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In this paper we study existence and uniqueness of renormalized solution to the following problem

The main difficulty in this task is that in general the operator entering in the above equation is not coercive in a Sobolev space. Moreover, the possible degenerate character of λ with respect to u renders more complex the proof of uniqueness for integrable data f .

Introduction

In the present paper we study the class of nonlinear equations of the type λ(x, u)div(a(x, Du) + Φ(x, u)) = f in Ω, (1.1) a(x, Du) + Φ(x, u) • n = 0 on Γ n , (1.2) u = 0 on Γ d , (1.3) where Ω is a bounded connected and open subset of R N (N ≥ 2) with Lipschitz boundary ∂Ω, Γ n and Γ d are such that Γ n ∪ Γ d = ∂Ω, Γ n ∩ Γ d =∅ and σ(Γ d ) > 0 (where σ denotes the N -1 dimensional Lebesgue-measure on ∂Ω). The vector n is the outer unit normal to ∂Ω and the data f is assumed to belong to L 1 (Ω). The operator u →div(a(x, Du)) is monotone (but not necessarily strictly monotone) from the Sobolev space W 1,p 0 (Ω) into W -1,p ′ (Ω) with 1 < p ≤ N (p ′ = p/(p -1)). The functions λ : Ω×R -→ R and Φ : Ω×R -→ R N are Carathéodory functions such that λ(x, r)r ≥ 0 for any r ∈ R, almost everywhere in Ω and such that |Φ(x, r)| ≤ b(x)(1 + |r|) p-1 for any r ∈ R, almost everywhere in Ω with b satisfying some appropriate summability hypotheses that depend on p and N (see condition (2.7) below).

Problem (1.1)-(1.3) is motivated by the homogenization in the particular case where a(x, ξ) = A(x)ξ and where Ω is a perforated domain with Neumann condition on the boundary of the holes and Dirichlet condition on the outside boundary of Ω (see [START_REF] Ben Cheikh | Homogenization of renormalized solution of elliptic equations in perforated domain[END_REF] and [START_REF] Ben Cheikh | Homogénéisation des solutions renormalisées dans des domaines perforés[END_REF]).

The main difficulty in dealing with the existence of a solution of (1.1)- (1.3) is the lack of coercivity due to the termdiv(Φ(x, u)). As an example, consider the pure Dirichlet case (i.e. Γ n = ∅), the operator a(x, Du) + Φ(x, u) = |Du| p-2 Du + b(x) |u| p-2 u with b ∈ L N/(p-1) (Ω). Then thanks to Sobolev's embedding theorem, the operator u -→div(a(x, Du) + Φ(x, u)) is well defined from W 1,p 0 (Ω) to W -1,p ′ (Ω) but it is not coercive in general except if b L N/(p-1) (Ω) is small enough.

Existence results for some similar non-coercive problems (with in addition lower order terms) are proved in [START_REF] Vecchio | An existence result for nonlinear and noncoercive problems[END_REF] when f ∈ W -1,p ′ (Ω) and in [START_REF] Vecchio | Existence and regularity results for nonlinear elliptic equations with measure data[END_REF] and [START_REF] Liang | Weakly-coercive quasilinear elliptic equations with inhomogenous measure data[END_REF] when f is a Radon measure with bounded total variation in Ω (solutions in the sense of distributions are then used in this case). A non-coercive linear case is studied in [START_REF] Droniou | Non-coercive linear elliptic problems[END_REF]. In [START_REF] Droniou | Global and local estimates for nonlinear noncoercive elliptic equations with measure data[END_REF] the author gives local and global estimates for nonlinear non-coercive equations with measure data (with a stronger assumption of type (2.6) below than the one used in the present paper, see (2.7), in the case p = N). Entropy solutions to similar equations are considered in [START_REF] Boccardo | Some dirichlet problems with lower order terms in divergence form[END_REF].

For integrable data f we give in the present paper an existence result (see Theorem 3.1 in Section 3) using the framework of renormalized solution. This notion has been introduced by R. J. DiPerna and P.-L. Lions in [START_REF] Diperna | On the Cauchy problem for Boltzmann equations: global existence and weak stability[END_REF] for first order equations and has been developed for elliptic problems with L 1 data in [START_REF] Murat | Soluciones renormalizadas de EDP elipticas non lineales[END_REF] (see also [START_REF] Lions | Solutions renormalisées d'équations elliptiques[END_REF]). In [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF] the authors give a definition of a renormalized solution for elliptic problems with general measure data and prove the existence of such a solution (a class of nonlinear elliptic equations with lower-order terms which are not coercive and right-hand side measure is also studied in [START_REF] Betta | Existence of renormalized solutions to nonlinear elliptic equations with lower-order terms and right-hand side measure[END_REF]).

Another interesting question related to problem (1.1)-(1.3) deals with the uniqueness of a solution. In [START_REF] Murat | Soluciones renormalizadas de EDP elipticas non lineales[END_REF] F. Murat proves that the renormalized solution of λudiv(A(x)Du + φ(u)) = f in Ω, u = 0 on ∂Ω, where f ∈ L 1 (Ω) and λ > 0 is unique as soon as φ is a locally Lipschitz continuous vector field. In this result it is important to assume that φ does not depend on x together with pure homogeneous Dirichlet boundary conditions (see also [START_REF] Lions | Solutions renormalisées d'équations elliptiques[END_REF] and [START_REF] Rakotoson | Uniqueness of renormalized solutions in a T -set for the L 1 -data problem and the link between various formulations[END_REF] for more general operators and [START_REF] Blanchard | Renormalized solutions for a class of nonlinear evolution problem[END_REF] in the parabolic case). When λ(x, s) is strictly monotone we prove in Theorem 4.1 that the renormalized solution of (1.1)-(1.3) is unique if Φ(x, s) is locally Lipschitz continuous with respect to the second variable.

As far as the case λ(x, u) ≡ 0 is concerned, gathering the result of [START_REF] Artola | Sur une classe de problèmes paraboliques quasi-linéaires[END_REF], [START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF] and [START_REF] Chipot | Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities[END_REF], let us recall that when 1 < p ≤ 2 and f ∈ W -1,p ′ (Ω), the uniqueness of the variational solution of

-div(a(x, u, Du) + φ(u)) = f in Ω, u = 0 on ∂Ω,
is obtained under strongly monotonicity assumption on the operator a(x, s, ξ) and under global Lipschitz conditions on the functions a(x, s, ξ) and φ(s) with respect to the variable s (or a strong control of the modulus of continuity). Moreover uniqueness may fail if 2 < p < ∞ (see [START_REF] Boccardo | Unicité de la solution de certaines équations elliptiques non linéaires[END_REF]). In the quasi-linear case (i.e. a(x, s, ξ) = A(x, s)ξ) and for integrable data uniqueness results have been obtained in [START_REF] Porretta | Uniqueness of solutions for nonlinear elliptic Dirichlet problems with L 1 data[END_REF] under a very general condition on the matrix field A and the function φ (the author uses strongly the quasi-linear character of the problem). When λ(x, s) ≡ 0 we investigate in the present paper the uniqueness question in the nonlinear case for 1 < p ≤ 2 and integrable data; global conditions on a and Φ which insure uniqueness of the renormalized solution are given in Theorem 4.2.

The content of the paper is as follows. In section 2 we precise the assumptions on the data and we give the definition of a renormalized solution of problem (1.1)- (1.3). This section is completed by giving a few properties on the renormalized solutions of (1.1)-(1.3). Section 3 is devoted to the existence result. At last, in Section 4 we prove two uniqueness results. The results of the present paper were announced in [START_REF] Cheikh | Résultats d'existence et d'unicité pour une classe de problèmes non linéaires et non coercifs[END_REF] and here we improve the uniqueness results.

