
HAL Id: hal-00263670
https://hal.science/hal-00263670v2

Submitted on 21 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A GPU interval library based on Boost.Interval
Caroline Collange, Jorge Flórez, David Defour

To cite this version:
Caroline Collange, Jorge Flórez, David Defour. A GPU interval library based on Boost.Interval. 8th
Conference on Real Numbers and Computers, Jul 2008, Santiago de Compostela, Spain. pp.61-71.
�hal-00263670v2�

https://hal.science/hal-00263670v2
https://hal.archives-ouvertes.fr


A GPU interval library based on Boost.Interval ∗

Sylvain Collange

Université de Perpignan Via Domitia

sylvain.collange@univ-perp.fr

Jorge Flórez

Universitat de Girona

jeflorez@silver.udg.edu

David Defour

Université de Perpignan Via Domitia

david.defour@univ-perp.fr

Abstract

Interval arithmetic is widely used in numerical algorithms requiring reliability. Ray tracing of implicit

surface is one of these applications that use interval arithmetic to increase the quality of a produced

image. However these applications are computationally demanding. One solution is to use graphics

processing unit (GPU) in order to take advantage of its computational power. We describe in this paper

a GPU implementation of interval operators based on the Boost library. We tested these operators on a

ray tracing algorithms and observe several order of execution speed improvements over the CPU version

with the same image quality.

1 Introduction

Graphics processing units (GPUs) are rising a lot of interest in the research community as these units

are cost effective and offer more computing resources than available on general-purpose processors [15].

They can provide up to 400 speed-ups depending on the application. However, to reach this performance

the application has to map well on this architecture by being heavily data-parallel with high arithmetic

density. Even though the application may fit the previous requirement, there exists a class of applications

that may not map well on the GPU due to floating point restrictions. The numerous floating point units

of today’s GPU are single precision, not fully IEEE-754 compliant and do not offer the entire set of

rounding modes.

Applications such as ray tracing of implicit surfaces may suffer of reliability problems [2, 7, 13].

These problems occur with thin features of implicit surfaces which are not correctly rendered and may

“disappear”. This happen if the intersection test between an implicit function and a ray that consist

in finding zero is missing a solution of the function. A common solution is to replace floating point

arithmetic with interval arithmetic (IA). Ray tracing based on IA requires however much higher com-

putational times [6]. A solution would be to execute this algorithm on the GPU. However, current

implementations of interval arithmetic on SIMD architectures either rely on IEEE-754 rounding modes

not available on GPUs [12], or just ignore rounding issues, potentially returning incorrect results [10].

Thus, due to hardware restrictions, there is currently no efficient GPU implementation of guaranteed

interval arithmetic operators.

This article proposes to implement basic interval arithmetic operations for ray tracing on a GPU. We

show how we took into consideration GPU specificities in terms of floating point properties, instruction

∗This work has been partially funded by the EVA-Flo project of the French ANR. This work has been possible thanks to

the kind help of M Sbert (GIlab, UDG) and M. Daumas (ELIAUS, UPVD).



scheduling and memory access patterns to develop reliable and efficient IA operators. Section 2 recalls

some basics about GPUs, section 3 introduces interval arithmetic, section 4 presents our implementation

of IA on GPUs and section 5 gives some results.

2 Graphics processing units

Original graphics accelerator cards were special-purpose hardware accelerators for graphics program-

ming interfaces such as OpenGL or DirectX. These programming interfaces are used to describe a scene

using geometrical objects made out of vertices. An image made out of pixels is then produced. In or-

der to accelerate image rendering, original GPUs used to implement application-specific functionalities

directly in hardware. Lately, operations performed on vertex and pixel objects became more flexible

through programmable vertex and pixel units. Even though vertex and pixel shaders perform different

kinds of operations, there are sharing a large portion of similar features. Therefore the DirectX 10 stan-

dard and compatible hardware provide a so-called unified architecture where vertex and pixel shaders

share the same instruction set and/or units. Hardware implementing both shader types includes memory

units such as texture access units, computational units such as multiply and add operators, and spe-

cial hardware such as special function evaluators. In order to efficiently exploit data parallelism, GPU

includes numerous copies of these units working in SIMD fashion.

