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ABSTRACT. We find non-rational conformal field theories in two dimemsi, which are solvable
due to their correlators being related to correlators ofukilte theory. Their symmetry algebra
consists of the dimension-two stress-energy tensor, anddtmension-one fields. The theories
come in a family with two parameters: the central charged a complex numben. The special
casem = 0 corresponds to Liouville theory (plus two free bosons), ane- 1 corresponds to the
ng model. In the case: = 2 we show that the correlators obey third-order differerdgi@liations,
which are associated to a subsingular vector of the symmaéggpra.
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1. Introduction

Conformal field theories in two dimensions have many apttioa in string theory and condensed-
matter physics. In some applications the system under deragion, say strings in a given space-
time, dictates the theory to be studied. In some other casgsuver, a CFT is used as a phenome-
logical theory for a system without a known first-principtsscription. The relevant theory must
then be chosen among the known CFTs according to the desiopérties of the system. This
approach relies on the existence of a large enough numbd¥d @mong which to choose, and on
a good enough knowledge of their properties. Many ratiori@al €are known, and their properties
are often well-understood. However most CFTs are nonsrati@nd only a few non-rational CFTs
have been solved so far, among them Liouville theory [1] d&dif;” model [2]. It is therefore
interesting to expand the small family of solvable nonenadil CFTs.

The inspiration for the present article comes from the i@haf3] between the correlation
functions of theH;” model and correlation functions of Liouville theory. Nametorrelators
of genericHgr primary fields are related to correlators involving both ey@n Liouville primary
fields, and the particular fielﬁ’fﬁ whereb is related to the central charge of Liouville theory
by c = 1+ 6(b+ b~1)2. This field is known to be a degenerate field with a null vectdeeel
two, which implies that Liouville correlators involving ithfield obey second-order differential
equations [4]. But there is an infinite series of degeneratddiin Liouville theory, which lead to
higher-order differential equations. It is therefore makto wonder whether Liouville correlators



involving such degenerate fields — or even generic fields —-bearelated to correlators in some
models which would be generalizations of tHg” model.

We will propose a positive answer to this question, and sketene properties of the resulting
models. In contrast to the usual situation in the study ofawmal field theory, we start with the
solution of the models, namely an ansatz for their corredatoterms of Liouville correlators. The
problem is then to reconstruct the models, and in partictlair symmetry algebra, from their
correlators. This is a priori a non-trivial problem, becausir ansatz gives us only correlators
of primary fields, but the notion of a primary field is not evesfided if we do not know the
symmetry algebra. Fortunately, the correct symmetry afgelill be suggested by the Lagrangian
description of the models, which is very similar to the ffidd description of thefZ;” model.
(The new Lagrangians however do not correspond to sigma lsipde will then check that this
symmetry algebra is consistent with the properties of thieetators, in particular in the case when
they obey third-order differential equations.

2. An ansatz for the correlation functions

Our ansatz will be directly inspired by thH;-LiouviIIe relation, we will therefore begin by a
reminder of this relation. More details and references efobnd in [3].

2.1 Reminder of the H; -Liouville relation

In the conformal bootstrap approach, tHg" model is defined by its symmetry algebra, and pri-
mary fields which transform in a certain way with respect te #tgebra. Solving the model means
finding the correlation functions of the primary fields; theorrelation functions are subject to
symmetry and consistency conditions. Let us briefly revibesé objects. The chiral symme-
try algebra of theH3+ model is the affine Lie algebra@, which is generated by three currents
J3(2), JT (), J~(z) with the following operator product expansions (OPES):

k

J3(2).J3 (w) ::-—Z;—:%&5§-+-c)(1), (2.1)
3 + _ Ji(w)
P (w) = ==+ 0(1), 2.2)
3 w
TR (w) = s+ 22 o), 23)

wherek > 2 is called the level of the affine Lie algebra. As a consequetieeH; model is a
conformal field theory with central charge= k3—_’“2; the stress-energy tensor which generates the
conformal transformations can be deduced from the curligntee Sugawara construction [5]

1

T )

