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Abstract. A central notion in Computational Anatomy is the gener-
ation of registration maps,mapping a large set of anatomical data to
a common coordinate system to study intra-population variability and
inter-population differences. In previous work [1, 2] methods for estimat-
ing the common coordinate system or the template given a collection
imaging data were presented based on the notion of Fréchet mean esti-
mation using a metric on the space of diffeomorphisms. In this paper we
extend the methodology to the estimation of a template given a collection
of unlabeled point sets and surfaces. Using a representation of points and
surfaces as currents a Reproducing Kernel Hilbert Space (RKHS) norm
is induced on the space of Borel measures. Using this norm and a met-
ric on the space of diffeomorphisms the template estimation problem is
possed as a minimum mean squared error estimation problem. An ef-
ficient alternating conjugate gradient decent algorithm is derived and
results exemplifying the methodology are presented.

1 Introduction

A major focus of computational anatomy has been the development of image
mapping algorithms [3] that can map and transform a single brain atlas on to
a population. Most digital brain atlases currently being used in computational
anatomy are based on a single subjects anatomy. Although these atlases provide
a standard coordinate system, and form the template in deformable template
setting, they are limited because a single anatomy cannot faithfully represent
the complex structural variability evident in a population.

Construction of atlases is a key procedure in population based medical im-
age analysis. In the paradigm of computational anatomy the atlas serves as
a deformable template[4]. The deformable template can project detailed atlas
data such as structural, biochemical, functional as well as vascular information
on to the individual or an entire population of brain images. The transforma-
tions encode the variability of the population under study. Statistical analysis
of the transformations can be used to characterize different populations [5]. For
a detailed review of deformable atlas mapping and the general framework for
computational anatomy see [3].



1.1 Unbiased Large Deformation Atlas Estimation via minimum
mean squared error estimation.

For representations in which the underlying geometry is parameterized as a
Euclidean vector space, training data can be represented as a set of vectors
x1, · · · , xN in a vector space V . In a vector space, with addition and scalar
multiplication well defined, an average representation of the training set can be
computed as the linear average µ = 1

N

∑N
i xi. When studying statistical geo-

metric properties of anatomy, the transformations representing the variability of
a population are parameterized via diffeomorphic transformations of the ambi-
ent space. In the group of diffeomorphisms, the addition of two diffeomorphisms
is not generally a diffeomorphism and, hence, a template based on linear averag-
ing of transformations is not well defined. Fréchet [6] extended the notation of
averaging to general metric spaces via minimum mean squared error estimation.
For a general metric space M , with a distance d : M × M → R, the intrinsic
mean for a collection of data points xi ∈ M can be defined as the minimizer of
the sum-of-squared distances to each of the data points. That is

µ = arg min
x

1
N

N∑
i

d(x, xi)2 .

This approach, combined with the mathematical metric theory of diffeomor-
phisms developed in [7, 8] , represents the core of the atlas estimation methodol-
ogy. This approach has been applied previously to a sets of images, and can be
stated as the following estimation problem. Given a metric, D : S × S → R on
a group of transformations, along with an image dissimilarity metric E(I1, I2),
we wish to find the image Î such that

{ϕ̂i, Î} = arg min
ϕi,I

,
1
N

N∑
i

E(Ii ◦ ϕi, I)2 + D(e, ϕi)2

where e is the identity transformation.
In this paper we follow the same basic paradigm for unlabeled point sets and

surfaces. The paper is organized as follows: In section 2, following [9, ?], geo-
metric measure theory is used to define dissimilarity metrics for unlabel point
sets and surfaces. For completeness in section 4 the metric on the space of def-
fiomorphisims is reviewed. In section 5 the template estimation problem given a
collection of unlabeled point sets and surfaces is formulated. Finally in sections
?? 7 implementation details and results are presented.