Assumptions and definitions

2.1. Notations and hypotheses. In the whole paper, for q ∈ [1, ∞[ we denote by W 1,q Γ d (Ω) the space of functions belonging to W 1,q (Ω) which have a null trace on Γ d . Since Ω is a bounded and connected open subset of R N with Lipschitz boundary and since σ(Γ d ) > 0, the space

W 1,q Γ d (Ω) is provided by the norm v W 1,q Γ d
(Ω) = Dv L q (Ω) (see e.g. [START_REF] Ziemer | Weakly differentiable functions[END_REF]). We assume that a : Ω × R -→ R N , λ : Ω × R -→ R and Φ : Ω × R -→ R N are Carathéodory functions such that for 1 < p ≤ N we have :

∃α > 0, a(x, ξ) • ξ ≥ α |ξ| p , ∀ξ ∈ R N , a.e. x in Ω; (2.1) a(x, ξ) -a(x, ξ ′ ) • (ξ -ξ ′ ) ≥ 0 ∀ξ, ξ ′ ∈ R N , a.e. x in Ω; (2.2) |a(x, ξ)| ≤ β(|d(x)| + |ξ| p-1 ) ∀ξ ∈ R N , a.e. x in Ω, with d ∈ L p ′ (Ω); (2.3) λ(x, s)s ≥ 0 ∀s ∈ R, a.e. x in Ω; (2.4) ∀k > 0, ∃c k > 0 such that |λ(x, s)| ≤ c k ∀ |s| ≤ k, a.e. x in Ω, (2.5) |Φ(x, s)| ≤ |b(x)| (1 + |s|) p-1 ∀s ∈ R, a.e. x in Ω, (2.6) with      b ∈ L N p-1 (Ω) if p < N, Ω (1 + |b|) N N-1 (ln(1 + |b|)) N -1 dx < ∞ if p = N; (2.7) f ∈ L 1 (Ω). (2.8)
For any k ≥ 0, the truncation function at height ±k is defined by T k (s) = max(-k, min(s, k)). For any integer n ≥ 1, let us define the bounded positive function (2.9)

h n (s) = 1 - |T 2n (s) -T n (s)| n .
For any measurable subset E of Ω, 1l E denotes the characteristic function of the subset E.

2.2.

Definition of a renormalized solution of (1.1)- (1.3). Following [START_REF] Bénilan | An L 1theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF] let us recall the definition of the gradient of functions whose truncates belong to W 1,p Γ d (Ω). Definition 2.1. Let u be a measurable function defined on Ω which is finite almost everywhere such that T k (u) ∈ W 1,p Γ d (Ω) for every k > 0. Then there exists a unique measurable function v : Ω -→ R N such that

DT k (u) = 1l {|u|<k} v a.e. in Ω, ∀k > 0.
This function v is called the gradient of u and is denoted by Du.

We now give the definition of a renormalized solution of problem (1.1)-(1.3). Definition 2.2. A measurable function u defined on Ω and finite almost everywhere on Ω is called a renormalized solution of (1.1)-

(1.3) if (2.10) T k (u) ∈ W 1,p Γ d (Ω), ∀k > 0; 
(2.11) lim

n→∞ 1 n {|u|<n} a(x, Du) • Dudx = 0;
and if for every h ∈ W 1,∞ (R), with compact support and any ϕ ∈ W 1,p Γ d (Ω)∩L ∞ (Ω),

(2.12) 

Ω λ(x, u)ϕh(u)dx + Ω h(u)a(x, Du) • Dϕdx + Ω h(u)Φ(x, u) • Dϕdx + Ω ϕh ′ (u)a(x, Du) • Dudx + Ω ϕh ′ (u)Φ(x, u) • Dudx = Ω f ϕh(u)
[-k, k].
From assumption (2.5) we have |λ(x, u)ϕh(u)| ≤ c k ϕh L ∞ (Ω) a.e. in Ω and then λ(x, u)ϕh(u) lies in L 1 (Ω). Since h(u)(a(x, Du)+Φ(x, u)) = h(u)(a(x, DT k (u))+ Φ(x, T k (u))) a.e. in Ω, from (2.3), (2.6) and (2.10) it follows that h(u)(a(x, Du) + Φ(x, u)) belongs to L p ′ (Ω)

N . Thus h(u)(a(x, Du) + Φ(x, u)) • Dϕ is integrable on Ω. The same arguments imply that ϕh ′ (u)a(x, Du)

• Du = ϕh ′ (u)a(x, DT k (u)) • DT k (u) and ϕh ′ (u)Φ(x, u) • Du = ϕh ′ (u)Φ(x, T k (u)) • DT k (u) lie in L 1 (Ω). At last it is clear that f ϕh(u) ∈ L 1 (Ω).
2.3. Properties of a renormalized solution of (1.1)-(1.3). It is well known (see [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]) that if f ∈ L 1 (Ω), any renormalized solution of the equationdiv(a(x, Du)) = f in Ω, u = 0 on ∂Ω is also a solution in the sense of distribution. We establish a similar result in Proposition 2.8 namely that any function ψ ∈ W 1,q Γ d (Ω), with q > N, is an admissible test function in (1.1)- (1.3). We first give two technical lemmas which will be used in the limit case p = N.

Lemma 2.4. ∀ω > 0, ∃η > 0 such (2.13) ∀v ∈ W 1,N Γ d (Ω), Ω exp v η Dv (L N (Ω)) N N N-1 -1 dx ≤ ω. Lemma 2.5. ∃c(N) > 0 such that (2.14) ∀θ > 0, ∀x, y ∈ R, |xy| ≤ c(N) θ (1 + |x|) ln(1 + |x|) N -1 + e |θy| 1 N-1 -1 .
Remark 2.6. Property (2.13) is a consequence of the limit-case of Sobolev's embedding theorem (see [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF]). Inequality (2.14) can be easily derived by induction using the standard inequality |xy| ≤ (1 + |x|) ln(1 + |x|) + e |y| -1, ∀x, y ∈ R. We leave the details of the proofs to the reader.

In the following lemma we give some regularity results of a renormalized solution of (1. (2.17)

|Du| p-1 ∈ L q (Ω), ∀ 1 < q < N N -1 ; |u| p-1 ∈ L q (Ω), ∀ 1 < q < N N -p ; (2.18) Du p 1 + |u| 1+m ∈ L 1 (Ω), ∀m > 0. (2.19)
Sketch of the proof of Lemma 2.7. Regularities (2.17), (2.18) and (2.19) are easy consequences of the estimate techniques of L. Boccardo and T. Gallouët developed in [START_REF] Boccardo | On some nonlinear elliptic and parabolic equations involving measure data[END_REF] (see also [START_REF] Bénilan | An L 1theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF] and [START_REF] Betta | Existence of renormalized solutions to nonlinear elliptic equations with lower-order terms and right-hand side measure[END_REF]). Indeed (2.1), (2.10) and (2.11) yield that

Ω |DT k (u)| p dx ≤ ck + L ∀k > 0.
Let us prove (2.16). Assumption (2.6) and Hölder's inequality lead to (2.20)

1 n {|u|<n} Φ(x, u) • Du dx ≤ 1 n {|u|<n} |b| p ′ 1+|u| p dx 1 p ′ 1 n {|u|<n} |Du| p dx 1 p
.

