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Abstract. We theoretically investigate the localization of an expanding Bose-
Einstein condensate with repulsive atom-atom interactions in a disordered
potential. We focus on the regime where the initial inter-atomic interactions
dominate over the kinetic energy and the disorder. At equilibrium in a trapping
potential and for the considered small disorder, the condensate shows a Thomas-
Fermi shape modified by the disorder. When the condensate is released from
the trap, a strong suppression of the expansion is obtained in contrast to the
situation in a periodic potential with similar characteristics. This effect crucially
depends on both the momentum distribution of the expanding BEC and the
strength of the disorder. For strong disorder as in the experiments reported
by D. Clément et al., Phys. Rev. Lett. 95, 170409 (2005) and C. Fort et

al., Phys. Rev. Lett. 95, 170410 (2005), the suppression of the expansion
results from the fragmentation of the core of the condensate and from classical
reflections from large modulations of the disordered potential in the tails of the
condensate. We identify the corresponding disorder-induced trapping scenario for
which large atom-atom interactions and strong reflections from single modulations
of the disordered potential play central roles. For weak disorder, the suppression
of the expansion signals the onset of Anderson localization, which is due to
multiple scattering from the modulations of the disordered potential. We compute
analytically the localized density profile of the condensate and show that the
localization crucially depends on the correlation function of the disorder. In
particular, for speckle potentials the long-range correlations induce an effective
mobility edge in 1D finite systems. Numerical calculations performed in the mean-
field approximation support our analysis for both strong and weak disorder.
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1. Introduction

1.1. Disorder and ultracold atomic gases

Understanding the effect of disorder in physical systems is of fundamental importance
in various domains, such as mechanics, wave physics, solid-state physics, quantum
fluid physics, or atomic physics. Although in many situations this effect is weak
and can be ignored in first approximation, it is not always so. Strikingly enough,
even arbitrary weak disorder can dramatically change the properties of physical
systems and result in a variety of non-intuitive phenomena. Many of them are not
yet fully understood. Examples in classical systems include Brownian motion [1],
percolation [2], and magnetism in dirty spin systems [3, 4, 5, 6, 7]. In quantum
systems the effects of disorder can be particularly strong owing to the complicated
interplay of interference, particle-particle interactions and disorder. The paradigmatic
example is (strong) Anderson localization of non-interacting particles [8, 9, 10, 11].
Other interesting effects of disorder in quantum systems include weak localization
and coherent back-scattering [12], disorder-driven quantum phase transitions and the
corresponding Bose glass [13, 14, 15] and spin glass [16, 17] phases.

Anderson localization (AL) signals out in two equivalent ways, either as the
suppression of the transport of matterwaves in disordered media, or as an exponential
decay at large distances of the envelop of the eigenstates of free-particles in a disordered
potential [11]. Both properties strongly contrast with the case of periodic potentials, in
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which transport is free and all eigenstates extend over the full system as demonstrated
by the Bloch theorem [18]. Anderson localization is due to a destructive interference
of particles (waves) which multiply scatter from the modulations of a disordered
potential. It is thus expected to occur when interferences play a central role in
the multiple scattering process [11]. In three dimensions, it requires the particle
wavelength be larger than the scattering mean free path l as pointed out by Ioffe and
Regel [19]. One then finds a mobility edge at momentum k = 1/l, below which AL can
appear. In one and two dimensions all single-particle quantum states are predicted
to be localized [20, 21, 22], although for certain types of disorder one has an effective
mobility edge in the Born approximation [23, 24, 25].