2.1 SIMD processor and memory

. . .

S
IM

D
 b

lo
ck

 1

S
IM

D
 b

lo
ck

 2

S
IM

D
 b

lo
ck

 K

G
P

UR
eg

isters
R

eg
isters

P
E

P
E

1
M

S
h

ared
 m

em
o

ry

G
lo

b
al m

em
o

ry

T
ex

tu
re m

em
o

ry

C
o

n
stan

t m
em

o
ry

Figure 1. Unified architecture of a GPU

The unified architecture encouraged by the DirectX 10 standard has been implemented in hardware

since the NVIDIA GeForce 8 and AMD ATI Radeon HD 2000 generations. This type of architecture

is described in figure 1. The graphic processor is seen as a set of SIMD blocks. Each SIMD block is

made of processing elements (PEs) that execute at each clock cycle the same instruction on different

data. These SIMD blocks incorporate different kinds of memory such as a set of registers for each PE,

memory shared among all the PE of a SIMD block, a constant memory and a read-only texture memory.

In addition each PE can read or write in a global memory.



if c

else

endif

do x

do y

c=1 c=1 c=1 c=1

(a) Converging SIMD branch.

if c

else

endif

do x

do y

c=1 c=0 c=1 c=1

(b) Diverging SIMD branch.

Figure 2. Type of SIMD branching with 4 way.

The SIMD execution model implies two kinds of constraints. First, there are restrictions on the

available memory access patterns (coalesced or broadcast), depending on the kind of memory (shared,

constant or global). The second constraint is that the control flow has to remain the same for all the

execution contexts within a SIMD block. Therefore a jump instruction is effectively executed as a jump

if all the execution contexts follow the same path within a SIMD block, as seen in Figure 2(a). If one

of the branches diverge, meaning one branch within the SIMD block is taking a different path, then it

is necessary to run both branches of the conditional by applying a mask on the results as is the case

in 2(b). This mechanism is called predication. Some SIMD architectures, including GPUs, are able to

dynamically determine if a SIMD block can execute one side of the branch or if it is necessary to use

predication and execute both sides of the branch.

2.2 Computational element

SIMD blocks integrate various computational units used to execute shaders (Figure 1). This in-

cludes general computation units that embed a Multiply and Add unit, texturing and filtering units, and

a dedicated unit to evaluate general functions (sine, cosine, reciprocal, reciprocal square root, ...). The

GeForce 8800 GTX from NVIDIA has 16 blocks and each SIMD block is composed of 8 PE and 2 units

to evaluate general functions. The ATI Radeon HD 2900 XT from AMD embeds 4 SIMD blocks, each

composed of 16 PE, capable of performing 5 different instructions simultaneously.

In the case of the GeForce 8, each processing element is able to perform floating-point operations

such as addition and multiplication in IEEE-754 single precision. Both operations support round to

nearest even and round toward zero via a statically defined rounding mode. Directed rounding toward

+/− infinity used for interval arithmetic is not supported. Additions and multiplications are often com-

bined into a single multiply-and-add instruction (a · b + c). In that case the result of the multiplication

is truncated and the rounding is applied only on the last operation (the addition). There are other restric-

tions regarding the IEEE-754 standard such as uncorrectly rounded division and square root, the lack of

denormalized numbers and no handling of floating point exceptions.

These units can handle integer and floating point arithmetic and there is no overhead associated with

mixing both operations. Each SIMD block of the GeForce 8 is able to execute a pack of 32 floating

point additions, multiplications, multiply-and-adds or integer additions, bitwise operations, compares,

or evaluate the minimum or maximum of 2 numbers in 4 clock cycles. As there is no 32-bits integer

multiplication in hardware, evaluating such an operation requires 16 clock cycles for a pack.



3 Interval arithmetic

Using interval arithmetic, it is possible to take into account uncertainties in data and return a reliable

bound including the true result of a calculation. The basis of interval arithmetic is to replace each number

by an interval surrounding it and to execute computations on intervals.