If p < N, using Sobolev's embedding theorem we have

{|u|<n} |b| p ′ 1 + |u| p dx 1 p ′ ≤ b L N p-1 (Ω) Ω 1 + |T n (u)| pN N-p dx (p-1)(N-p) pN ≤ c b L N p-1 (Ω) 1 + DT n (u) p-1 (L p (Ω)) N
and with (2.20) we obtain

(2.21) 1 n {|u|<n} |Φ(x, u) • Du| dx ≤ c n b L N p-1 (Ω) (1 + DT n (u) p (L p (Ω)) N ),
where c is a constant independent on n.

If p = N, using Lemma 2.4 and Lemma 2.5 we obtain after a few computations, for η > 0,

{|u|<n} |b| N ′ (1 + |u|) N dx ≤ c b N ′ L N N-1 (Ω) + c Ω |b| N ′ |T n (u)| N dx ≤ c b N ′ L N N-1 (Ω) + cc(N) DT n (u) N (L N (Ω)) N Ω 1 + η N |b| N ′ ln(1 + η N |b| N ′ ) N -1 dx + cc(N) DT n (u) N (L N (Ω)) N Ω exp |T n (u)| η DT n (u) (L N (Ω)) N N ′ -1 dx,
where c and c(N) are positive constants independent of n. Choosing ω = 1 in Lemma 2.4 (then η is fixed), we get

{|u|<n} |b| N ′ (1 + |u|) N dx ≤ c b N ′ L N N-1 (Ω) + cc(N) DT n (u) N (L N (Ω)) N + cc(N) DT n (u) N (L N (Ω)) N Ω (1 + |b|) N ′ (ln(1 + |b|)) N -1 dx ≤ c 1 + DT n (u) N (L N (Ω)) N , (2.22)
where c is a positive constant depending on N, η, b and Ω.

From (2.20) together with (2.21) and (2.22) it follows that in both cases p < N and N = p

(2.23) 1 n {|u|<n} |Φ(x, u) • Du| dx ≤ c n (1 + DT n (u) p (L p (Ω)) N ) ∀n ≥ 1,
where c is a positive constant which depends on N, p, b and Ω. Assumption (2.1), condition (2.11) and (2.23) lead to (2.16).

We are now in a position to obtain (2.15). For any n > 0, the function h n (see (2.9)) is Lipschitz continuous with compact support, so that (2.12) yields with

ϕ = T 1 (u) ∈ W 1,p Γ d (Ω) ∩ L ∞ (Ω) Ω λ(x, u)T 1 (u)h n (u)dx + Ω h n (u)a(x, Du) • DT 1 (u)dx + Ω h n (u)Φ(x, u) • DT 1 (u)dx + Ω T 1 (u)h ′ n (u)a(x, Du) • Dudx + Ω T 1 (u)h ′ n (u)Φ(x, u) • Dudx = Ω f T 1 (u)h n (u)dx. Because 0 ≤ h n (u) ≤ 1 and a(x, Du) • DT 1 (u) ≥ 0 almost everywhere in Ω, we deduce that Ω λ(x, u)T 1 (u)h n (u)dx ≤ f L 1 (Ω) + Ω |Φ(x, u) • DT 1 (u)| dx + 1 n {|u|<n} (a(x, Du) • Du + |Φ(x, u) • Du|)dx.
Since u is finite almost everywhere in Ω, h n (u) converges to 1 almost everywhere in Ω and it is bounded by 1. Assumption (2.4) and Fatou lemma together with (2.11) and (2.16) allow to conclude that (2.24) 

Ω λ(x, u)T 1 (u)dx ≤ f L 1 (Ω) + Ω |Φ(x, u) • DT 1 (u)| dx. At last writing |λ(x, u)| ≤ λ(x, u)T 1 (u) + |λ(x, u)| 1l {|u|≤1} a.e.
∈ r>N W 1,r Γ d (Ω) we have (2.25) Ω λ(x, u)ψdx + Ω a(x, Du) • Dψdx + Ω Φ(x, u) • Dψdx = Ω f ψdx. Sketch of proof. Let ψ ∈ W 1,r Γ d (Ω) with r > N. Sobolev's embedding theorem implies that ϕ ∈ W 1,r Γ d (Ω) ∩ L ∞ (Ω) and (2.12) with h = h n leads to (2.26) Ω λ(x, u)ψh n (u)dx + Ω h n (u)a(x, Du) • Dψdx + Ω h n (u)Φ(x, u) • Dψdx + Ω ψh ′ n (u)a(x, Du) • Dudx + Ω ψh ′ n (u)Φ(x, u) • Dudx = Ω f ψh n (u)dx.
Assumptions (2.3) and (2.17) lead to

a(x, Du) ∈ (L q (Ω)) N ∀1 ≤ q < N N -1 ,
and then a(x, Du)•Dψ ∈ L 1 (Ω). Similarly (2.6) and (2.18) give that Φ(x, u)•Dψ ∈ L 1 (Ω). Since h n (u) converges to 1 almost everywhere in Ω and it is bounded by 1 and recalling that |h ′ n (s)| = 1/n1l {n<|s|<2n} (s) a.e. on R, it is then a straightforward task to pass the limit in (2.26) using Lebesgue's dominated convergence theorem, (2.11), (2.15) and (2.16). Such a limit process leads to (2.25). Proof. The proof relies on passing to the limit in an approximate problem.

Existence of a renormalized solution

Step 1. For ε > 0, let us define

(3.1) λ ε (x, s) = ε |s| p-2 s + λ x, T 1/ε (s) , (3.2) Φ ε (x, s) = Φ x, T 1/ε (s) and f ε ∈ L p ′ (Ω) such that (3.3) f ε ε→0 -→ f strongly in L 1 (Ω).
From the classical results of Leray-Lions [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF], an application of the Leray-Schauder fixed point theorem allows to show that for any ε > 0 there exists

u ε ∈ W 1,p Γ d (Ω) such that ∀ψ ∈ W 1,p Γ d (Ω) (3.4) Ω λ ε (x, u ε )ψdx + Ω a(x, Du ε ) • Dψdx + Ω Φ ε (x, u ε ) • Dψdx = Ω f ε ψdx.
We now derive some estimates on u ε . Using ψ = T k (u ε ) for k > 0 in (3.4) we obtain

Ω λ ε (x, u ε )T k (u ε )dx + Ω a(x, DT k (u ε )) • DT k (u ε )dx + Ω Φ ε (x, T k (u ε )) • DT k (u ε )dx = Ω f ε T k (u ε )dx.
From the coercivity of the operator a, the positivity of the function λ and (2.6) it follows that

Ω λ(x, u ε )T k (u ε )dx + α Ω |DT k (u ε )| p dx ≤ Ω f ε T k (u ε )dx + Ω b(x)(1 + |T k (u ε )|) p-1 |DT k (u ε )| dx
and then Young's inequality gives

(3.5) Ω λ(x, u ε )T k (u ε )dx + Ω |DT k (u ε )| p dx ≤ (M + 1)(k + k p )
where M is a generic constant independent of k and ε. Inequality (3.5) implies that ∀k > 0

(3.6) T k (u ε ) is bounded in W 1,p Γ d (Ω)
and due to (2.4) and (2.5)