[(JTT7) + (T T =2(20%)] | (2.4)

where we use the following definition of the normal-ordereadoict of operators:

(AB)(z) = — ]é de — A2)B(2) . 2.5)
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Affine primary operator®’ (|w) with spin j, isospinu and worldsheet positiom are defined by
their OPEs with the currents, from which their OPEs with tliess-energy tensor follows:

T ()% (uw) = @ (ufw) + 0(1). (2.6)
9
) () =~ @ (ufu) +O(1) 27)
12 9% _ jU+D)
T ()0 (ufw) = =0 (ufw) + O(1) , (2.8)
. A .
T (uhw) = s ) + #wai@ww) +0(1), (2.9)
where the conformal dimension of the fiebd (11|w) is

A= U+ (2.10)

)

The fields®’ (12|w) have similar OPEs with the antiholomorphic curreff§z) and stress-energy
tensorT'(z), but their dependences anand i will be kept implicit. The spin takes valueis €
—% + iR, corresponding to continuous representations of the edg@b

In the ng model all fields are either affine primaries or affine descetslthereof, and cor-
relators of affine descendents can be deduced from comelafaaffine primaries by the Ward
identities. Therefore, in order to solve the model on tharRien sphere with coordinatesz, it is
enough to determine thepoint functions of affine primaries for atl:

Q, = <H (I)ji(:ui|zi)> : (2.11)

i=1

Now all such correlators of affine primaries are related tulille theory correlators as follows:

Q= 0D (7 15)|uf?|On]5 <HVQ 2 H Vo1 (g > , (2.12)
=1
where we consider Liouville theory at parameter
1
b= , 2.13
— (2.13)
with primary operatord/, (z) with momenta
1
=b(j+1 — 2.14
and conformal dimensions
Ay=ab+bt—a). (2.15)
The objecta, and© are defined by
Zij a a
u=3y iz, Op = Uic 7 Haoco v (2.16)

Hz 1Ha 1(y€1_ i),



while the positiongy, of the operatord/_ L (y,) are determined in terms @f;, z; by Sklyanin’s
change of variables

~ mi_ Tlasi(t—va)
t—zz H 1(t—22)‘

(2.17)
=1

2.2 Motivation of the ansatz

Let us replace the fieldg_ L in the H+-LIOUVIIIe relation (2.12) with more general fleld&m
with m € C, and modify the prefactors as well:

(2.18)

QW*WWNZ?WMM”@M”<ID®zaIImea>

i=1

where)\ andf are numbers to be determined. Can we still interpﬂé@ as ann-point function
(2.11) of fields®’ (1|z) in some conformal field theory? In the process we keep theitiefia
of u,© andy, egs. (2.16,2.17), but the nature of the operdaidfu|z) will be modified: it will
now be a primary field with respect to an unknown symmetrytaigewith an unknown conformal
dimensionA§m) with respect to a Virasoro algebra with an unknown centratgé.

We hope that this interpretation 0)‘,({”) exists for any choice ofn, but we expect the val-
ues of the extra parameteksd in (2.18) to be determined in terms of by symmetry and other
requirements. Let us first consider the constraints on tteetpoint function due to global confor-
mal invariance. This requires that the dependend@é’Zﬁﬁa on the worldsheet coordinates, 2o, 23
should be

(m) () (m) (m) () (m) (m) (m) (m)
U o gy (AT SRS | (A 4A AP | a4 10

|z13] |zo3|

with an arbitrary prefactor depending @n, uo, u3. According to our ansatzgzgm) is actually
related to a four-point Liouville correlator, which behawas

<%Jaﬁ@@ﬁV(%ﬂC%@n>

2ﬂ 2A12 A m72A13

|213] 2 BN

m— —2A03

—4A m
— |20 y1 — 22| B G(2), (2.20)

where we use the notatiods;; = A, + Ay, — A4, for the Liouville conformal dimensions, and
G(z) for a known function of the cross-ratio= % whose precise form is not needed here.
From the change of variables (2.17) we haNg — z2) = p2212293 (in the limit¢ — 25), and in
additionz = 1 + % actually does not depend an, 29, z3. Thus, the equations (2.18) and (2.20)
imply