The most frequently used representation for intervals is the infimum-supremum representation. Inter-

val variables will be noted using brackets ”[·]” to represent bounded intervals

[a1, a2] = {x : a1 ≤ x ≤ a2} for some a1 ≤ a2,

We can define the set of bounded interval I(R):

I(R) = {[a1, a2] : (a1, a2) ∈ R2, a1 ≤ a2}

from which we can extend the usual operations (+,−,×, /) from R to I(R). Let A = [a1, a2] and

B = [b1, b2], we define

A + B = [a1 + b1, a2 + b2]
A − B = [a1 − b2, a2 − b1]
A × B = [min(a1b1, a2b2, a1b2, a2b1), max(a1b1, a2b2, a1b2, a2b1)]

A/B = [min(a1/b1, a2/b2, a1/b2, a2/b1), max(a1/b1, a2/b2, a1/b2, a2/b1)] when 0 6∈ B

(1)

Common implementations of interval arithmetic on current processors are based on floating-point

numbers. These processors follow the IEEE-754 standard that requires that the result of one of the four

basic operations has to correspond to the rounding of the exact result. There are 4 rounding modes

required by the standard: rounding to the nearest used by default as it is the most precise, rounding

toward zero, and rounding toward plus or minus infinity used for interval arithmetic. Throughout this

paper, the rounded values toward plus and minus infinity of a value a are denoted respectively a and

a. These last two rounding modes surround the exact result with floating point numbers. They can

be implemented in hardware when available as it is the case on IEEE-754 compliant general purpose

processors, or emulated in software. Therefore a floating point implementation of interval arithmetic is

implemented as follow:

A + B = [a1 + b1, a2 + b2]
A − B = [a1 − b2, a2 − b1]
A × B = [min(a1b1, a2b2, a1b2, a2b1), max(a1b1, a2b2, a1b2, a2b1)]

A/B = [min(a1b1, a2b2, a1b2, a2b1), max(a1b1, a2b2, a1b2, a2b1)]

A/B = [min(a1/b1, a2/b2, a1/b2, a2/b1), max(a1/b1, a2/b2, a1/b2, a2/b1)] when 0 6∈ B

An error is associated with each rounding operation which generates larger interval for each operation

that needs to be rounded compared to exact arithmetic.

Programmers can use interval arithmetic through libraries that define an interval type and a set of

operations on this type. There exist several implementations of interval arithmetic such as [4, 8, 9], each

with specific characteristics such as MPFI [16] that offers multiprecision intervals.

However it is very tedious to directly use these libraries as it is necessary to precisely know how there

are working. The easiest is to use an extension of the programming language that integrates the type

interval. Such extensions are available in C++ as for example with the Boost library, which includes an

interval library [1]. This library exposes an interval template class and operators with some restriction

on the execution environment (compiler, system, processor).



4 Implementation of interval arithmetics on GPU

In order to run our ray tracing algorithm on a GPU we developed an interval arithmetic library for

graphics processors. This consists in describing operations that will be executed by shader processing

units. Among all the available languages, shaders can be written in the Cg language [5] which gives an

execution environment for both AMD ATI and NVIDIA chips or in CUDA [14] which is a C/C++ envi-

ronment for NVIDIA chips. We implemented our interval library for both programming environments.

CUDA is a language to address GPU programming for general purpose computing. It consists in a

development framework based on the C++ language and a GPU architecture. We took the Boost interval

library [1] as a starting point to design our interval library for the GPU. This version allows programmers

to benefit from C++ features such as templates with the computational power of GPUs through CUDA.

CUDA is however not supported on AMD ATI chips, nor on earlier NVIDIA GPUs, while Cg is a

portable programming environment to develop shaders for graphics applications. Therefore to address

portability issues, we implemented a version of the interval arithmetic algorithms in Cg. The Cg version

exhibits some differences with the CUDA version as it is not possible to control the rounding mode in

Cg programs.

In order to implement interval arithmetic on GPUs, it is necessary to know precisely how arithmetic

operators behave in hardware. DirectX 10 requires IEEE-754 single precision without any requirement

about rounding. GeForce 8 follows the standard and additionally provides correct rounding with some

restrictions (see section 2.2). For other hardware, specific tests have to be done as in [3] as public

information is lacking. This leads to various performance tradeoffs depending on requirements such as

including tests for special values or dealing with exact values.