Ultracold atomic gases are now widely considered to revisit standard problems of
condensed matter physics under unique control possibilities. Dilute atomic Bose-
Einstein condensates (BEC) [26, 27, 28, 29] and degenerate Fermi gases (DFG)
[30, 31, 32, 33, 34] are produced routinely taking advantage of the recent progress in
cooling and trapping of neutral atoms [35, 36, 37]. In addition, controlled potentials
with no defects, for instance periodic potentials (optical lattices), can be designed
in a large variety of geometries [38]. In periodic optical lattices, transport has been
widely investigated, showing lattice-induced reduction of mobility [39, 40, 41] and
interaction-induced self-trapping [42, 43]. Controlled disordered potentials can also be
produced optically as demonstrated in several recent experiments [44, 45, 46, 47, 48],
for instance using speckle patterns [49, 50]. Other techniques can be employed to
produce controlled disorder such as the use of magnetic traps designed on atomic
chips with rough wires [51, 52, 53, 54, 55], the use of localized impurity atoms [56, 57],
or the use of radio-frequency fields [58]. However, the use of speckle potentials has
unprecedented advantages from both practical and fundamental points of view. First,
they are created using simple optical devices and their statistical properties are very
well known [59, 60]. Second, they have finite-range correlations which offers richer
situations than theoretical δ-correlated potentials (i.e. uncorrelated disorder) and
the correlation functions can be designed almost at will by changing the geometry of
the optical devices [59, 60]. Finally, both the amplitude and the correlation length
(down to fractions of micrometers) can be controlled accurately and calibrated using
ultracold atoms [48].

Within the context of ultracold gases, important theoretical efforts have been
devoted to disordered optical lattices which mimic the Hubbard model [14, 61, 62,
63, 64]. For bosons, quantum phase transitions from superfluid to Bose glass and
Mott insulator phases have been predicted [65, 66] and evidence of the Bose glass has
been obtained experimentally [67]. With Fermi-Bose mixtures, the phase diagram is
even richer and include the formation of a Fermi-glass, a quantum percolating phase
and a spin glass [68, 69, 70]. Effects of disorder in Bose gases at equilibrium without
optical lattice have been addressed in connection with the behavior of the BEC phase
transition [71, 72], the quantum states of Bose gases [73, 74, 75, 76], the localization
of Bogolyubov quasi-particles [77, 78], the dynamics of time-of-flight imaging of
disordered BECs [79, 80], and random-field-induced order in two-component Bose
gases [81, 82].

1.2. Scope and main results of the paper

The dynamics of BECs in disordered (or quasi-disordered) potentials is also attracting
significant attention in a quest for observing Anderson localization in non-interacting
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BECs [56, 83, 84] or in BECs with repulsive interactions [25, 85, 86, 87]. Recent
experiments have demonstrated the strong suppression of transport in expanding
BECs in the presence of optical speckle potentials [45, 46, 48], but this effect is not
related to Anderson localization [45].

In this paper, we theoretically and numerically analyze the expansion of an
interacting one-dimensional (1D) BEC in a disordered potential. We focus on a regime
where the inter-atomic interactions initially exceed the kinetic energy (Thomas-Fermi
regime), a situation that significantly differs from the textbook Anderson localization
problem but which is relevant for almost all current experiments with disordered BECs
[45, 46, 47, 48, 79, 80]. We distinguish two regimes that we name strong disorder and
weak disorder respectively.

The case of strong disorder corresponds to the situation of the experiments of
Refs. [45, 46, 48] where the interaction energy in the center of the BEC remains large
during the expansion and where the reflection coefficient from a single modulation of
the disordered potential is of the order of unity. In this case, our numerical results
reproduce the strong suppression of the transport of the BEC as observed in the
experiments of Refs. [45, 46, 48]. We analyze the scenario of disorder-induced trapping

proposed in Ref. [45] in which two regions of the BEC are identified. The first region
corresponds to the center, where the trapping results from a competition between
the interactions and the disorder. The second region corresponds to the tails of the
BEC where almost free particles are multiply scattered from the modulations of the
disordered potential. There, localization is rather due to the competition between
the kinetic energy and the disordered potential but is ultimately due to the almost
total classical reflection of the matterwave from a single barrier. These two effects are
responsible for blurring Anderson localization effects [45, 46].