2A+604+4A _ m
Q(m) o |ul

Z20-9A m—2A1a,  —20—2A m—2A13, | —20—2A  m —2Ass
3 |z13] | 223

2 [z12] ki % 5 (2.21)
Comparing with the condition (2.19) reveals that globalfoamal invariance requires

A+30+28 m =0 , AV =Ay +A_m+0. (2.22)



In order to derive the extra relation which we need for fultatmining, 6 andAEl_”’, we will use
a more heuristic reasoning. Consider the behaviour of osatar(2.18) neag, = y,. In the H"
case {n = 1), correlators are continuous at such points, a propertghvisi particularly important
in the study of the;~ model on the disc [6]. More generally, in the cases when tbentille field
Vom is degenerate, the leading behaviour of two such fields wbemng close is

AT Y () (2.23)

b

Ve (Wa)Vog ()~ [

ab
and the behaviour of our ansatz is thus

—4A_m +2A_m +26
2b b .

A~ Ll (2.24)

Ya

Assuming the critical exponert4A_m= +2A_m + 26 to vanish, and solving eq. (2.22) as well,
we obtain

2

=2

CA=m1+b21-m)) , A™=na, -

-2 -2
! T2+~ m) | (2.25)

These relations will be assumed to hold not only when the \liteufield V_me is degenerate, but
in all cases. Notice that it is possible to define a “spin” @bl j such that

(m) . 2.
AV =G+ DO +m 1), (2.26)
in which case the momentumof the corresponding Liouville field, (z) is

a=bj+1)+—=. (2.27)
2b
In the following we will argue that the ansatz (2.18), togettvith the particular values (2.25)
for the parameters, # and the conformal weights of the fields (x|z), has a meaning in terms of
correlators in a conformal field theory.

3. Symmetry algebra of the new theories

We have checked that our ansatz is consistent with glob&booal invariance, let us now study the
rest of the conformal symmetry, and the possible extra sytnesevhich underlie our ansatz. To do
this, it will be convenient to introduce a Lagrangian dgstioh of the corresponding theories. We
will therefore propose such a description, check that itadpces the relation (2.18) with Liouville
theory, and then use it for deriving the symmetries.

3.1 Lagrangian description

We use the same bosonic fielfis, 3,~) as in theH; model [7], and we propose the following
Lagrangian and stress-energy tensor:

£ = % (0606 + 5y + for + ¥ (~5B)"e] | (3.1)
T = — B8y — (9¢)% + (b+ b1 (1 —m))d?¢ , (3.2)



where— 34 is assumed to be real positive.

The interaction ternt%’ = (—BF)™e?? is marginal with respect to the stress-energy tensor
T In the casesn = 0 (Liouville theory) andm = 1 (HB+ model) it is known to be exactly
marginal. This follows from the exponential dependencehefinteraction term ow, a feature
which is still present for arbitrary values af. In perturbative calculations, many terms in the
series expansion ekp — | Em) will then yield vanishing contributions due ¢gmomentum con-
servation in the free theory. We therefore expect the intema to be exactly marginal, which
implies that the corresponding theories have conformaknsgtry.

In the casen = 1 of theHgL model, integrating out the non-dynamical fieféls in the path
integral [ D¢DBDADYDY e~/ 4w £ yields a sigma model, whose target space is indé&d
In the general case, it is still possible to integrate @yt if ®Rm > % but the resulting Lagrangian
has no sigma model interpretation because it involves higbwers ofo~yo7.