4.1 GPUs specific considerations

4.1.1 Rounding

GPUs do not support rounding modes toward +/- infinity used for interval arithmetic. They offer instead

a round to nearest even mode and/or a round toward zero mode for multiplication and addition depending

on the hardware (Section 2.2).

To preserve hardware compatibility, we choose to implement interval arithmetic using faithful round-

ing for our Cg implementation. This rounding mode can be accessed easily for addition and multiplica-

tion on NVIDIA GeForce 7 and GeForce 8, and AMD ATI Radeon HD 2000 and with additional work

for ATI Radeon X1000 series [3].

Under CUDA, the rounding mode can be statically set for each operation using a flag in the opcode

encoding. We perform our computations in round-toward-zero in our CUDA implementation. Depend-

ing on the sign of the value, this provides either the rounded-down or rounded-up result. The other

rounding direction is then obtained by adding one ulp to the rounded-down result or subtracting one ulp

to the rounded-up result. However this software rounding leads to an overestimation of the error when

the result is exact.

There are two known tricks based on the IEEE-754 floating point representation format to add/sub-

stract an ulp to the result. The first solution consists in incrementing the binary representation of the

floating-point value, and the second in multiplying the results by 1 + 2−23 rounded toward 0. Let us

call this operation NextFloat. For performance reasons, on a CPU NextFloat is usually implemented

as an incrementation operation over integer plus some extra instructions to handle special cases such as

denormals and infinities. On GPU, floating-point multiplication is less expensive than it is on a CPU and

the multiplication throughput can be even higher than the addition throughput on GeForce 8. We tested

both on the GPU and noticed that the solution based on a multiplication, which does not requires extra

care for special cases, was more suitable for an execution on a GPU.



4.1.2 Branches in a SIMD architecture

As GPUs are Single-Instruction Multiple-Data (SIMD) architectures, diverging branches are expensive.

Whenever one Processing Element (PE) of the SIMD array takes a different path, the hardware has to

execute sequentially both code paths for all PEs, using predication to mask results.

On a CPU efficient branch prediction mechanisms make algorithms involving less operations and

more branches attractive. For example, the multiplication or division can be done by choosing the oper-

ation to be done depending on the sign of each operand. On a GPU, when there is a risk of divergence in

the execution on each PE within a SIMD block, a different algorithm with linear code is more suitable.

4.1.3 Truncation of multiplication in MAD operation

GPUs are usually collapsing a consecutive multiplication and addition into a single operation called

MAD. This leads to smaller code and faster execution. However up to the GeForce 8 or R500 executing

the result of a MAD can be different from the result of the multiplication followed by an addition. This

difference lies in the internal design of this operator. A MAD is usually done in hardware with a modified

multiplier combined with an extra addition done in the last stage before the rounding.

The GeForce 8 is designed in such a way that a multiplication or an addition alone can be rounded

independently (rounded to the nearest or truncated). When there are grouped together in a MAD, the

result of the multiplication is first truncated and the result of the addition is then rounded to the nearest or

truncated. The GPU driver can reorder and group the instructions together and the programmer does not

have control over it. However our implementation is based on truncation and the sequence of operations

involved do not suffer from this problem.

4.2 Implementation issues

4.2.1 Addition

An implementation of the addition or subtraction of two intervals on a CPU uses directed rounding

modes. However these two rounding modes are not available on the GPU. We have to emulate them

using the round-toward-zero mode and the NextFloat function. This give the following CUDA code:

Listing 1. Interval addition in CUDA
__device__ interval sumI(interval x, interval y) {

interval result;

float a = __fadd_rz(x.inf, y.inf);

float b = __fadd_rz(x.sup, y.sup);

result.inf = min(a, next_float(a));

result.sup = max(b, next_float(b));

return result;

}

The situation is different as we address the Cg implementation. The result of the computation corre-

spond to the rounding to the nearest or next-to nearest. With this rounding mode, there is no efficient

solution to determine whether the exact result is greater or lower than the rounded result. The lower and

upper bound of a reliable interval correspond to the rounded result plus or minus one ulp. This increases

the length of the interval by one ulp compared to the direct rounding solution in CUDA. A solution to

avoid this extra ulp is to determine the sign of the rounding error with a modified Fast2Sum procedure

[11]. The Cg code for the addition is given in Listing 2.