(3.7) λ(x, u ε ) is bounded in L 1 (Ω).
As a consequence of (2.3), (3.6) and (3.7) there exists a subsequence (still denoted by ε) and a measurable function u : Ω -→ R such that λ(x, u) ∈ L 1 (Ω) and such that

u ε ε→0 -→ u almost everywhere in Ω, (3.8) ∀k > 0 T k (u ε ) ε→0 ⇀ T k (u) weakly in W 1,p Γ d (Ω), (3.9) ∀k > 0, a(x, DT k (u ε )) ε→0 ⇀ σ k weakly in (L p ′ (Ω)) N , (3.10) where σ k ∈ L p ′ (Ω) N .
We claim that u is finite almost everywhere in Ω (remark that if λ(x, s) = λ |s| p-2 s, with λ > 0, it is obvious since λ(x, u) ∈ L 1 (Ω)) through a "log-type" estimate on u ε (such a "log-type" estimate is also performed in [START_REF] Boccardo | Some dirichlet problems with lower order terms in divergence form[END_REF], see also [START_REF] Boccardo | Some noncoercive parabolic equations with lower order terms in divergence form[END_REF][START_REF] Droniou | Non-coercive linear elliptic problems[END_REF][START_REF] Droniou | Global and local estimates for nonlinear noncoercive elliptic equations with measure data[END_REF]). Let us consider the real valued function

ψ p (r) = r 0 ds (1 + |s|) p ∀r ∈ R. Since p > 1, ψ p (u) ∈ W 1,p Γ d (Ω) ∩ L ∞ (Ω) with ψ p (u) L ∞ (Ω) ≤ 1 p-1 and Dψ p (u) = Du (1+|u|) p almost everywhere in Ω, ψ p (u ε ) is an admissible test function in (3.4). It follows that Ω λ ε (x, u ε )ψ p (u ε )dx + Ω a(x, u ε ) • Dψ p (u ε )dx + Ω Φ ε (x, u ε ) • Dψ p (u ε )dx ≤ M p -1
and due to the definition of λ ε together with (2.1), (2.4) and (2.6) we have

α Ω |Du ε | p (1 + |u ε |) p dx ≤ M p -1 + Ω b(x) |Du ε | (1 + |u ε |) dx
where M is a generic constant independent of ε. Young's inequality leads to

Ω |Du ε | p (1 + |u ε |) p dx ≤ M 1 + Ω |b(x)| p p-1 dx . Since p ≤ N and u ε ∈ W 1,p Γ d (Ω), the regularity of the function b (see (2.7)) implies that the field ln(1 + |u ε |) is bounded in W 1,p Γ d (Ω)
uniformly with respect to ε. From (3.8) and (3.9) it follows that ln(1 + |u|) belongs to W 1,p Γ d (Ω) and then u is finite almost everywhere in Ω.

Step 2. We prove the following lemma. Proof. Taking the admissible test function T n (u ε )/n (which belongs to

W 1,p Γ d (Ω) ∩ L ∞ (Ω)) in (3.4) yields that 1 n Ω λ ε (x, u ε )T n (u ε )dx + 1 n Ω a(x, Du ε ) • DT n (u ε )dx + 1 n Ω Φ ε (x, u ε ) • DT n (u ε )dx = 1 n Ω f ε T n (u ε )dx.
Since λ ε (x, u ε )T n (u ε ) ≥ 0 almost everywhere in Ω, using (2.1) and (2.6) we get

(3.12) α n Ω |DT n (u ε )| p dx ≤ 1 n Ω |b(x)| (1 + |T n (u ε )|) p-1 |DT n (u ε )| dx + Ω f ε T n (u ε )dx .
As a consequence of (3.3) and (3.8) and using the fact that u is finite almost everywhere in Ω, Lebesgue's convergence theorem leads to

lim n→∞ lim sup ε→0 1 n Ω |f ε T n (u ε )| dx = lim n→∞ 1 n Ω |f T n (u)| dx = 0.
Due to (3.2), (3.8) and (3.9) we have (3.13) lim sup

ε→0 1 n Ω |b(x)| (1+|T n (u ε )|) p-1 |DT n (u ε )| dx = 1 n Ω |b(x)| (1+|T n (u)|) p-1 |DT n (u)| dx.
We will prove in the sequel by splitting techniques that (3.14)

∀η > 0, 1 n Ω |b(x)| (1 + |T n (u)|) p-1 |DT n (u)| dx ≤ ω η (n) + η n Ω |DT n (u)| p dx,
where ω η (n) goes to zero as n goes to infinity. Since T n (u ε ) converges to T n (u) weakly in W 1,p Γ d (Ω), choosing η small enough in (3.14) together with (3.12) give (3.11).

In order to complete the proof, it remains to prove (3.14). Let η > 0 and R > 0 (R will be fixed later). By denoting E R the measurable set E R = {x ∈ Ω ; |u(x)| > R}, we write

(3.15) 1 n Ω |b(x)| (1 + |T n (u)|) p-1 |DT n (u)| dx = I 1 (n, R) + I 2 (n, R)
with

I 1 (n, R) = 1 n Ω\E R |b(x)| (1 + |T n (u)|) p-1 |DT R (u)| dx and 
I 2 (n, R) = 1 n E R |b(x)| (1 + |T n (u)|) p-1 |DT n (u)| dx.
Since T R (u) ∈ W 1,p Γ d (Ω) we have lim n→∞ I 1 (n, R) = 0, ∀R > 0. We now deals with I 2 (n, R) by distinguishing the cases p < N and p = N. First case. Assuming that p < N, Hölder's inequality and Sobolev's embedding theorem lead to, ∀n ≥ 1,

I 2 (n, R) ≤ 1 n b L N p-1 (E R ) 1 + |T n (u)| p-1 L Np N-p (Ω) DT n (u) (L p (Ω)) N ≤ M n b L N p-1 (E R ) 1 + DT n (u) p (L p (Ω)) N , (3.16)
where M is a generic constant not depending on n and R. Since u is finite almost everywhere in Ω and since b ∈

L N p-1 (Ω), let R > 0 such that M b L N p-1 (E R ) < η.
Due to (3.15) and (3.16) we obtain (3.14).

Second case. We assume that p = N. Let us define A n = DT n (u) (L N (Ω)) N and let ρ > 0 (ρ will be fixed in the sequel). A few computations and Lemma 2.5 (with

θ = A -N n ) give, ∀n ≥ 1, I 2 (n, R) ≤ 2 N -2 n E R |b(x)| |DT n (u)| dx + E R |b(x)| |T n (u)| p-1 |DT n (u)| dx ≤ 2 N -2 n A n b L N N-1 (Ω) + E R ρ N -1 |b(x)| N N-1 |T n (u)| ρ N dx (N -1)/N ≤ 2 N -2 n A n b L N ′ (Ω) + A N n C(N) E R exp |T n (u)| ρA n N N-1 -1 dx + E R 1 + ρ N |b(x)| N N-1 ln 1 + ρ N |b(x)| N N-1 N -1 dx (N -1)/N ≤ 2 N -2 n A n b L N ′ (Ω) + 2 N -2 C(N) n A N n Ω exp |T n (u)| ρA n N N-1 -1 dx (N -1)/N + 2 N -2 C(N) n M(ρ, N)A N n E R 1 + |b(x)| N N-1 ln 1 + |b(x)| N -1 dx (N -1)/N , (3.17) 
where C(N) > 0 is a constant only depending on N (from Lemma 2.5) and M(ρ, N) only depends on ρ and N. Using Lemma 2.4 and since T n (u) lies in W 1,N Γ d (Ω) we can choose firstly ρ > 0 such that the quantity

2 N -2 C(N) Ω exp |T n (u)| ρA n N N-1 -1 dx N-1 N
is small enough independently of n. Secondly since u is finite almost everywhere in Ω (i.e. lim R→∞ meas(E R ) = 0) we can choose R > 0 such that the quantity

2 N -2 C(N)M(ρ, N) E R 1 + |b(x)| N N-1 ln 1 + |b(x)| N -1 dx N-1 N
is small enough (notice that it is crucial to choose ρ before choosing R). At last we deduce from (3.17) that there exists R > 0 such that ∀n ≥ 1

I 2 (n, R) ≤ 2 N -2 n b L N ′ (Ω) DT n (u) (L N (Ω)) N + η 2n DT n (u) N (L N (Ω)) N ≤ 2 N +1 b N ′ L N ′ (Ω) nη 1/(N -1) + η n DT n (u) N (L N (Ω)) N .
From (3.15) and the behavior of I 1 (n, R) as n goes to infinity it follows that (3.14) holds true.