The relation betweefl;” and Liouville correlators has been rederived by Hikida acliogne-
rus using a path-integral computation [8]. We will now entelfénis calculation in order to rederive
our ansatz (2.18) from the path-integral definition of a tiggwith the Lagrangian (3.1). Of course,

this path-integral definition will be complete only after wpecify the fieldsb’ (u|z) in terms of
(¢, 8,7):
&7 (p|z) = |pPmUtD err =T 2GS (3.3)

The path-integral definition of the-point function is then

o) = [ DoDIDEDYDY e £ T @i (ufz). (3.4)
=1

Let us perform the integrations overandy, and thers and 3:

2m n
62b¢>

H e |2m(j¢+1)e2b(ji+1)¢(3_5)
=1

3 J (0000 u T,

O™ = 5@(50 1) / Dée

where we still have: = Y | u;z;. We then perform the change of integration variable
¢ — ¢ —mblog|ul . (3.6)

This produces a global factpr|[2™(1+07*(1=m) | due to an implicit worldsheet curvature term in the
Lagrangian, which corresponds to the linear dilaton térm b= (1 —m))9?¢ in the stress-energy
tensorT (™), eq. (3.2). (For simplicity we have used flat space as a mddekcRiemann sphere
and omitted the worldsheet curvature term. This subtletieat with in [8].) Then, we defing,

as the zeroes of ", -2 asin eq. (2.17), and perform the change of integration bhzia

=1 w—z

H?:1(w — 2i)

p(w) = ¢(w) +mb ™" log (3.7)

This yields
QU = 5 (S ) [uP 00 o,

n n—2
% /DSD o~ 3= | Pw(9pdp+b?e?) H€(2b(ji+1)+%)s@(2i) H e~ vee) - (3.8)
i=1 a=1



where®,, was defined in eq. (2.16). The second line of this formulagspidth-integral version of
the Liouville theory correlator which appears in our angdt28), with the expected values for the
Liouville momentan; = b(j; + 1)+ 5z. And the prefactors also agree with the expectations (2.25)

Therefore, the path-integral calculation provides a Lagian definition (3.1) for the new the-
ories whose correlators we conjectured. This definitiohallibw us to easily study the symmetries
of these theories.

3.2 Symmetry algebra

Let us interpret the theories with Lagrangian (3.1) as freeties of the fieldéo, 3,, 3,7) with
contractions

(6(2)6(w)) = —log|z —w| , (B(z)v(w)) = —— (3.9)

w—z

deformed by the interaction term%) = (—BB)™e?®. The chiral symmetry algebra is then the
set of holomorphic fields whose OPEs Wiﬂf.(ft) vanish up to total derivatives. Such chiral fields
can be constructed from the basic holomorphic fiéldss3, v by using the normal-ordered product
(2.5), see for instance [9] for the rules of computing witis fhroduct.

We already know one chiral field, namely the stress-enemgord (™ (3.2), which generates
a Virasoro algebra with central charge

™ =346(b+b11-m))?. (3.10)

But in the case of theHg+ model n = 1) we know that the creation modes of this Virasoro
algebra are not enough for generating the full spectrumeofrtdel from the field$/(y|z). These
fields are indeed affine primaries, that is primary fields wé$pect to the much larger symmetry
algebras@. Can we find a larger algebra for general values6f Let us introduce the following
holomorphic currents:

J =8, (3.11)
J3 = =By —mb tog, (3.12)
JT = By +2mb 0 — (m?b2 4+ 2)dy , (3.13)

where normal ordering is implicitly assumed when needede @REs of these currents obey the
relations (2.1-2.3) of anls algebra at levek = 2 + m?b=2. However, only the currentg~ and

J?3 are symmetries of our model. The curreht indeed has a nontrivial OPE wilzh%), and is no
symmetry. And the stress-energy tensor which we could Bolsh J—, J3, J* by the Sugawara
construction (2.4) is therefore also no symmetry. It adyudiffers from the stress-energy tensor
(3.2), with respect to which the interactidhg;’? is marginal. The chiral symmetry algebra is

therefore generated by the three fields/?, J~ (where from now on we omit the superscipt of



T(™)), and we compute their OPEs as

Lem) w w

T(Tw) = 2 (jT_(w;Q W o). (3.14)
T(2)J" (w) = (zJ_—(Z; + aj:(:j) +0(1), (3.15)

—-m —-m -2 3 w 3 w
T(z)J?(w) = u (Z)_lw)?, o) + (j_(w))Q + 82‘]_(w) +0(1), (3.16)
J(2)J (w) = O(1), (3.17)
T(2) ] (w) = ‘]_—_wz) +o(1), (3.18)
J3(2)J3 (w) = —% +0(1) . (3.19)

This looks very much like the subalgebra of the affine alggb\fa)btained by removing the current
J*, except that there is now a central term in 1hé* OPE, so that/? is no longer a primary field.
Notice that this algebra, unlike the Lagrangiaff®), is invariant under the duality

b—bt , m—mb?. (3.20)

Notice also that setting~ = 0 yields a smaller algebra generatedByand.J?, which might be
interesting as wel.