Listing 2. Interval addition in Cg
float2 sumI(float2 x, float2 y) {

float2 result = x + y;

float one_minus_2_23 = 1 - pow(2.0,-23);

float one_plus_2_23 = 1 + pow(2.0,-23);

float2 to_zero = result * one_minus_2_23;

float2 to_inf = result * one_plus_2_23;

float lower = min(to_zero.x, to_inf.x);

float upper = max(to_zero.y, to_inf.y);

return float2(lower,upper);

}

4.2.2 Multiplication

An implementation of interval multiplication without branches can be written along the general formula:

[a, b] × [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

A naive implementation would emulate each directed rounding using round-toward-zero and the

NextFloat function. For each subproduct xy, we would have to compute:

xy0 = rz(x × y)
xy∞ = NextF loat(xy0)
xy = min(xy0, xy∞)
xy = max(xy0, xy∞)

This would require a total of 4 multiplications, 4 NextFloat calls and 14 min and max operations.

However, it is possible to reduce the number of operation by studying the sign of each subproduct

according to the signs of a, b, c and d. All cases are depicted in table 1, using ’+’ for non-negative

numbers and ’-’ for non-positive numbers.

Table 1. Signs of upper and lower bounds of [a, b] × [c, d].
a b c d lower bound upper bound

+ + + + ac + bd +

- + + + ad - bd +

- - + + ad - bc -

+ + - + bc - bd +

- + - + min(bc, ad) - max(ac, bd) +

- - - + ad - ac +

+ + - - bc - ad -

- + - - bc - ac +

- - - - bd + ac +

We can observe that, regardless of the rounding direction, ac and bd are always non-negative, while

ad and bc stay non-positive whenever they are used in the result. This information helps us to statically

set the rounded-up and rounded-down of ac, bd, ad, bc. For these values we can define:

ac = ac0, ac = ac∞,

bd = bd0, bd = bd∞,

ad = ad∞, ad = ad0,

bc = bc∞, bc = bc0.



This leads to the following simplifications in the algorithm:

max(ac, bd) = max(ac∞, bd∞)
min(ad, bc) = min(ad∞, bc∞)

We can further reduce the number of operation by noticing that the function NextFloat which add one

ulp is an increasing function that preserves the ordering on positive values. Therefore, we can safely ex-

ecute the NextFloat operation after computation of min/max. This leads to the following simplifications:

max(ac, bd) = NextF loat(max(ac0, bd0))
min(ad, bc) = NextF loat(min(ad0, bc0))

We developped two versions of the multiplication which can be statically selected at compile time.

The first handles NaN and overflows and the other one without these tests is used for the raytracing

algorithm. Both version include the previous simplifications based on the study of the sign of the results

according to the sign of the inputs. The multiplication algorithm used for ray tracing requires 4 multi-

plications, 2 NextFloat and 6 min and max. This is less than half the number of NextFloat and mix/max

operations in the original version.

4.2.3 Power to a constant natural

Powering by a small constant integer such as square, cube or fourth power is an operation widely used

in ray-tracing of implicit surfaces. When this operation is done with dedicated interval algorithm, it is

possible to exploit the fact that variable are dependant, resulting in a smaller interval. For example if

we want to compute the square of an interval, we know that the solution is non-negative and that the

resulting interval cannot include negative numbers. This property cannot be obtained if the square is

computed with an interval multiplication.

Table 2. Signs of upper and lower bounds of [a, b]n.

a b n even n odd

lower upper lower upper

+ + an + bn + an + bn +

- + 0 + max(an, bn) + an - bn +

- - bn + an - an - bn -

Similarly to interval multiplication, we studied the different possibilities for the results depending

on the signs of the operands and the parity of the exponent in table 2. This leads to a reduction of the

number of instructions as well as the resulting interval for intervals that include 0.