Step 3. We are now in a position to prove the following lemma.

Lemma 3.3. For any k > 0, lim ε→0 Ω a(x, DT k (u ε )) -a(x, DT k (u)) • DT k (u ε ) -DT k (u) dx = 0.
Proof of Lemma 3.3. The proof relies on similar techniques developed in [START_REF] Blanchard | Truncations and monotonicity methods for parabolic equations[END_REF].

Let k be a positive real number and let n ≥ 1. Using the test function

(T k (u ε ) - T k (u))h n (u ε ) which belongs to W 1,p Γ d (Ω) ∩ L ∞ (Ω) yields that (3.18) Ω λ ε (x, u ε )(T k (u ε ) -T k (u))h n (u ε )dx + Ω h n (u ε )a(x, Du ε )•D(T k (u ε )-T k (u))dx+ Ω (T k (u ε )-T k (u))h ′ n (u ε )a(x, Du ε )•Du ε dx + Ω h n (u ε )Φ ε (x, u ε )•D(T k (u ε )-T k (u))dx+ Ω (T k (u ε )-T k (u))h ′ n (u ε )Φ ε (x, u ε )•Du ε dx = Ω f ε (T k (u ε ) -T k (u))h n (u ε )dx
We study in the sequel the behavior of each term of (3.18) as ε → 0 and n → ∞.

Since h n has a compact support, condition (2.5) implies that the field

h n (u ε )λ ε (x, u ε ) is bounded in L ∞ (Ω). Moreover T k (u ε ) -T k (u)
converges to 0 almost everywhere in Ω and in L ∞ (Ω) weak- * as ε goes to zero. Therefore we obtain

(3.19) lim ε→0 Ω λ ε (x, u ε )(T k (u ε ) -T k (u))h n (u ε )dx = 0,
and similarly one has

lim ε→0 Ω f ε (T k (u ε ) -T k (u))h n (u ε )dx = 0.
Recalling that h ′ n (r) = -1l {n<|r|<2n} sign(r)/n a.e. on R, from assumption (2.3) it follows that

Ω (T k (u ε ) -T k (u))h ′ n (u ε )a(x, Du ε ) • Du ε dx ≤ M n {n<|u ε |<2n} |Du ε | p dx + Ω |d(x)| p ′ dx ,
with M > 0 not depending on ε and n. Lemma 3.2 and the regularity of d allow us to conclude that

(3.20) lim n→∞ lim sup ε→0 Ω (T k (u ε ) -T k (u))h ′ n (u ε )a(x, DT n (u ε )) • Du ε dx = 0.
In view of (2.6) and since h n has a compact support we get |h n (u ε )Φ ε (x, u ε )| ≤ Mb(x) almost everywhere in Ω where M is a constant independent of ε. Moreover the pointwise convergence of u ε and the definition of Φ ε give that

h n (u ε )Φ ε (x, u ε ) ε→0 -→ h n (u)Φ(x, u) a.e. in Ω.
Thus the regularity of b and Lebesgue's convergence theorem imply that h n (u ε )Φ ε (x, u ε ) converges to h n (u)Φ(x, u) strongly in L p p-1 (Ω). Due to (3.9) we conclude that

(3.21) lim ε→0 Ω h n (u ε )Φ ε (x, u ε ) • D(T k (u ε ) -T k (u))dx = 0
and similar arguments lead to

(3.22) lim ε→0 Ω (T k (u ε ) -T k (u))h ′ n (u ε )Φ ε (x, u ε ) • Du ε dx = 0.
From (3.18) 

h n (u ε )a(x, Du ε ) • D(T k (u ε ) -T k (u))dx = 0.
Since a(x, 0) = 0 almost everywhere in Ω we have for 

k ′ > k a(x, DT k (u ε )) = 1l {|u ε |<k} a(x, DT k ′ (u ε ))
lim ε→0 Ω h n (u ε )a(x, Du ε ) • DT k (u)dx = lim ε→0 Ω h n (u ε )a(x, DT 2n (u ε )) • DT k (u)dx = Ω h n (u)σ 2n • DT k (u)dx = Ω σ k • DT k (u)dx.
From (3.23) and (3.24) we get

(3.25) lim sup ε→0 Ω h n (u ε )a(x, Du ε ) • DT k (u ε )dx ≤ Ω σ k • DT k (u)dx.
At last, writing

Ω (a(x, DT k (u ε )) -a(x, DT k (u))) • (DT k (u ε ) -DT k (u))dx = Ω a(x, DT k (u ε )) • DT k (u ε )dx - Ω a(x, DT k (u ε )) • DT k (u)dx - Ω a(x, DT k (u)) • (DT k (u ε ) -DT k (u))dx,
using (3.9), (3.10), (3.25) and the monotone character of the operator a allow to conclude the proof of Lemma 3.3.

From Lemma 3.3 we deduce that ∀k > 0

lim ε→0 Ω a(x, DT k (u ε )) • DT k (u ε )dx = Ω σ k • DT k (u)dx,
which gives thanks to a Minty argument

(3.26) ∀k > 0, σ k = a(x, DT k (u)) a.e. in Ω.
Using again Lemma 3.3 together with (3.9) and (3.26) we conclude that

∀k > 0, a(x, DT k (u ε )) • DT k (u ε ) ε→0 ⇀ a(x, DT k (u)) • DT k (u) in L 1 (Ω)-weak.
Step 4. We now pass to the limit in the approximate problem.

Let h be an element of W 1,∞ (R) with compact support, let k > 0 such that supp(h) ⊂ [-k, k] and let ϕ be an element of

W 1,p Γ d (Ω) ∩ L ∞ (Ω). Plugging the test function ϕh(u ε ) in (3.4) yields (3.27) Ω λ ε (x, u ε )ϕh(u ε )dx + Ω h(u ε )a(x, Du ε ) • Dϕdx + Ω ϕh ′ (u ε )a(x, Du ε ) • Du ε dx + Ω h(u ε )Φ ε (x, u ε ) • Dϕdx + Ω ϕh ′ (u ε )Φ ε (x, u ε ) • Du ε dx = Ω f ε ϕh(u ε )dx.
Let us pass to the limit in (3.27) as ε goes to zero. Since h has a compact support, assumption (2.5) and the pointwise convergence of u ε give that the field λ ε (x, u ε )ϕh(u ε ) converges to λ(x, u)ϕh(u) a.e. in Ω and in L ∞ (Ω) weak- * . From (3.3) and (3.8) it follows that f ε ϕh(u ε ) converges strongly to f ϕh(u) in L 1 (Ω). Using assumption (2.6) together with (3.8) (and since supp(h) is compact) and Lebesgue's convergence theorem we obtain that h(u ε )Φ ε (x, u ε ) converges strongly to h(u)Φ(x, u) in L N/(p-1) (Ω). Recalling that N ≥ p leads to