2 Hilbert norms for dissimilarity metric for point set and
surface data

2.1 Dissimilarity metric for unlabeled point sets and surface data

We follow the novel framework proposed in [9] for measuring dissimilarities be-
tween unlabeled point sets. Given a set of unlabeled landmark points {xp}n

p=1 in



Rd, a vector space structure is induced on the space of all such unlabeled point
sets by modeling them as a weighted sum of Dirac measures centered at each of
the points that is:

∑n
p=1 apδxp . The weights ap ∈ R, such that

∑
p ap = 1, are

user-defined and capture the relative confidence associated with each landmark
(without such information, one should simply set ap = 1

n for each index p). The
space of Dirac measures forms a vector space where point sets can be added and
subtracted. A Dissimilarity metric is induced by a Reproducing Kernel Hilbert
norm based on a user-defined kernel K : Rd × Rd → R. The scalar product of
two Dirac measures δx, δy is defined by the rule 〈δx, δy〉K = K(x, y), which leads
to the following expression for the norm of the sum of Diracs:∥∥∥∥∥

n∑
p=1

apδxp

∥∥∥∥∥
2

K

=
n∑

p=1

n∑
p′=1

apap′K(xp, xp′). (1)

Dissimilarity between two points sets is given by the norm of the difference of
the corresponding sums of Diracs:∥∥∥∥∥

n∑
p=1

apδxp −
m∑

q=1

bqδyq

∥∥∥∥∥
2

K

=
n∑

p=1

n∑
p′=1

apap′K(xp, xp′)

− 2
n∑

p=1

m∑
q=1

apbqK(xp, yq) +
m∑

q=1

m∑
q′=1

bqbq′K(yq, yq′). (2)

These formulas arise naturally as the expression of the dual norm of the func-
tional Hilbert space corresponding to the reproducing kernel K. We refer to [9]
for all the mathematical details. In this setting, this dual norm is also defined,
by mathematical completion with respect to the norm defined by Eqn. 1, for
a larger class which include all signed Borel measures of Rd. The K-norm of a
measure µ is given by

‖µ‖2
K =

∫∫
K(x, y)dµ(x)dµ(y). (3)

The action of a deformation map ϕ : Rd → Rd on a Borel measure µ satisfies
ϕµ(A) = µ(ϕ−1(A)) for any subset A ⊂ Rd. When µ is a sum of Dirac masses,
it consists in moving all positions of points by ϕ, leaving the weights unchanged:
ϕ
(∑n

p=1 apδxp

)
=
∑n

p=1 apδϕ(xp).

3 Hilbert norms for dissimilarity metric between surfaces

In [10], an extension of the above described method has been proposed to mea-
sure dissimilarities between oriented surfaces embedded in R3. We recall its main
point here. A convenient mathematical model of oriented m-dimensional sub-
manifolds in Rd with m < d, is the concept of ”current”, which comes from Geo-
metric Measure Theory [11, 12]. Currents are generalizations of Schwartz distri-
butions, where smooth test functions are replaced by smooth m-differential forms



in Rd, i.e. smooth maps ω that associate to each point x ∈ Rd a skew-symmetric
m-multilinear form, or m-covector, ω(x). Hence currents can be viewed as gen-
eralized m-forms, or as linear functionals acting on m-forms. The current as-
sociated to an oriented m-submanifold S is the linear functional [S] defined by
[S](ω) =

∫
S

ω. When S is an oriented surface in R3, [S] is nothing but the vector
valued Borel measure corresponding to the collection of unit-normal vectors to
S, distributed with density equal to the element of surface area ds and can be
written as η(y)ds(y), where η(y) is the normal and ds(y) is the surface measure
at point y ∈ S.