Weak disorder corresponds to a situation where the probability of large and
wide modulations of the disordered potential is small. In this case, we show that
Anderson localization does occur as a result of multiple quantum scattering from
the modulations of the disordered potential. Let us briefly describe the scenario
first proposed in Ref. [25]. Initially, the repulsive interactions are important as
compared to the kinetic energy and to the potential energy associated to the disordered
potential. Then, the interactions induce the expansion of the BEC and determine the
momentum distribution of the BEC. After a time typically equal to the inverse of
the initial trapping frequency, the interactions vanish and the momentum distribution
reaches a steady state. Then, the BEC is a superposition of non-interacting waves
of momentum k. Each wave localizes with its own localization length Lloc(k). By
calculating analytically the superposition of the localized waves, we show that the
BEC can be exponentially localized or only show an algebraic decay depending on
the correlation function of the disordered potential. In particular, due to peculiar
long-range correlations, the BEC localizes exponentially in speckle potentials only if
ξin > σR, where ξin is the initial healing length of the BEC and σR is the correlation
length of the disorder.

1.3. Organization of the paper

The paper is organized as follows. In section 2, we review the properties of a BEC at
equilibrium in a combined harmonic plus disordered potential, in particular in the non-
trivial regime where the healing length of the BEC exceeds the correlation length of the
disordered potential. The next two sections deal with the expansion of an interacting
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BEC in a disordered potential. Section 3 is devoted to the case of strong disorder. We
reproduce and complete our previous results [45] which demonstrate the suppression
of the expansion of the BEC in a speckle potential with similar parameters as in the
experiments of Refs. [45, 46, 48]. The scenario of disorder-induced trapping is analyzed
and characteristic properties of the BEC trapped by the disorder are calculated
analytically and compared to numerical results. In particular we derive an analytic
expression for the central density of the BEC trapped by disorder which happens to
be characteristic of the disorder-induced trapping phenomenon and we show that the
ultimate suppression of the expansion of the BEC is due to classical reflections from
the large modulations of the disordered potential. We also compare these findings
with the case of a BEC expanding in a periodic potential with similar characteristics
as the disordered potential. Section 4 is devoted to the case of weak disorder. We
show that Anderson localization can show up in an expanding, interacting BEC under
appropriate conditions that are clarified. We show that the localization properties
of the density profile crucially depend on both the momentum distribution of the
expanding BEC and the correlation function of the disordered potential. In particular,
in the case of a speckle potential, we find a 1D effective mobility edge. We calculate
analytically the expected localization lengths and compare our findings to the results
of numerical calculations. Finally in section 5, we summarize our findings and discuss
expected impacts of our work on experiments on disordered BECs.

2. Condensates at equilibrium in a combined harmonic trap plus

disordered potential

2.1. Interacting Bose-Einstein condensates in a 1D inhomogeneous potential

We consider a low-temperature 1D Bose gas with short-range atom-atom interactions
gδ(z) where g is the 1D coupling constant. The Bose gas is assumed to be subjected to
(i) a harmonic potential of frequency ω and (ii) an additional inhomogeneous potential
V (z). In a finite system as considered in this work, assuming weak interactions, i.e.

n ≫ mg/~2 where n is the average density and m the atomic mass [88, 89], the Bose
gas will form a Bose-Einstein condensate even in low-dimensional (e.g. 1D) geometries
[89]. Hence, we can treat the BEC within the mean-field approach [28, 29] using the
Gross-Pitaevskii equation (GPE):

i~∂tψ(z, t) =

[−~
2∂2

z

2m
+
mω2z2

2
+ V (z) (1)

+g|ψ(z, t)|2 − µ

]
ψ(z, t),

where µ is the BEC chemical potential.
In the following, we investigate the situations where the additional potential

reads V (z) = VRv(z) with v(z) being either a disordered or a periodic function with
vanishing average and unity standard deviation. Therefore, we have 〈V (z)〉 = 0 and√
〈V (z)2〉 − 〈V (z)〉2 = |VR|. The sign of VR depends on the definition of the function

v(z) and on the kind of potential one considers. For instance, in optical speckle
potentials, the quantity v(z)+ 1 is defined to be positive and VR > 0 for blue-detuned
laser light (case of the experiments of Refs. [45, 48, 79]) while VR < 0 for red-detuned
laser light (case of the experiments of Refs. [44, 46, 80]). For a sine-periodic potential,
using VR < 0 or VR > 0 does not change the physics. See Appendix A for details.
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2.2. The Bose-Einstein condensate wavefunction

Here, we briefly discuss the influence of an inhomogeneous potential on the BEC at
equilibrium in the harmonic trap. We assume that the amplitude of the disordered
potential is smaller than the chemical potential of the BEC (VR ≪ µ) and that µ≫ ~ω.
This question has been investigated in details in Ref. [74]. Here, we only outline the
results.