(3.28) lim ε→0 Ω h(u ε )Φ ε (x, u ε ) • Dϕdx = Ω h(u)Φ(x, u) • Dϕdx.
Similarly the weak convergence of T k (u ε ) yields that

(3.29) lim ε→0 Ω ϕh ′ (u ε )Φ ε (x, u ε ) • Du ε dx = Ω ϕh ′ (u)Φ(x, u) • DT k (u)dx,
and from (3.10) and (3.26) it follows that

(3.30) lim ε→0 Ω h(u ε )a(x, DT k (u ε )) • Dϕdx = Ω h(u)a(x, DT k (u)) • Dϕdx.
Finally due to Lemma 3.3 we have 

lim ε→0 Ω ϕh ′ (u ε )a(x, Du ε ) • Du ε dx = lim ε→0 Ω ϕh ′ (u ε )a(x, DT k (u ε )) • DT k (u ε )dx = Ω ϕh ′ (u)a(x, DT k (u)) • DT k (u)dx. ( 3 

Uniqueness results

As mentioned in the introduction, we give in this section two uniqueness results. In Theorem 4.1 below we establish that if λ(x, s) is strictly monotone with respect to s then the renormalized solution of (1.1)-(1.3) is unique under a local Lipschitz condition on Φ(x, s) with respect to s. 

(λ(x, r) -λ(x, r ′ ))(r -r ′ ) > 0 ∀r, r ′ ∈ R, r = r ′ a.e. x ∈ Ω; (4.1) for any compact C ⊂ R there exists L C > 0 such that |Φ(x, r) -Φ(x, r ′ )| ≤ L C |b(x)| |r -r ′ | ∀r, r ′ ∈ C. (4.2)
Then the renormalized solution of equation (1.1)-(1.3) is unique.

When λ(x, •) is assumed to be monotone and when 1 < p ≤ 2 we must replace condition (4.2) by a global condition and the strong monotonicity of the operator a(x, •) is needed. Theorem 4.2. Assume that (2.1)-(2.8) hold true. Moreover assume that

1 < p ≤ 2 < N; (4.3) (λ(x, r) -λ(x, r ′ ))(r -r ′ ) ≥ 0 ∀r, r ′ ∈ R, a.e. x ∈ Ω; (4.4) (a(x, ξ) -a(x, ξ ′ )) • (ξ -ξ ′ ) ≥ α |ξ -ξ ′ | 2 (|ξ| + |ξ ′ |) 2-p ∀ξ, ξ ′ ∈ R N , a.e. x ∈ Ω; (4.5) 
there exist L > 0 and γ < p -

3 2 such that (4.6) |Φ(x, r) -Φ(x, r ′ )| ≤ L |r -r ′ | |b(x)| (|r| + |r ′ | + 1) γ ∀r, r ′ ∈ R, a.e. x ∈ Ω.
Then the renormalized solution of equation (1.1)-(1.3) is unique. 3). Our goal is to prove that

Ω |λ(x, u) -λ(x, v)| dx = 0. Let q > 0, σ > 0 and n ≥ 1. Using T σ (T q (u) -T q (v))h n (u) which belongs to W 1,p Γ d (Ω) ∩ L ∞ (Ω) in (2.12) u gives (4.7) Ω λ(x, u)T σ (T q (u) -T q (v))h n (u)dx + Ω h n (u)a(x, Du) • DT σ (T q (u) -T q (v))dx + Ω h ′ n (u)T σ (T q (u)-T q (v))a(x, Du)•Dudx+ Ω h n (u)Φ(x, u)•DT σ (T q (u)-T q (v))dx + Ω h ′ n (u)T σ (T q (u) -T q (v))Φ(x, u) • Dudx = Ω f T σ (T q (u) -T q (v))h n (u)dx.
It is then easy to pass to the limit as q tends to +∞ for fixed σ > 0 and n ≥ 1. Indeed, since supp(h n ) ⊂ [-2n, 2n] one has

h n (u)DT σ (T q (u) -T q (v)) = h n (u)DT k (u -v) a.e.
x in Ω as soon as q > 2N + σ. Moreover T σ (T q (u) -T q (v)) converges to T σ (uv) a.e. in Ω and in L ∞ (Ω) weak- * as q goes to +∞. Using such a process in (1.1)-(1.3) written for v gives by subtraction

1 σ Ω (λ(x, u)h n (u) -λ(x, v)h n (v))T σ (u -v)dx (4.8) + 1 σ Ω (h n (u)a(x, Du) -h n (v)a(x, Dv)) • DT σ (u -v)dx + 1 σ Ω (h n (u)Φ(x, u) -h n (v)Φ(x, v)) • DT σ (u -v)dx + 1 σ Ω T σ (u -v) h ′ n (u)a(x, Du) • Du -h ′ n (v)a(x, Dv) • Dv dx + 1 σ Ω T σ (u -v) h ′ n (u)Φ(x, u) • Du -h ′ n (v)Φ(x, v) • Dv dx = 1 σ Ω f T σ (u -v)(h n (u) -h n (v))dx.
We now pass to the limit successively as σ → 0 and as n → +∞ in (4.8). Since (4.9) T σ (uv) σ σ→0 -→ sign(uv)1l {u =v} a.e. in Ω and in L ∞ (Ω) weak- * , and because both functions h n (u) and h n (v) converge to 1 almost everywhere in Ω and in L ∞ (Ω) weak- * , we obtain thanks to Lebesgue's convergence theorem (4.10)

lim n→∞ lim σ→0 1 σ Ω (λ(x, u)h n (u)-λ(x, v)h n (v))T σ (u-v)dx = Ω (λ(x, u)-λ(x, v))sign(u-v)dx and (4.11) lim n→∞ lim σ→0 1 σ Ω f T σ (u -v)(h n (u) -h n (v))dx = 0.
One has for any σ > 0 and any n ≥ 1,

1 σ Ω h ′ n (u)T σ (u -v)a(x, Du) • Dudx ≤ 1 n {|u|<2n} a(x, Du) • Dudx and 1 σ Ω h ′ n (u)T σ (u -v)Φ(x, u) • Dudx ≤ 1 n {|u|<2n} |Φ(x, u) • Du| dx.
Therefore (2.11) and (2.16) imply that (4.12) lim n→∞ lim sup

σ→0 1 σ Ω h ′ n (u)T σ (u -v)a(x, Du) • Dudx = 0, (4.13) lim n→∞ lim sup σ→0 1 σ Ω h ′ n (u)T σ (u -v)Φ(x, u) • Dudx = 0.
By the same way we obtain (4.12) and (4.13) for v and then the forth and fifth terms of (4.8) tend to zero.

To study the behavior of the second term of (4.8), we split it as follows

(4.14) 1 σ Ω h n (u)a(x, Du) -h n (v)a(x, Dv) • DT σ (u -v)dx = 1 σ Ω h n (u) a(x, Du) -a(x, Dv) • DT σ (u -v)dx + 1 σ Ω h n (u) -h n (v) a(x, Dv) • DT σ (u -v)dx.
Since h n is a Lipschitz continuous function we have for 0 < σ ≤ 1

1 σ Ω (h n (u) -h n (v))a(x, Dv) • DT σ (u -v)dx ≤ 1 n {0<|u-v|<σ} |a(x, DT 2n+1 (u))| |DT 2n+1 (v) -DT 2n+1 (v)| dx
which gives using Lebesgue's convergence theorem

lim σ→0 1 σ Ω (h n (u) -h n (v))a(x, Dv) • DT σ (u -v)dx = 0.
Since h n (u) is non negative the monotone character of the operator a and (4.14) lead to ∀n ≥ 1, (4.15) lim sup

1 σ Ω (h n (u)a(x, Du) -h n (v)a(x, Dv)) • DT σ (u -v)dx ≥ 0.
We now deal with the third term of (4.8). We have

(4.16) 1 σ Ω (h n (u)Φ(x, u) -h n (v)Φ(x, v)) • DT σ (u -v)dx = 1 σ {0<|u-v|<σ} h n (u)(Φ(x, u) -Φ(x, v)) • DT σ (u -v)dx + 1 σ {0<|u-v|<σ} (h n (u) -h n (v))Φ(x, v) • DT σ (u -v)dx.
Since supp(h n ) = [-2n, 2n] we get for 0 < σ ≤ 1

1 σ {0<|u-v|<σ} h n (u)(Φ(x, u) -Φ(x, v)) • DT σ (u -v)dx ≤ 1 σ {0<|u-v|<σ,|u|<2n,|v|<2n+1} h n (u) |Φ(x, u) -Φ(x, v)| |Du -Dv| dx,
which gives thanks to assumption (4.2) where L does not depend on σ.