We defined and implemented on the GPU algorithms for the evaluation of an and an for small and

statically defined values of n. We first evaluate an by successive multiplications in round-toward-zero

mode using the binary method describes by Knuth ([11], page 461). Then we deduce an by adding to

an a bound on the maximum rounding error performed at each multiplication with the same technique

used for NextFloat. On a GeForce 8 this is done as follows:

an = an(1 + n · 2−23)

This is valid as long as n < 222 which make this algorithm safe as it is used only for small values of n.

Likewise, underflow only needs to be detected at the end of the power computation.

On current GPU architectures, looping constructs are expensive. Small loops with a constant number

of iterations should therefore be unrolled. However, CUDA 1.0 does not support loop unrolling, and

although CUDA 1.1 does, it lacks the capability to perform constant propagation and dead code removal

after unrolling in the case of the power function. Therefore, we completely unroll the loop and propagate

constants at language level using C++ template metaprogramming.



Table 3. Number of instructions of an interval computation at various levels of generality.

Implementation Add Mul Mul (original Square x5

(optimized) algorithm)

General 17 21 93 26 22

No NaN 10 14 86 23 14

No NaN, no underflow 6 12 80 20 10

Table 4. Measured performance of an interval computation at various levels of generality, in

cycles/warp.

Implementation Add Mul Mul (original Square x5

(optimized) algorithm)

General 46 55 49 – 117 30 – 35 71

No NaN 36 45 45 – 63 24 – 29 34

No NaN, no underflow 24 36 33 – 55 20 – 25 23

5 Results

5.1 Interval library

We did specific tests on the interval library to measure its performance. We generated assembly code

with the CUDA 1.1 compiler provided in the programming environment from NVIDIA. Then we used

the Decuda toolset written by Wladimir J. van der Laan 1 to disassemble the NVIDIA CUDA binary

(.cubin) generated and looked in detail how our interval arithmetic operators are compiled for the GPU.

This let us determine precisely the number of instruction necessary for each version of our algorithm

and study assembly-level bottlenecks. Results are given in table 3.

We also did some timing measures on a NVIDIA Geforce 8500 GT for the proposed implementation

of IA operators, which are summarized in table 4. For each given measure we ran 224 iterations with

8 warps/block which represent 256 threads/block and 4 blocks per grid. We observed a variation of

less than 0.2% in timing results and deduced from these results the number of cycles per iteration by

subtracting the time required to execute an “empty” loop.

5.2 Reliable ray tracing

We also tested the IA library within a GPU implementation of the reliable ray tracing algorithm

describes in [6]. The algorithm was tested on a GeForce 8800 GPU. The resolution selected for the

images was 1024 x 1024. The first surfaces tested are a Drop (figure 3a) and a Tri-thrumpet (figure 3c).

We compared the rendered images with images rendered without interval arithmetic. We observe that

the thin parts of those surfaces are correctly rendered with a quality similar to the CPU version of the

same reliable ray tracing.

We compared the execution time of the GPU implementation with a CPU version. The tests were

done on DELL 670 Workstation with a 3Ghz Xeon processor, 3 Gigabytes of RAM and a GeForce 8800

GTX GPU. The execution time measured is the time necessary to load the data and instructions, execute

1http://www.cs.rug.nl/˜wladimir/decuda/

http://www.cs.rug.nl/~wladimir/decuda/


the program and get the final results which is an image of 1024x1024 pixels on both CPU and GPU

version. Results are given in table 5. We observe that the time required to render these surfaces with

GPU is divided by a factor ranging from 100 to 300.

Without interval arithmetic With interval arithmetic

Figure 3. Comparison of surfaces rendered without interval arithmetic (left) and with interval

arithmetic (right). A Drop surface (a) and a Tri­trumpet surface (c) and the details of there

corresponding thin section in (b) and (d).

Table 5. Comparison of CPU Times vs. GPU times for four surfaces (in seconds).