At equilibrium, the BEC wavefunction is real (up to an unrelevant uniform phase)
and is the solution of Eq. (1) with ∂tψ = 0:

µψ(z) =

[−~
2∂2

z

2m
+
mω2z2

2
+ V (z) + g|ψ(z)|2

]
ψ(z). (2)

For VR = 0 and µ ≫ ~ω, the kinetic term can be neglected (Thomas-Fermi regime
[29]) and the BEC wavefunction is ψ0(z) =

√
n0(z) with

n0(z) =
µ−mω2z2/2

g
. (3)

for z such that µ > mω2z2/2 and n0(z) = 0 elsewhere. The density profile n0(z) is
an inverted parabola of length LTF =

√
2µ/mω2 much larger than the healing length

ξin = ~/
√

4mµ [29] (notice that this definition is different from the one of Ref. [74],
where we used ξ =

√
2ξin).

In the presence of an inhomogeneous potential (VR 6= 0), the parabolic shape of
the density profile is perturbed. In general, the kinetic term cannot be neglected any
longer. In particular, when ξin & σR, the short-range modulations of the potential
V (z) induce short-range modulations of the BEC wavefunction which contribute
significantly in Eq. (2) through the kinetic term. In order to take into account the
effect of the inhomogeneous potential, we use a perturbative approach along the lines
of Ref. [74]: we write ψ(z) = ψ0(z)+ δψ(z) with δψ ≪ ψ0. The first order term of the
perturbation series of Eq. (2) is governed by the equation

− (ξ0
in
)2∂2

z (δψ) + δψ = −V (z)ψ0

2gn0

, (4)

where ξ0
in

= ξin/
√

1 − (z/LTF)2 is the local healing length. Since LTF ≫ (ξin, σR), it is
legitimate to use the local density approximation (LDA) [29], i.e. in a region smaller
than LTF, the quantity n0 can be considered as uniform. In this approximation,
the solution of Eq. (4) is easily found by turning to the Fourier space. We find

δψ(q) = −Ṽ (q)ψ0/2gn0 where

Ṽ (q) =
V (q)

1 + (qξ0
in
)2

(5)

and finally,

ψ(z) ≃ ψ0(z)

[
1 − Ṽ (z)

2gn0(z)

]
, (6)

or equivalently,

n(z) ≃ n0(z) − Ṽ (z)/g. (7)

This solution justifies a posteriori the use of a perturbative approach for ṼR ≪ µ, where

ṼR =

√
〈Ṽ (z)2〉 − 〈Ṽ (z)〉2 is the standard deviation of the potential Ṽ (z). Notice that

the equality 〈Ṽ (z)〉 = 0 directly follows from Eq. (5).
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An important consequence of the solutions (6),(7) is that the BEC wavefunction
is only weakly perturbed by the inhomogeneous potential V (z) if ṼR ≪ µ. It follows

from Eq. (5) that for ξin ≪ σR, Ṽ (z) ≃ V (z) and the relative inhomogeneities of the
BEC density are δn/n ∼ VR/µ ≪ 1. For ξin & σR, the relative inhomogeneities are

even smaller since all Fourier components of Ṽ are smaller than those of V . More
precisely, the effective potential Ṽ is roughly obtained from V by suppressing the
Fourier components with a wavelength smaller than the healing length. In other words,
the BEC density does not follow the modulations of the bare disordered potential V (z)
but actually follows the smoother modulations of the smoothed disordered potential

Ṽ (z).
Therefore, an interacting BEC at equilibrium in a disordered potential is not

localized in the sense of Anderson. One may wonder whether this conclusion still
holds for stronger disorder or weaker interactions, where the meanfield approach can
break down. This question has been addressed in Ref. [75]. It turns out that for
very weak interactions, the Bose gas forms a so-called Lifshits glass which corresponds
to a Fock state of various localized single-particle states. These states belong to the
Lifshits tail of the non-interacting spectrum and are strongly trapped. Therefore,
Anderson localization can hardly be observed unambiguously in this case. It seems
more favorable to find evidences of Anderson localization in transport experiments of
interacting BECs, rather than studying BECs at equilibrium in a disordered trap.