In this setting, similarly to what was described above for scalar measures,
one can introduce a matrix-valued kernel K(x, y) and define the K-norm of [S]
by ∥∥∥[S]

∥∥∥2

K
=
∫

S

∫
S

η(y)∗K(x, y)η(x) ds(x)ds(y). (4)

In practice we use kernels of the type k(x, y)I where I is a 3× 3 identity metrix
and k(x, y) a scalar kernal of the Gaussian or the Cauchy type. Then the inte-
grand in Eqn. 4 becomes K(x, y) 〈η(x), η(y)〉. When S is a triangular mesh, a
good approximation of this formula can be computed by replacing [S] by a sum
of vector-valued Dirac masses:∥∥∥∥∥∥

nf∑
f=1

η(f)δc(f)

∥∥∥∥∥∥
2

K

=
nf∑

f=1

nf∑
f ′=1

η(f ′)∗ K(c(f), c(f ′)) η(f), (5)

where nf is the number of faces of the triangulation, and for any face f with
vertices x, y, z, c(f) is its center and η(f) its non-normalized normal vector with
the length capturing the area of each triangular patch:

c(f) =
1
3
(x + y + z), η(f) =

1
2
(y − x)× (z − x). (6)

The sum
∑nf

f=1 η(f)δc(f) does not correspond to a surface, but it is close to [S]
in the space of currents.

One can mathematically define an action of deformation maps ϕ : R3 → R3

on currents, called push-forward, which is consistent to the intuitive action on
subset of R3. This means that for a surface S, the push-forward ϕ[S] is exactly
the current associated to the deformed surface: ϕ[S] = [ϕ(S)]. For a sum of
Diracs, the push-forward action becomes:

ϕ

 nf∑
f=1

η(f)δc(f)

 =
nf∑

f=1

|dϕ|−1(dϕ∗)−1η(f)δϕ(c(f)), (7)

where dϕ is the Jacobian matrix of ϕ and |dϕ| its determinant, evaluated at
c(f).



4 Diffeomorphic metric mapping

Having defined metrics between two unlabeled point sets and surfaces for com-
pleteness we briefly review metric on the space of Diffeomorphic transformations.
To generate dense deformation maps in Rd we use the large deformation frame-
work [8] which consist of integrating time-dependent velocity fields in Rd. The
corresponding flow equation is given by

∂ϕv(t, x)
∂t

= v(t, ϕv(t, x)), (8)

with ϕ(0, x) = x, and we define ϕ(x) := ϕv(1, x), which is a one-to-one map in
Rd (diffeomorphism). To ensure regularity of these maps, an energy functional
is defined on velocity fields:

‖v(t, ·)‖2
V =

∫
Rd

〈Lv(t, x), Lv(t, x〉 dx, (9)

where L is a differential operator acting on vector fields. Minimality constraints
on this energy are included in the matching variational problems. Moreover, this
energy also defines a distance in the group of diffeomorphisms:

D2(e, ϕ) = inf
v,ϕv(1,·)=ϕ

∫ 1

0

‖Lv(t)‖2
V dt. (10)

As was noticed in [13, 9, 10], the practical use of such models is simplified, in the
context of point-based matching methods, by the fact that optimal vector fields
take the form:

v(t, x) =
n∑

p=1

G(xp(t), x)αp(t), (11)

where xp(t) = ϕv(t, xp) are the trajectories of the control points xp, G(x, y)
is the Green kernel of operator L∗L, and αp(t) ∈ Rd are unknown variables
called momentum vectors. From 8 and 11, one derives the equations which link
trajectories and momentum vectors:

dxp

dt
(t) =

n∑
p1=1

G(xp1(t), xp(t))αp1(t). (12)

Hence computing momentum vectors from trajectories requires to solve T linear
systems, where T is the number of time discretization steps, while computing
trajectories from momentum vectors requires to solve a first order ODE, which
can be preformed at a lower cost. Therefore, the choice of momentum vectors
as variables of minimization is preferred in practice. The reformulation of the
energy functional in terms of xp(t) and αp(t) becomes:

‖v(t, ·)‖2
V =

n∑
p=1

〈
dxp

dt
(t), αp(t)

〉
. (13)



5 Atlas construction for points sets and surfaces

Having defined the metrics on unlabeled point sets, surfaces and diffeomorphic
transformations we are ready to apply the recipe of minimum mean squared
estimation to the atlas construction problem.