It can be checked that the fields (1|z) are primary with respect to our chiral algebra. We
can indeed compute the OPEs of their free-field realizat®8) (with J—, J3 and T', which re-
spectively reproduces the OPEs (2.6), (2.7) and (2.9) vatidver the conformal dimensiorng.m)
(2.26). And we can check that the correlators (2.18) havedhnect behaviour under global sym-
metry transformations. We already performed this analysihe case of the global conformal
transformations of the three-point functi@ém), this is how we foundﬁg.m) in the first place. The

global Ward identity foJ~is (301, Mi)ng) = 0, which is obviously satisfied. We furthermore
compute(ZZ | Higo ) Q™ = —(1 —m)(1 — mb=2)Q{™. This is what is expected knowing
that.J3 is no longer primary, see tHg.J> OPE (3.16).

These simple consistency checks leave two questions abpdetermination of the symmetry
algebra:

1. Isthe symmetry algebra large enough?\e still have to show that the descendent fields ob-
tained by repeatedly acting on the primardgs ;| ~) with the creation modes @f, .J3, .J~ do
span the spectrum. In particular, can e (11;|z; ) ®72 (2| 22) OPE be written as a sum over
such descendents? In principle, we could address this Iigsstidying thex; — 0 expan-
sion of our ansatz (2.18) for the correlatorg”. This would however be tedious. Instead, let
us focus on then = 1 case. The spectrum of t&" model is known to be generated by the

1We could even consider a three parameter familyT'ofi® algebras with arbitrary central tern¥3(2)T(w) =
k
ot TP (w) = = w)s +-- andJ?(2)J*(w) = — 7257 + -+ The relatiore = 1 —6Q defines a

(zw (zw

subfamily Where the identificatichl = — (J3J3) + %8]3 is allowed. After introducing a bosapsuch that/® = dy
this corresponds to a linear dilaton theory. Our parametefisparametrize a different subfamily.



modes of/3, JT, J~, but we will now argue that the modesBf.J?, J~ are actually enough.
Let us define these modes BYz) = Y, ., Loz "2 andJ%(2) = 3, .5 Joz~ "1, cre-
ation modes ard;_, and L,,o, while primary fields®’(u|z) correspond to primary states
Ip) such thatL,,~o|p) = J% lp) = 0. Any level oneJ"-descendent state can by definition
be written agd) = J*,|p’) with |p’) an affine primary state in th;" spectrum. The spec-
trum being made of continuous representations, this pyircen be rewritten a’') = J; [p)

with |p) another primary. Using the Sugawara construction (2.4xhes have
d) = J5 Ty |p) = [—J g + 202005 + (k—2)L_4] p) (3.21)

which is manifestly a combination of 1, J2,, .J—,-descendents of affine primary states.
This reasoning can be iterated to higher ley&tdescendent states. This proof is special to
m = 1 and cannot be generalized, but it demonstrates thal’oiit, J~ symmetry algebra

is likely large enough.

. Are the chiral fields algebraically independent?In the H;~ model, the fact that the chiral
fields T, J+, J3, J~ are not independent but related by the Sugawara consinuictiplies
that the correlators obey Knizhnik—Zamolodchikov diffetiel equations. In our generalized
theories with parameten, correlators (2.18) do obey differential equations foiueal ofm
such that the field/_Z_nZ is a Liouville degenerate field. This happens if

We therefore expect that the structure of our chiral algelbrmes in some sense reducible
for these values of, so that differential equations can be derived for the ¢atwes. This
is what we will explicitly demonstrate in the case= 2.

