponds to a subsingular vector. We will
actually investigate the more general operator

R{λi} = λ1(∂J−J3J3J3) + λ2(∂J−J3T ) + λ3(∂J−∂T ) + λ4(∂J−J3∂J3) + λ5(∂J−∂2J3)

+ λ6(∂
2J−J3J3) + λ7(∂

2J−∂J3) + λ8(∂
2J−T ) , (4.16)

which depends on arbitrary coefficientsλ1 · · · λ8. Here and in the following we use the shorthand
notationABCD = (ABCD) = (A(B(CD))) for multiple normal orderings, see [9] for more
details on calculations involving such expressions.

We will perform this investigation with the help of the free fields (φ, β, γ). Since the map
from (J−, J3, T ) to (φ, β, γ) defined by the equations (3.11), (3.12) and (3.2) is a morphism of
algebras, it can indeed be used for determining whetherR{λi} generates a nontrivial ideal of the
coset algebra obtained by modding out the ideal generated byJ−. (This is the algebraic formulation
of our subsingular vector problem.) So let us compute the operatorR{λi} in terms of the fields
(φ, β, γ), modulo operators of the type(J−P) = (βP). We will denote by≃ the equality of
operators modulo such terms. For example, we find

(J3(J3J3)) ≃ 2∂β∂γ − 1
2∂2βγ − 3mb−1∂βγ∂φ − m3b−3∂φ3 , (4.17)

(J3T ) ≃ ∂β∂γ + mb−1∂φ3 − m(1 + b−2(1 − m))∂φ∂2φ , (4.18)

(J3∂J3) ≃ 1
2∂2βγ + mb−1∂βγ∂φ + m2b−2∂φ∂2φ , (4.19)

(∂T ) ≃ −∂β∂γ − 2∂φ∂2φ + (b + b−1(1 − m))∂3φ , (4.20)

(∂2J3) ≃ −∂2βγ − 2∂β∂γ − mb−1∂3φ . (4.21)

We then compute

R{λi} ≃ [2λ1 + λ2 − λ3 − 2λ5] ∂β2∂γ +
[
−3mb−1λ1 + mb−1λ4

]
∂β2γ∂φ

+
[
−m3b−3λ1 + mb−1λ2

]
∂β∂φ3 +

[
−m(1 + b−2(1 − m))λ2 − 2λ3 + m2b−2λ4

]
∂β∂φ∂2φ

+
[
(b + b−1(1 − m))λ3 − mb−1λ5

]
∂β∂3φ +

[
−1

2λ1 + 1
2λ4 − λ5 + λ6 − λ7

]
∂β∂2βγ

+
[
m2b−2λ6 − λ8

]
∂2β∂φ2 +

[
−mb−1λ7 + (b + b−1(1 − m))λ8

]
∂2β∂2φ . (4.22)

2I am very grateful to Vladimir Dobrev for pointing out that the notion of a subsingular vector is relevant here, and
for patiently explaning some of the literature on this topicto me.
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Let us solve the equationR{λi} ≃ 0, which when satisfied implies thatR{λi} corresponds to
a subsingular vector. This equation leads to a system of 8 linear equations for the 8 unknowns
λ1 · · ·λ8. Actually, the first five equations form a closed subsystem ofequations forλ1 · · ·λ5. This
subsystem has a nonzero solution only if its determinant vanishes, that is if

(m − 1)(m − 2)(m − b2)(m − 2b2) = 0 . (4.23)

The four solutions of this equation correspond to the Liouville operatorsV−m
2b

being degenerate,
leading to BPZ differential equations of order 2 or 3. This istherefore a strong check of our claim
that the ansatz (2.18) does define conformal field theories with symmetry algebras generated by
T, J3, J−. Let us perform a more detailed check in the casem = 2, by explicitly computing the
nonzero solution to the systemR{λi} = 0:

λ1 = 1
2b2 , λ2 = 2 , λ3 = 2b−2 + 1 , λ4 = 3

2b2 , λ5 = 1
2 (b2 + 1 − 2b−2) ,

λ6 = −1
2 , λ7 = −1 + b−2 , λ8 = −2b−2 .

(4.24)

With these values of ofλi, the operatorR{λi} (4.16) does agree with the operatorR (4.14), which
we found by reformulating the third-order BPZ equation.

5. Concluding remarks

We have argued that for any choice ofm and the central chargec, the objectΩ(m)
n of eq. (2.18) can

be interpreted as ann-point correlation function in a conformal field theory witha chiral symmetry
algebra generated by the fieldsT, J3, J− with OPEs (3.14-3.19). This conformal field theory
is solvable in the sense that its correlation functions are known in terms of Liouville correlation
functions. Liouville theory itself has been solved in the sense that its three-point function on
the sphere is explicitly known, while itsn-point functions on arbitrary Riemann surfaces can in
principle be deduced thanks to the conformal symmetry of thetheory. (See [1] for a review.) The
solution of the new theory is therefore not very explicit, and no closed formula can be written for its
three-point function except for some “degenerate” values of m (3.22) when it satisfies a differential
equation.

This differential equation provided the most non-trivial test of our claims. In the casem = 2,
we compared the differential equation deduced from our chiral symmetry algebra with the third-
order BPZ equation, and found explicit agreement. We expectsuch an agreement to hold for all
degenerate values ofm, and it would be interesting to check this beyond case-by-case calculations.

There may exist other theories based on the same symmetry algebra. For instance, in the case
m = 1, the non-rational, non-unitaryH+

3 model shares its symmetry algebra with the unitary
AdS3 WZW model and with the rationalSU2 WZW models. For general values ofm, our model
remains non-rational and non-unitary. (The lack of unitarity still follows from Gawedzki’sH+

3 -
model argument [2], although it is not quite clear what the scalar product on the spectrum is, asJ−

has no conjugate field.) It would be interesting to constructrational or unitary theories based on the
same symmetry algebra. Note however that our reasoning around eq. (3.21), which showed that
in the casem = 1 the modes ofT, J− andJ3 did generate the wholeH+

3 spectrum, relied on the
fact that the spectrum is purely continuous. But theAdS3 andSU2 WZW models involve discrete
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and finite-dimensional representations respectively, which presumably cannot be generated from
the modes ofT, J− andJ3. Therefore, a rational theory based on the(T, J3, J−) algebra would
probably differ from theSU2 WZW model and have a smaller spectrum.

We have not assumed any restrictions on the choice of the parametrsm and c. For some
purposes it might be useful to restrict say the central charge of the theory and the conformal di-
mensions of the fields to be real. Such restrictions could be dictated by particular applications.
From the point of view of conformal field theory, the new theories are however well-defined, and
their correlators manifestly satisfy crossing symmetry, avery stringent constraint. It is therefore
possible to study issues like the solution of these theorieson Riemann surfaces with boundaries.
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