5.1 Formulation for point sets

Let {xip}, 1 ≤ i ≤ N , 1 ≤ p ≤ ni be N unlabeled point sets in Rd, and
aip ∈ R the associated weights (e.g. aip = 1

ni
). Let µi =

∑ni

p=1 aipδxip
be the

borel measure representation of each of the point sets. The template estimation
is now defined as the following minimum mean squared estimation problem:

{ϕ̂i, µ̂} = arg min
ϕi,µ

N∑
i=1

{∥∥∥µ− ϕiµi

∥∥∥2

K
+ D2(e, ϕi)

}
, (14)

where D(e, ϕi) is the metric on the space of diffeomorphic mappings ϕi, described
in section 4. This problem is simplified by the following remark: for fixed ϕi, the
Borel measure µ̂ which minimizes 14 is the average of ϕiµi:

µ̂ =
1
N

N∑
i=1

ϕiµi =
1
N

N∑
i=1

ni∑
p=1

aipδϕi(xip). (15)

It is a sum of Dirac masses associated to the union of all points ϕi(xip). Conse-
quently, minimization of 14 can be done with respect to deformation maps ϕi(t)
only:

{ϕ̂i} = arg min
ϕi

N∑
i=1


∥∥∥∥∥
(

1
N

N∑
i=1

ϕiµi

)
− ϕiµi

∥∥∥∥∥
2

K

+ D2(e, ϕi)

 . (16)

5.2 Formulation for surfaces

Let Si be N surfaces in R3. Let [Si] denote either the current corresponding
to Si, or its approximation by a finite sum of vectorial Diracs. Note again that
this sum is itself a current, and therefore the following is well defined for the
continuous problem or its discretization. Using the metric defined on currents
and diffeomorphic mappings in sections 2 and 4, the minimum mean squared
error template estimation problem can now be formulated as:

{ϕ̂i, ˆ[S]} = arg min
ϕi,[S]

N∑
i=1

{∥∥∥[S]− ϕi[Si]
∥∥∥2

K
+ D2(e, ϕi)

}
. (17)

For fixed ϕi, the minimizer [S] of 17 is the average of ϕi[Si]: ˆ[S] = 1
N

∑N
i=1 ϕi[Si].

This average [S] is a current corresponding not to a single surface, but to the



union of the deformed surfaces ϕi(Si), each weighted by 1
N . One can think about

this as a sort of fuzzy surface and the exact interpretation of this is beyond the
scope of this paper. However since it is a well defined current, the registration
process of all the surfaces to the average current is well defined. The reformula-
tion of 17, in terms of minimization with respect to the diffeomorphisms ϕi only,
becomes:

{ϕ̂i} = arg min
ϕi

N∑
i=1


∥∥∥∥∥
(

1
N

N∑
i=1

ϕi[Si]

)
− ϕi[Si]

∥∥∥∥∥
2

K

+ D2(e, ϕi)

 . (18)

6 Implementation

We now describe in detail an implementation for performing minimizations of 16
and 18 using an alternating algorithm which estimates, on a per iteration basis,
each ϕi in turn, analogous to the method described in [2] for images. At each
step, minimization is performed with respect to ϕi alone, the other deformation
maps ϕj , j 6= i, being fixed, which transforms the whole averaging process into a
sequence of source-to-target matchings, for which the algorithms described in [9]
and [10] can be directly applied. More precisely, at each step of this sequence
of matchings, we perform minimization of a functional involving an energy term
and an end-point matching term:

J
(
{αip(t)}t∈[0,1]

1≤p≤ni

)
=
∫ 1

0

ni∑
p=1

〈
dxip

dt
(t), αip(t)

〉
dt + A({xip(1)}). (19)

Assuming that G is a function of the squared distance: G(x, y) = G(|x − y|2),
the gradient becomes