3. Strong disorder: Suppression of the expansion of a Bose-Einstein

condensate in a speckle potential and disorder-induced trapping scenario

In this section, we investigate the transport properties of a coherent BEC in a
disordered potential in the situation of the experiments of Refs. [45, 46, 47, 48]. We
thus assume (i) that the chemical potential of the BEC is larger than the depth of the
disordered potential (µ > VR) and (ii) that the correlation length of the disordered
potential is much larger than the healing length of the BEC and much smaller than
the (initial) size of the BEC, ξin ≪ σR ≪ LTF. We present numerical results which
reproduce the suppression of the transport of the BEC in a speckle potential, observed
in Refs. [45, 46, 48] and discuss a scenario to explain this phenomenon. In addition,
we compare the observed behavior to the case of a periodic potential with similar
characteristics.

3.1. Expansion of an interacting BEC in a speckle potential

In order to induce transport, we start from a BEC at equilibrium in the harmonic and
disordered potentials (see Sec. 2). At time t = 0, we suddenly switch off the trapping
harmonic potential, keeping the disordered potential. This process is similar to the
one used in Refs [45, 46, 48, 85]. The evolution of the BEC is thus governed by the
GPE (1) with ω = 0 and the initial condition corresponds to the TF wavefunction
discussed in Sec. 2.2.

The time evolution of the root mean square (rms) size of the BEC, ∆z(t) =√
〈z2〉 − 〈z〉2, as obtained from the numerical integration of the time-dependent

GPE (1), is plotted in Fig. 1 for several amplitudes VR of the disordered potential.
In the absence of disorder, the interacting BEC expands self-similarly as predicted by
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Figure 1. (color online) Time-evolution of the rms-size of the BEC wavefunction
evolving in the disordered potential V for several values of the amplitude VR.
The (black) dashed line is the theoretical prediction of the scaling theory (10)
with a vanishing disordered potential. Here, we have used σR = 0.012LTF and
ξin = 5.7 × 10−4LTF.

the scaling approach [90, 91]:

ψ(z, t) ≃ ψ[z/b(t), 0]√
b(t)

exp

(
i
mz2ḃ(t)

2~b(t)

)
(8)

where b(t) is the scaling parameter which is governed by the equation

b̈(t) = ω2/b2(t) (9)

with the initial conditions b(t = 0) = 1 and ḃ(t = 0) = 0. Integrating these equations,
we find

√
b(t)(b(t) − 1) + ln[

√
b(t) +

√
b(t) − 1] =

√
2ωt, (10)

which asymptotically reduces to a linear expansion at large time, b(t) ∼
√

2ωt. The
numerical calculations agree with this expression as shown in Fig. 1.

The situation is significantly different in the presence of disorder. In this case, the
initial BEC wavefunction is the usual Thomas-Fermi inverted parabola perturbed by
the disordered potential [74]. For t . 1/ω, the scaling form (8) is still a good solution of
the GPE and, according to the scaling theory [90, 91] the BEC wavefunction expands.
For larger times and small amplitudes of the disordered potential (VR . 0.1µ), the
effect of disorder on the expansion observed in the numerical calculations is small and
the BEC expands by about one order of magnitude for ωτ = 10. For larger amplitudes
of the disorder (VR & 0.15µ), the expansion of the BEC stops after an initial expansion
stage described above. This effect signals the localization of the BEC wavefunction
due to the presence of disorder.

Important information can be obtained from density profiles of the localized BEC.
For instance, density profiles corresponding to a single evolution are plotted at two
different times in Fig. 2. From these, it appears that the localized BEC is made of
two distinct parts: a static dense core and fluctuating dilute tails (see also Fig.3). In
particular, the small fluctuations of ∆z observed in Fig. 1 are due to the contribution
of the tails of the BEC that still evolve while the core of the wavefunction is localized
(see section 3.2).
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Figure 2. (color online) Density profiles of the BEC for VR = 0.2µ, σR =
0.012LTF and ξin = 5.7 × 10−4LTF (solid red lines) for two different values of
the expansion time τ and expected Thomas-Fermi profiles in the absence of a
disordered potential (dashed green lines). We also show the disordered potential
normalized so as to be homogeneous to a density (V/g; dotted blue line).