4. Differential equation in the casem = 2

We will first derive the third-order differential equatioratisfied by the correlat(mgf) from the
Belavin—Polyakov—Zamolodchikov equations satisfied lydbrresponding Liouville correlators,
and then check that these equations can be recovered frosymunetry algebra.

4.1 Third-order BPZ equation

The Virasoro module generated by the Liouville fi®d.: has a null vector at level three [4]:
b

1
x3 = |(—=1+ 26_2)L_3 +2L 1L 9+ 55211?11 V.

(4.1)

1
b

Assuming that this null vector vanishes implies that caais involvingV_:1 obey third-order
BPZ differential equations. In particular, let us write tBBZ equation associated to a degenerate
field V_1(y) in the Liouville correlator which appears in our ansatz 82.1We cally, # y the
insertion points of the other degenerate fields soghat (v, y5); moreover we calt; = (z;, yp)



the positions of all fields except 1 (y). The BPZ equation then involves the following differential
b
operator:

b2 93 o 2 0 2A 0
D=—oatd |5 —+%'”—} +
2 Oy3 ; [8yy—21 dzr  (y—21)%? 0y ;

A 1+2 o 2A 1A,
b

b

% _|_ - °
(y— 212021 (y—21)?

I

(4.2)

2 2
This BPZ equation implie®'Q?) = 0 whereD’ = 072 DO, *, with ©,, defined by eq. (2.16).
We thus wish to comput®’; at the same time we should perform the change of varidbleg,) —

(i, i) defined by eq. (2.17). In particular we should rewrife — a%‘y in terms of £ =

%‘ . This will be done thanks to the identity [3]
7 }’LJ

~ 1 0 1 0 0 "1 6
92 o =X = — 4.3
;y_zi82i+zb:y—ybayb dy ;y—ziézi’ (4.3)
where we defined
1 ~ 1 Z?:l (y;u;)?,
X= - = (4.4)
Zb: y— ; y—= Y Gy
We also use
0 ~ i 0
Y . 4.5

i=1

Explicit calculations yield
D v 93 0?

0 _
E((’)—y?’ - 8—312 + 28_yL_2(y) —4b QXL—Q(y)

- L 0 L 0
+ (2672 1) [L—?,(y) - Z ma—m - Xzi: ma—ul] , (4.6)

i

where we defined

(2
1 s A
L_s(y) = Z — <5_Zz + ﬁ) ) (4.7)
O LY
Ls(y) = — ZZ: =) <6_Zz + I (4.8)

where the conformal dimensiomsf) andA,, are related by eq. (2.25).
The operatorD’ can be understood as a generalization of 4fieKnizhnik—Zamolodchikov
differential operator, which in our notations can be writtes [3]

DEZ =2~ + L_y(y) . (4.9)

—10-



4.2 Reformulation of the BPZ equation in terms of symmetry gaerators

If our identification of the symmetry algebra is correct, diféerential equatioﬂ)’Q,(f) = 0 should
have a reformulation in terms of the chiral fieldisJ3, J~. This is a non-trivial requirement on
D', and we will now show that it is satisfied.

Let us denotgQ) = ([T ®7(us|z;)). The actions of differential operators-, L_»(y) and
L_3(y) on (Q) have immediate interpretations as insertions of the cfietds J°(y), T'(y) and
0T (y), for instance

—(Q) = <Z]{ dt%g> <}€dtj3(y) > = (J(y)Q) , (4.10)

where we used the formula (4.5) f§§ and the OPE (2.7) of ® with ®7(y|2). Iterating the actions
of such differential operators yields results like

a—yLz(y) (Q) = —(T(y)Q) = (0TQ) + {(J*T)(y)Q) , (4.11)

dy

where the normal-ordered prodyot®*T) is defined as previously, see eq. (2.5). Moreover, we have

i 2 3
Zﬁ% <Z]{ 2 > = (30 (1)Q) . (4.12)

Finally, the factors ofX in D’ can be related to insertions 8/~ andd?J—, thanks to eq. (4.4)
and identities of the type

> s P00 = 5 ( f T 0r0)e) - G P Q). 313)

t—y

which is valid for any operatapP.
Therefore, the equatloﬁ’Q(Q) = 0 with the operato®’ given in eq. (4.6) can be rewritten as