∇Jip(t) = 2αip(t) + βip(t), (20)

where βip(t) is solution to the following ODE:

dβip

dt
(t) = −2

n∑
p1=1

G′(|xip1(t)− xip(t)|2)
{
〈αip(t), βip1(t)〉+

〈αip1(t), βip(t)〉 + 2 〈αip(t), αip1(t)〉
}

(xip(t)− xip1(t)), (21)

with βip(1) = ∇xip(1)A.
The matching term A, in the case of point sets, is given by:

A({xip(1)}) = ‖ϕiµi − µ̂‖2
K =

ni∑
p=1

ni∑
p′=1

aipaip′K(xip(1), xip′(1))

− 2
ni∑

p=1

m∑
q=1

aipbqK(xip(1), yq) +
m∑

q=1

m∑
q′=1

bqbq′K(yq, yq′), (22)



where points yq and weights bq denote the average template µ̂ as follows:

m∑
q=1

bqδyq
:= µ̂ =

1
N

N∑
j=1

nj∑
p=1

ajpδϕj(xjp). (23)

The gradient of this term, required for the computation of Eqn. 20, becomes:

∇xip(1)A = 2aip

 n∑
p′=1

aip′∇xip(1)K(xip(1), xip′(1))−

m∑
q=1

bq∇xip(1)K(xip(1), yq)

)
. (24)

We now follow the same recipe in the case of surfaces. Denote
∑nfi

fi=1 η(fi)δc(fi)

the sum of vectorial Diracs approximating each of the triangular meshs given by
moving all vertices xip of Si under the deformation map ϕi, and

m∑
g=1

η(g)δc(g) :=
1
N

N∑
i=1

nfi∑
fi=1

η(fi)δc(fi) (25)

the averaged template. The matching term becomes:

A({xip(1)}) =
nfi∑

fi=1

nfi∑
f ′

i=1

η(fi)∗K(c(fi), c(f ′i))η(f ′i)

− 2
nfi∑

fi=1

m∑
g=1

η(fi)∗K(c(fi), c(g))η(g) +
m∑

g=1

m∑
g′=1

η(g)∗K(c(g), c(g′))η(g′). (26)

We recall that xip(1) = ϕi(xip) where xip are the vertices of the triangular mesh
Si. Centers and normal vectors are computed from the vertices using formulas
in Eqn. 6. Finally, we derive the gradient of term A in this case. If xip(1) is a
vertex of face fi, the contribution of fi to the gradient at xip(1) is given by

ni∑
f ′

i=1

e(fi)×K(c(f ′i), c(fi))η(f ′i)−
m∑

g=1

e(fi)×K(c(g), c(fi))η(g)

+
2
3

ni∑
f ′

i=1

∂K(c(fi), c(f ′i))
∂c(fi)

η(fi)−
2
3

m∑
g=1

∂K(c(fi), c(g))
∂c(fi)

η(fi), (27)

and gradient ∇xip(1)A is obtained by summing all contributions of faces fi which
share xip(1) as a vertex.

Having computed the gradients, a conjugate gradient method is used to per-
form minimization of functional J on variables αp(t) evaluated on finite number



Fig. 1. Experiment with synthetic 2d data. Left column: the two unlabeled point sets;
middle: deformed point sets and deformation of a grid; right: averaged template, com-
posed of the two deformed point sets.

of time steps regularly spaced between 0 and 1, and a centered corrector scheme
is applied to solve ODE 21, required for each computation of gradient 20. To
speed up computations when a large number of control points is involved, we
use multipole[?] methods for convolutions with kernels G and K.

7 Results

We now present results form applying the algorithms described previously. Fig-
ure 1 shows a synthetic experiment of averaging two point sets in R2, which are
drawn from a circle and another oblong closed curve(shown in the left collum).
Shown in the middle collum are the results of applying the estimated deforma-
tion to the two data sets. Shown in the right collum is the average estimated
template.

Figure 2 shows a example of averaging three segmented surfaces of hippocam-
pus in R3. Shown in the top row are three surfaces of hippocampi from three
different subjects. The middle row shows the estimated deformation applied to
each of the surfaces. Shown at the bottom is the estimated template.

8 Discussion
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