It is worth noticing that the BEC expansion stops for amplitudes of disorder
significantly smaller than the typical energy per particle in the initial BEC: VR < µ.
This suppression of transport is phenomenologically similar to what is expected from
Anderson localization [8, 9, 10]. Strictly speaking, Anderson localization relies on
the existence of localized single-particle eigenstates and on the subsequent absence of
diffusion [8]. However, we have stressed that the presence of predominant inter-atomic
interactions dramatically changes the picture [45]. On one hand, repulsive interactions
are expected to reduce the localization effect [74, 92]. During the initial expansion
of the BEC, the interaction energy greatly dominates over the kinetic energy in the
center of the BEC so that no Anderson-like localization effect is expected in this region.
On the other hand, although the particles in the tails are weakly interacting due to
the small density, the initial interactions determine their typical energy as the initial
expansion stage converts the interaction energy into kinetic energy. We will see that,
for strong disorder as considered here, the modulations of the disordered potential will
ultimately stop the expansion of the dilute tails, masking any Anderson-like effect (in
the case of weak disorder however, Anderson localization can be obtained in this region
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as discussed in Sec. 4). In the following, we detail the scenario of disorder-induced

trapping outlined above and first proposed in Ref. [45].

3.2. Scenario of disorder-induced trapping

The dynamics of the BEC in the disordered potential is governed by three different
forms of energy: (i) the potential energy associated to the disordered potential, (ii)
the interaction energy and (iii) the kinetic energy. It is thus useful to evaluate and
compare the kinetic and interaction energies to understand the behavior of the BEC
in the disordered potential. To this end, notice first that it follows from the initial
expansion of the BEC that the fast atoms populate the tails of the expanding BEC
while the slow atoms stay close to the center. In addition, notice that, except for very
small amplitudes of the disordered potential and subsequent long expansion times, the
density in the core of the BEC remains large whereas it drops to zero in the tails (see
Fig. 2). We thus distinguish two different regions of the BEC: (i) the core where the
density is large and the interaction energy is dominant and (ii) the tails where the
density is small and the kinetic energy dominates. The behavior of the BEC turns out
to be completely different in these two regions [45].

3.2.1. Quasi-static Thomas-Fermi profile in the core of the BEC - For the sake of
clarity, we define the core of the BEC as half the total size of the initial condensate:
−LTF/2 < z < LTF/2 and call

nc(t) =
1

LTF

∫ +LTF/2

−LTF/2

dz |ψ(z, t)|2, (11)

the average BEC density in the center. In particular, at time t = 0, due to the
parabolic envelope resulting from the harmonic trap, we find

nc(t = 0) =
11

12

µ

g
(12)

in the absence of disorder but also in the presence of a self-averaging disordered
potential‡.

During the initial expansion stage, the average density in the core, nc, slowly
decreases and the parabolic envelope disappears. Since the interaction energy
significantly exceeds the kinetic energy, we expect the local density |ψ(z, t)|2 to follow
almost adiabatically the instantaneous value of nc(t) approximately in the Thomas-
Fermi regime so that

|ψ(z, t)|2 ≃ nc(t) − V (z)/g. (13)

In order to check this prediction, we plot in Fig. 3a, the result of the numerical
integration of the GPE (1) for the density profile in the central region of the BEC
during the evolution in the disordered potential at two different times, together with
a plot of the analytical expression (13). In particular, two properties are of special
interest here. First, we observe that the time-dependent fluctuations of the density
profile are significantly smaller than the modulations of the disordered potential
V (z)/g. Second, the density profiles are in good agreement with Eq. (13). This

‡ In the context of disordered systems, a quantity is said to be ‘self-averaging’ when it verifies
the principle of ‘spatial ergodicity’. In other words, it means that the average over realizations of
the disordered potentials of a relevant quantity, F, equals the corresponding spatial average: i.e.