(R(y) [19% (uilz)) = 0, where

R = %bQ(ﬁJ‘(Jg(J?’J?’))) 2(0J7(J°T)) + [2b7% + 1)(8J9T)
b2(0J (J20J3)) + $[b* + 1 — 2672 (9J 9% J?)
—%(a J(BT) 4+ [1+b72)(0%T~0J%) — 267 2(0*T~T) . (4.14)

We can already conjecture that, for all the values (3.22) stich that the fieldsf_% is degenerate,
the BPZ equations can similarly be rewritten in terms of ap@s T, J—, J2. It is however not
clear how to deduce our operat®&r from a null vector like (4.1), without performing the exptic
calculations as we did.

The equation R (y) [T ®7(us|zi)) = 0 of course does not mean that the operaoshould
be set to zero, because this equation is valid onIy at sppeiatsy = y; - - - y,—2. These points
were defined (2.17) as the zeroesagt) = > ; they can be characterized in terms of the
operatorJ— by

thz

<J<y> H@'i(uirzi>> =0. (4.15)
=1
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Actually, for any operato® we have((J~P)(y) [17; ®(us|2)) = 0. Therefore, the operator
R is expected to vanish modulo operators of the typeP).

In other words, we expect that this operator correspondsstabaingular vectoRR|0) in the
vacuum module of our symmetry algebra. That is, if we wouldtlse singular vecto~|0) to
zero, theriR|0) would become a singular vector in the resulting coset modifeeare actually not
settingJ ~ |0) to zero, but the presumptive subsingular ve@®d@) is nevertheless associated to dif-
ferential equations satisfied by the correlation functid®slations between subsingular vectors and
differential equations were found previously by Dobrev][itDthe context of finite-dimensional
symmetry algebras, but they do not seem widespread in coafdield theory so far?

4.3 Subsingular vectors of the symmetry algebra

In order to show that the third-order differential equatt@m be deduced from our symmetry alge-
bra, we still have to prove that the operaf®i(4.14) corresponds to a subsingular vector. We will
actually investigate the more general operator

Ry = A0 TP T2T%) + X (07 JPT) + A3(9~0T) + Ma(0J~ J*0J%) + A5 (9.~ 9% J?)
+ X (2T T2T3) + Mp(92T70J3) + Xs(0%T~T), (4.16)

which depends on arbitrary coefficients- - - Ag. Here and in the following we use the shorthand
notation ABCD = (ABCD) = (A(B(CD))) for multiple normal orderings, see [9] for more
details on calculations involving such expressions.

We will perform this investigation with the help of the freel@is (¢, 5,v). Since the map
from (J—,J3,T) to (¢, 3,7) defined by the equations (3.11), (3.12) and (3.2) is a manplai
algebras, it can indeed be used for determining whefhgr, generates a nontrivial ideal of the
coset algebra obtained by modding out the ideal generatdd b{This is the algebraic formulation
of our subsingular vector problem.) So let us compute theadpeR,,, in terms of the fields
(¢, 3,7), modulo operators of the type/~P) = (6P). We will denote by~ the equality of
operators modulo such terms. For example, we find

(J3(TPT%)) ~ 2080y — $0*By — 3mb~'9pv0¢ — m*b 304" | (4.17)
(J3T) ~ 9By +mb1¢> — m(1 +b2(1 — m))dpd*¢ , (4.18)
(J20J%) ~ 1028y + mb 1 9By0¢ + m*b 200074 , (4.19)
(OT) ~ —0B0y — 2000°¢ + (b+b (1 —m))d¢, (4.20)
(02J3) ~ —0?By — 2080y —mb~103¢ . (4.21)

We then compute

Ry = [2A1 4 X2 — A3 — 2X5] 0820y + [—3mb ™'\ + mb™ ' \y] 087409
+ [=m3b 3N+ mb T Xo] 0B808% + [—m(1 4+ b2 (1 — m))Ae — 2X3 + mPb 2y 9BIGI* ¢
+ [(b+ 071 —m))As — mb I A5] 9B0°d + [—3A1 + $Aa — A5 + A6 — A7] 0B0*By
+ [m?b 2N — Xs] 978097 + [—mb Az + (b+ b7 (1 —m))As] °B0% . (4.22)