1 σ {0<|u-v|<σ} h n (u)(Φ(x, u) -Φ(x, v)) • DT σ (u -v)dx ≤ L {0<|u-v|<σ} |b(x)| |DT 2n+1 (u)| + |DT 2n+1 (v)| dx (4.
Using again the fact that h n is Lipschitz continuous together with assumption (2.6) we have for 0

< σ ≤ 1 1 σ {0<|u-v|<σ} (h n (u) -h n (v))Φ(x, v) • DT σ (u -v)dx ≤ 1 n {0<|u-v|<σ,|u|<2n,|v|<2n+1} |Φ(x, v) • DT σ (u -v)| dx ≤M {0<|u-v|<σ} |b(x)| (|DT 2n+1 (u)| + |DT 2n+1 (v)|)dx,
with M > 0 not depending on σ. From (4.16) and (4.17) it follows that for 0 < σ ≤ 1 with f ∈ L 1 (Ω) and g ∈ L p ′ (Ω) (see [START_REF] Lions | Solutions renormalisées d'équations elliptiques[END_REF] and [START_REF] Murat | Soluciones renormalizadas de EDP elipticas non lineales[END_REF] in the linear case when g ≡ 0 ; notice that Γ n = ∅ is crucial for this existence result). When λ > 0 and under a local Lipschitz hypothesis on φ, the method used in the proof of Theorem 4.1 and the property (see [START_REF] Blanchard | Renormalized solutions for a class of nonlinear evolution problem[END_REF]) Let σ be a positive real number and n ≥ 1. Using h = h n and ψ = h n (v)T σ (u-v) in (2.12) written in u together with similar arguments already used in the proof of Theorem 4.1 yield (by subtraction with the equivalent equality written in v)

1 σ Ω (h n (u)Φ(x, u) -h n (v)Φ(x, v)) • DT σ (u -v)dx ≤ (L + M) {0<|u-v|<σ} |b(x)| |DT 2n+1 (u)| + |DT 2n+1 (v)| dx. Since |b(x)| (|DT 2n+1 (u)| + |DT 2n+1 (v)|) lies in L 1 (Ω), Lebesgue's convergence the- orem implies that (4.18) lim σ→0 1 σ Ω (h n (u)Φ(x, u) -h n (v)Φ(x, v)) • DT σ (u -v)dx = 0.
div(h n (u)φ(u)) -h ′ n (u)φ(u) • Du = div(Ψ n (u)) in D ′ (Ω), where Ψ n (r) =
Ω h n (u)h n (v)(λ(x, u) -λ(x, v))T σ (u -v)dx (4.22) + Ω h n (u)h n (v)(a(x, Du) -a(x, Dv)) • DT σ (u -v)dx + Ω h n (v)h n (u)(Φ(x, u) -Φ(x, v)) • DT σ (u -v)dx + Ω h ′ n (u)h n (v)T σ (u -v)(a(x, Du) + Φ(x, u) -a(x, Dv) -Φ(x, v)) • Dudx + Ω h ′ n (v)h n (u)T σ (u -v)(a(x, Du) + Φ(x, u) -a(x, Dv) -Φ(x, v)) • Dvdx = 0.
We now pass to the limit as n goes to +∞ first and then as σ goes to 0. It is worth noting that the reverse is performed in the proof of Theorem 4.1. Indeed passing to the limit as σ → 0 first and then n → ∞ leads to uniqueness of the solution only in the case where λ(x, •) is strictly monotone (assumption (4.1) in Theorem 4.1). In the case of Theorem 4.2, the zero order term namely λ(x, •), is monotone (see assumption (4.4)), and the uniqueness proof program of Theorem 4.1 yields Ω |λ(x, u)λ(x, v)| dx = 0 which is not sufficient to ensure uniqueness. It follows that the second term of (4.22) leads us to the uniqueness of the field u letting first n → ∞ and then σ → 0. This explains why global condition and strong monotonicity are assumed. Since h n ≥ 0 the monotone character of λ(x, •) implies that ∀n ≥ 1 (4.23)

Ω h n (v)h n (u)(λ(x, u) -λ(x, v))T σ (u -v)dx ≥ 0.
We claim that ∀σ > 0, (4.24) 

lim n→∞ Ω h ′ n (u)h n (v)T σ (u -v)(a(x, Du) + Φ(x, u) -a(x, Dv) -Φ(x, v)) • Dudx = 0.
Ω h ′ n (u)h n (v)T σ (u -v)a(x, Du) • Dudx = 0 and (4.26) lim n→∞ Ω h ′ n (u)h n (v)T σ (u -v)Φ(x, u) • Dudx = 0.

Assumption (2.3) gives with Hölder's inequality

Ω h ′ n (u)h n (v)T σ (u -v)a(x, Dv) • Dudx ≤ βσ n {|u|<2n,|v|<2n} ( 
Ω h ′ n (u)h n (v)T σ (u -v)a(x, Dv) • Dudx = 0.
From assumption (2.6) it follows that Let m be a positive real number which be fixed in the sequel. Using Hölder's inequality we get with ν = N (2γp+(1+m)(2-p))

Ω h ′ n (u)h n (v)T σ (u -v)Φ(x, v) • Dudx ≤ σ 1 n {|v|<2n} |b(x)| p p-1

2(p-1)(N -p)

. Because γ < p - We are now in a position to pass to the limit as n → ∞ in equation (4.30). Fatou's lemma yields that Dividing the above inequality by σ 2 and taking the limit as σ → 0 gives thanks to Lebesgue's convergence theorem Let us consider the field hn(u)Tσ (u-v) σ which belongs to W 1,p Γ d (Ω) ∩ L ∞ (Ω). From Poincaré's inequality we have

Ω h n (u) |T σ (u -v)| σ dx ≤ c Ω D h n (u)T σ (u -v) σ dx ≤ c Ω T σ (u -v) σ h ′ n (u) |Du| dx + Ω h n (u) |DT σ (u -v)| σ dx ≤ c 1 n {|u|<2n} |Du| dx + {|u|<2n,|v|<2n+σ} (|Du| + |Dv|) 2-p dx 1/2 × 1 σ 2 Ω |DT σ (u -v)| 2 |Du| + |Dv| 2-p dx 1/2
which is licit since 2p < p and (2.10) imply that both fields 1l {|u|<2n} Du and 1l {|v|<2n+σ} Dv lie in L 2-p (Ω).

Theorem 3 . 1 .