〈F 〉 ≃ 1

L

∫
L

0
dzF (z).
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Figure 3. (color online) Density profiles of the BEC during the evolution in the
disordered potential at different times for VR = 0.2µ in the core (a) and in the
tails (b) of the BEC. Both are magnifications of the plots of Fig. 2. The solid
(red online) and dashed (blue online) lines correspond respectively to the times
ωt = 10 and ωt = 20 of the same evolution and the dotted (purple online) line
corresponds to Eq. (13) with nc as a fitting parameter. Notice the different scales
in the two figures.

observation supports the scenario of an adiabatic decrease of the density in the center
of the BEC. The value of nc at the end of the expansion turns out to be characteristic
of this scenario. In the following, we show that nc can indeed be computed from the
statistical properties of the disordered potential.

The expansion of the core of the BEC in the disordered potential stops when
the condensate fragments, i.e. when the effective chemical potential in the center of
the BEC (µ = gnc) decreases down to the value of typically two large modulations
of the disordered potential. At this time, the energy per particle in the core of the
BEC becomes too small to over-pass the potential barriers and the core of the BEC
gets trapped between these large modulations. This scenario allows us to determine
the final value of the average density nc in the core of the BEC. Let us call Npeaks(V )
the number of maxima of the disordered potential in the central part of the BEC
(−LTF/2 < z < LTF/2) with an amplitude larger than a given value V and assume
that it can be computed from the statistical properties of the disordered potential.
The density in the center of the BEC after the trapping has occurred thus corresponds
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Figure 4. (color online) Average density nc in the core of the BEC trapped
by the disorder versus the amplitude of the disordered potential VR for different
values of the correlation length σR and comparison to Eq. (14). The horizontal
(red online) line corresponds to the saturation limit nc = 11µ/12g.

to the maximum value of nc below which two modulations of V in average are present
in the center of the BEC. This is simply computed by solving for Npeaks(V = ncg) = 2.
Although, this scheme is general, it appears clearer when applied to a case where
Npeaks(V ) can be explicitly computed. Let us now consider the case of a speckle
potential [59, 60] with VR > 0. It is shown in Appendix A [see Eq. (A.5)] that in this

case Npeaks(V ) ≃ α
(

LTF

σR

)
exp

[
−β V

VR

]
where α ≃ 0.30 and β ≃ 0.75. From this, we

easily find that the final density of the core of the BEC is nc ≃ 1

β

(
VR

g

)
ln
[

αLTF

2σR

]
. In

addition, we notice that the final density cannot exceed the initial density as resulting

from an expansion. Therefore Eq. (14) is valid only for 1

β

(
VR

g

)
ln
[

αLTF

2σR

]
. µ/g. In

the opposite situation, the BEC is already multiply fragmented at t = 0 and the final
density saturates at nc ≃ 11

12

µ
g [see Eq. (12)]. In summary, we expect that the average

density of the BEC trapped by the disorder is

nc ≃ min

{
1

β

(
VR

g

)
ln

[
αLTF

2σR

]
,
11µ

12g

}
. (14)

In order to check Eq. (14), we have extracted the averaged central density [see
Eq. (11)] from the wavefunctions ψ calculated numerically for several amplitudes VR

and correlation lengths σR of the disordered potential. In Fig. 4, we plot nc as a
function of VR for several σR together with the prediction (14). The results show that
Eq. (14) provides a good estimate of the final density nc in the core of the BEC.
In particular, for small amplitudes of the disorder, nc grows linearly with VR with a
coefficient in agreement with Eq. (14) up to about 10 %. For larger amplitudes of the
disorder, nc saturates below 11µ/12g as expected.