Surface CPU GPU

Sphere 300 2

Kusner-Schmitt 720 2

Tangle 900 3

Gumdrop Torus 1080 3

6 Conclusions

We described how to implement in CUDA and CG common operators for interval arithmetic on a

GPU. We took into consideration the GPU specificities in order to provide efficient operators. These

operators are provided to end-users through the Boost Interval library. This library opens up new areas

of improvement through the use of the computational horse-power of GPUs to critical applications

requiring reliability. We tested this library with a reliable ray tracing algorithm on implicit surfaces

and obtained a speed-up of 100 to 300 compared to a similar algorithm executed on a CPU.

In the near future we are planning to complete the library with other operations like square root

and division. We are also planning to compare this implementation of interval arithmetic with other

representations of intervals which may be more suitable with vector and parallel processors such as the

midpoint-radius representation.



References

[1] Hervé Brönnimann, Guillaume Melquiond, and Sylvain Pion. The design of the boost interval

arithmetic library. Theor. Comput. Sci., 351(1):111–118, 2006.

[2] O. Capriani, L. Hvidegaard, M. Mortensen, and T. Schneider. Robust and efficient ray intersection

of implicit surfaces. Reliable Computing, 1(6):9–21, 2000.

[3] Sylvain Collange, Marc Daumas, and David Defour. Line-by-line spectroscopic simulations on

graphics processing units. Computer Physics Communications, 2007.

[4] George F. Corliss. INTPAK for interval arithmetic in Maple : introduction and applications. Article

soumis au Journal of Symbolic Computation.

[5] Randima Fernando and Mark J. Kilgard. The Cg Tutorial: The Definitive Guide to Programmable

Real-Time Graphics. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[6] J. Flórez, Mateu Sbert, Miguel A. Sainz, and Josep Vehı́. Improving the interval ray tracing of

implicit surfaces. Lecture Notes in Computer Science, 4035:655–664, 2006.

[7] D. Kalra and A. Barr. Guaranteed ray intersection with implicit surfaces. Computer Graphics

(Siggraph proceedings), 23:297–206, 1989.

[8] Ralph Baker Kearfott, M. Dawande, K. S. Du, and C. Y. Hu. Algorithm 737: INTLIB : a portable

Fortran 77 interval standard function. ACM Transactions on Mathematical Software, 20(4):447–

459, 1994.

[9] R. Klatte, Ulrich W. Kulisch, A. Wiethoff, C. Lawo, and M. Rauch. C-XSC – a C++ class library

for extended scientific computing. Springer-Verlag, 1993.

[10] Aaron Knoll, Younis Hijazi, Charles D Hansen, Ingo Wald, and Hans Hagen. Interactive ray

tracing of arbitrary implicits with SIMD interval arithmetic. In Proceedings of the 2007 Euro-

graphics/IEEE Symposium on Interactive Ray Tracing, 2007.

[11] Donald E. Knuth. The Art of Computer Programming: Seminumerical Algorithms. Addison-

Wesley, 1997. Third edition.

[12] Branimir Lambov. Interval arithmetic using SSE-2. In Reliable Implementation of Real Number

Algorithms: Theory and Practice, number 06021 in Dagstuhl Seminar Proceedings, 2006.

[13] Don Mitchell. Robust ray intersection with interval arithmetic. Proceedings on Graphics interface

’90, pages 68–74, 1990.

[14] nVidia. NVIDIA CUDA Compute Unified Device Architecture Programming Guide, Version 1.0,

2007.

[15] Matt Pharr, editor. GPUGems 2 : Programming Techniques for High-Performance Graphics and

General-Purpose Computation. Addison-Wesley, 2005.

[16] Nathalie Revol and Fabrice Rouillier. Motivations for an arbitrary precision interval arithmetic and

the mpfi library. Reliable Computing, 11(4):275–290, 2005.


	Introduction
	Graphics processing units
	SIMD processor and memory
	Computational element

	Interval arithmetic
	Implementation of interval arithmetics on GPU
	GPUs specific considerations
	Rounding
	Branches in a SIMD architecture
	Truncation of multiplication in MAD operation

	Implementation issues
	Addition
	Multiplication
	Power to a constant natural


	Results
	Interval library
	Reliable ray tracing

	Conclusions