2] am very grateful to Vladimir Dobrev for pointing out thatetimotion of a subsingular vector is relevant here, and
for patiently explaning some of the literature on this tajpiene.
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Let us solve the equatioRy,,; =~ 0, which when satisfied implies tha,,,, corresponds to
a subsingular vector. This equation leads to a system ofdaldiequations for the 8 unknowns
A1 -+ Ag. Actually, the first five equations form a closed subsystemqofations for\; - - - A\5. This
subsystem has a nonzero solution only if its determinaristias, that is if

(m —1)(m — 2)(m — b*)(m —2b*) = 0. (4.23)

The four solutions of this equation correspond to the Libe\dperatorsv_% being degenerate,
leading to BPZ differential equations of order 2 or 3. Thithisrefore a strong check of our claim
that the ansatz (2.18) does define conformal field theoriéis syimmetry algebras generated by
T,J3,J~. Let us perform a more detailed check in the case- 2, by explicitly computing the
nonzero solution to the systeRiy,, = 0:

M=, Ae=2, A=20741, AM=300, A =g(0P+1-2077)
Ao = —

L S (4.24)
A =—14+b02 ) Ag=-2b2.

N[

With these values of of;, the operatoR ;,; (4.16) does agree with the operafor(4.14), which
we found by reformulating the third-order BPZ equation.

5. Concluding remarks

We have argued that for any choicerafand the central charge the objeleﬁLm) of eq. (2.18) can
be interpreted as am-point correlation function in a conformal field theory wilchiral symmetry
algebra generated by the fieldsJ3, J— with OPEs (3.14-3.19). This conformal field theory
is solvable in the sense that its correlation functions a@a in terms of Liouville correlation
functions. Liouville theory itself has been solved in thexse that its three-point function on
the sphere is explicitly known, while its-point functions on arbitrary Riemann surfaces can in
principle be deduced thanks to the conformal symmetry oftibery. (See [1] for a review.) The
solution of the new theory is therefore not very explicitdaro closed formula can be written for its
three-point function except for some “degenerate” valdes ¢3.22) when it satisfies a differential
equation.

This differential equation provided the most non-triviestt of our claims. In the case = 2,
we compared the differential equation deduced from ouratsymmetry algebra with the third-
order BPZ equation, and found explicit agreement. We exgeach an agreement to hold for all
degenerate values of, and it would be interesting to check this beyond case-lsg-calculations.

There may exist other theories based on the same symmegtyralg-or instance, in the case
m = 1, the non-rational, non-unitaryZ;" model shares its symmetry algebra with the unitary
AdS3 WZW model and with the rationagd U, WZW models. For general values of, our model
remains non-rational and non-unitary. (The lack of uniyastill follows from Gawedzki’sH;—
model argument [2], although it is not quite clear what thlacproduct on the spectrum is, A3
has no conjugate field.) It would be interesting to constrational or unitary theories based on the
same symmetry algebra. Note however that our reasoningnaéreq. (3.21), which showed that
in the casen = 1 the modes of’’, J~ andJ? did generate the wholéf?)+ spectrum, relied on the
fact that the spectrum is purely continuous. But théSs and SU, WZW models involve discrete
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and finite-dimensional representations respectivelyciwipresumably cannot be generated from
the modes off’, J~ and.J3. Therefore, a rational theory based on tfie.J3, .J~) algebra would
probably differ from theSU, WZW model and have a smaller spectrum.

We have not assumed any restrictions on the choice of thangtirsvn. andc. For some
purposes it might be useful to restrict say the central ahafghe theory and the conformal di-
mensions of the fields to be real. Such restrictions couldittatdd by particular applications.
From the point of view of conformal field theory, the new thesrare however well-defined, and
their correlators manifestly satisfy crossing symmetryegy stringent constraint. It is therefore
possible to study issues like the solution of these theameRiemann surfaces with boundaries.
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