 31 Under assumptions (2.1)-(2.8) there exists a renormalized solution of equation (1.1)-(1.3).

1 n

 1 {|u ε |<n} |Du ε | p dx = 0.

  almost everywhere in Ω and due to (3.8) and (3.10) we get σ k = 1l {|u|<k} σ k ′ a.e. on Ω \ {|u| = k} . Since DT k (u) = 0 a.e. on {|u| = k} we obtain that (3.24) σ k • DT k (u) = σ k ′ • DT k (u) a.e. on Ω, and then if n ≥ k

Theorem 4 . 1 .

 41 Assume that (2.1)-(2.8) hold true. Moreover assume that

Remark 4 . 3 .

 43 An example of function Φ verifying growth condition (2.6)-(2.7) and (4.6) is b(x)(1 + |r|) p-1 with b satisfying regularity assumption (2.7). Roughly speaking, condition (4.6) implies that ∂Φ(x,r) ∂r ≤ |b(x)|(1 + |r|) γ . When p > 3/2 a global Lipschitz condition on Φ(x, r) with respect to r is allowed (or a strong control of the modulus of continuity). If p ≤ 3/2 it follows that γ < 0 and then ∂Φ(x,r) ∂r goes to zero as |r| tends to ∞ almost everywhere in Ω. Proof of Theorem 4.1. Let u and v be two renormalized solutions of Problem (1.1)-(1.

17

 17 

  )

Gathering ( 4 . 8 )Remark 4 . 4 .

 4844 , (4.10)-(4.15) and (4.18) yields (4.19)Ω (λ(x, u)λ(x, v))sign(uv)dx ≤ 0.The strict monotonicity of λ(x, •) allows to conclude that Ω |λ(x, u)λ(x, v)| dx = 0 and then u = v almost everywhere in Ω. In the pure Dirichlet case (i.e. Γ n = ∅) if φ : R -→ R N is a continuous function without any growth assumption then there exists a renormalized solution of the problem λ|u| p-2 udiv(a(x, Du) + φ(u)) = fdiv(g) in Ω, (4.20) u = 0 on ∂Ω,(4.21) 

r0

  h n (s)φ ′ (s)ds allow to obtain that the renormalized solution of (4.20)-(4.21) is unique. Proof of Theorem 4.2. Let u and v be two renormalized solutions of problem (1.1)-(1.3).

( 2 -

 2 p)N N-2(p-1) dx N-2(p-1)N

1 2Nγ

 1 h n (u)h n (v) |u| + |v| + h n (u)h n (v) |u| + |v| + 1

αΩ

  |DT σ (uv)| 2 |Du| + |Dv| 2-p dx ≤ 2σ 2 α {|u-v|<σ}∩{u =v} |b(x)| 2 |u|+|v|+1 2γ |Du|+|Dv| 2-p dx.

2 Ω

 2 |DT σ (uv)| 2 |Du| + |Dv| 2-p dx = 0.

  dx.

	Remark 2.3. Condition (2.10) and Definition 2.1 allow to define Du almost ev-
	erywhere in Ω. Condition (2.11) which is crucial to obtain uniqueness results is
	standard in the context of renormalized solution and gives additional information
	on Du for large value of |u|. Equality (2.12) is formally obtained by using in (1.1)
	the test function ϕh(u) and taking into account the boundary conditions (1.2) and
	(1.3).
	Every term in (2.12) is well defined. Indeed let k > 0 such that supp(h) ⊂

  d(x) + |Dv| p-1 ) |Du| dx

	≤	βσ n	{|v|<2n}	(|d(x)| + |Dv| p-1 )	p p-1 dx		p-1 p	{|u|<2n}	|Du| p	1 p
	≤	βσ n	Ω	|d(x)|	p p-1 dx	p-1 p	+	{|v|<2n}	|Dv| p dx	p-1 p	{|u|<2n}	|Du| p dx	1 p .
	Using again (2.11) of Definition 2.2 together with assumption (2.1) leads to
							lim n→∞	1 n {|u|<n}	|Du| p dx = 0,
	and since d lies in L p ′ (Ω) we deduce that			
	(4.27)		lim n→∞								

  (u)h n (v) |u -v| |b(x)| |u| + |v| + 1 γ |DT σ (uv)| dx, where ω σ (n) (u)h n (v) |DT σ (uv)| 2 |Du| + |Dv| 2-p dx ≤ 2ω σ (n) + 2σ 2 α {|u-v|<σ}∩{u =v} h n (u)h n (v) |b(x)| 2 |u| + |v| + 1 2γ |Du| + |Dv| 2-p dx.Our goal is now to prove that |b(x)| 2 |u| + |v| + 1 2γ |Du| + |Dv| 2-p ∈ L 1 (Ω)and then to pass to the limit as n → ∞ in (4.30).If p = 2, we have (recalling that supp(hn ) = [-2n, 2n]) Ω h n (u)h n (v) |b(x)| 2 |u| + |v| + 1

		n→∞ -→ 0. Young's inequality yields		
	(4.30) α							
							2γ dx		
							2			N-2
				≤	|b| N dx	N		|u| + |v| + 1	2Nγ N-2 dx	N	.
				Ω			{|u|<2n,|v|<2n}	
	Since γ < p -3 2 = 1 2 , we get 2γN N -2 < N N -2 which implies, thanks to Lemma 2.7
				p-1 dx N	2(p-1) N	1 + |v|	p dx	p-1 p	1 n {|u|<2n}	|Du| p dx	1 p	.
	×	Therefore using similar arguments to the ones used in the proof of Lemma 2.7 we {|u|<2n,|v|<2n} deduce that h 2Nγ N-2(p-1) |Du| + |Dv|
		(4.28) n (u)h and then (4.24) is proved. lim n→∞ Ω h ′		
		In view of (4.5) and (4.6), gathering (4.22), (4.23) and (4.24) leads to
		(4.29) α	Ω	h n (u)h n (v)	|DT σ (u -v)| 2 |Du| + |Dv| 2-p dx	
			≤ ω σ (n) +					

n (v)T σ (uv)Φ(x, v) • Dudx = 0, Ω h n Ω h n Ω |u| 2Nγ N-2 dx < ∞ and Ω |v| 2Nγ N-2 dx < ∞. It follows that |b(x)| 2 |u| + |v| + 1 2γ ∈ L 1 (Ω).

If 1 < p < 2, making use of Hölder's inequality we have (4.31)

Ω h n (u)h n (v) |b(x)| 2 |u| + |v| + 1 2γ |Du| + |Dv| 2-p dx ≤ Ω h n (u)h n (v) |b| n (u)h n (v) |u| + |v| + 1

  3 2 we can choose m > 0 such that N(2γp + (1 + m)(2p)) almost everywhere in Ω, Fatou's lemma, (4.31) and (4.32) imply that |b(x)| 2 |u| + |v| + 1 2γ |Du| + |Dv| 2-p ∈ L 1 (Ω).

		2(p -1)(N -p)	<	N(2p 2 -4p + 2) 2(p -1)(N -p)	<	N(p -1) N -p
	which gives, using Lemma 2.7, |u| + |v| + 1	ν ∈ L 1 (Ω). Since m > 0 from (2.19)
	we obtain	|Du| p 1 + |u|	1+m ∈ L 1 (Ω),	|Dv| p 1 + |v|	1+m ∈ L 1 (Ω)
	and then				
			|Du| + |Dv|

p |u| + |v| + 1 1+m ∈ L 1 (Ω). Since h n (u)h n (v) n→∞ -→ 1

Letting first σ → 0 and (4.33) give

Taking the limit as n goes to infinity and using (2.11) we conclude that Ω 1l {u =v} dx = 0 and then u = v almost everywhere in Ω.