This behavior agrees with experimental results for a blue-detuned speckle
potential (VR > 0) [48]. It is worth noticing that our scenario is expected to apply also
to the case of a red-detuned speckle potential (VR < 0) as used in Ref. [46]. In this
case, the fragmentation occurs when µ = |VR| independently of the correlation length
of disorder (if ξin ≪ σR). Then, the fragmented BEC is trapped in the small wells of
the disordered potential with a typical size σR and with a central density nc ≃ |VR|/g
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(independent of σR). Instead, for a blue-detuned speckle potential as investigated
above, the BEC is trapped between large modulations that may be separated by a
distance much larger than σR. As a consequence the final density at the center is
expected to be significantly larger. This is confirmed by the numerical results of
Ref. [93].

3.2.2. Strong reflections in the tails of the BEC - The situation is completely
different in the tails of the BEC. Due to the small atomic density, the kinetic energy
now dominates over the interaction energy. The tails are populated by fast moving,
weakly interacting atoms that undergo multiple scattering from the modulations of
the disordered potential. Ultimately, the trapping of these atoms results from almost
total classical reflection on a single large modulation of the disordered potential with
an amplitude exceeding the typical energy of a single particle [45, 46]. This scenario
is supported by the density profiles plotted in Fig. 2 where one can observe a sharp
drop of the atomic density at the edges of the BEC (i.e. at positions zmin ≃ −7LTF

and zmax ≃ 8LTF in Fig. 2). Notice that significant drops correspond either (i)
to modulations of the disordered potential larger than the initial chemical potential
µ (e.g. at zmin ≃ −7LTF) or (ii) to a concentration of weaker barriers (e.g. at
zmin ≃ −3.5LTF).

In contrast with the situation in the core of the BEC, it is expected that (i) the
density profile does not show a Thomas-Fermi shape and (ii) the local density is not
stationary. Both properties agree with our numerical results as shown in Fig. 3b where
we plot a magnification of a small region corresponding to the tails of the BEC of Fig. 2.
In particular, the shorter modulations of the wavefunction observed in Fig. 3b are due
to the kinetic energy of the particles in the tails. This statement is corroborated by
the calculation of the energy per particle, ǫ. Due to energy conservation, the energy
can be computed at the initial time t = 0 (i.e. right after releasing the BEC from the
trapping potential), ǫ = 1

N

∫
dz |ψ(z)|2

[
V (z) + g|ψ(z)|2/2

]
. Using Eq. (7), we easily

find that

ǫ =
2µ

5

[
1 − 15

8

(
VR

µ

)2
]
. (15)

The disordered potential perturbs the energy per particle only at second order in VR/µ,
and, for VR ≪ µ, we have ǫ ∝ µ. From this, we expect that the typical wavelength Λ
of the fluctuations in the tails would be of the order of the healing length in the initial
condensate, so that Λ/2π ∼ ξin. This is confirmed by the properties of the momentum
distribution of the BEC which show two sharp peaks located around p ≃ ±~/ξin.

3.3. Expansion of a condensate in a periodic potential

Up to this point, our analysis has shown how the competition between inter-atomic
interactions and disorder (in the center of the BEC) or between kinetic energy and
disorder (in the tails of the BEC) can strongly suppress the coherent transport of an
interacting matterwave in a disordered potential. A natural extension of our analysis
is to compare these findings to the situation in a periodic potential with similar
characteristics (see Appendix A). In the case of a periodic potential, no suppression of
transport is expected as no large peak can provide a sharp stopping of the expansion,
and obviously, no ‘à la Anderson’ localization should occur.
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Figure 5. (color online) a) Time-evolution of the rms-size of the BEC
wavefunction evolving in a periodic potential for several amplitudes VR and for
λ = 0.11LTF. The theoretical prediction corresponding to Eq. (10) in free space
is also shown (black dotted line). The inset shows the velocity of the expansion
of the BEC together with the theoretical estimate (17). b) Density profiles of the
BEC in the harmonic trap and after an expansion time in the periodic potential
of t = 40/ω for VR = 0.2µ.

Numerical results for the expansion of the BEC in the periodic potential described
in Appendix A.3 are shown in Fig. 5a. The difference with the case of a disordered
potential (see Fig. 1) is striking: as expected, the BEC now expands linearly with
time with an asymptotic expansion rate that decreases when the amplitude VR of the
periodic potential increases. A detailed analysis shows however that the transport of
the BEC in a periodic potential and in a disordered potential share some properties
for the parameters used in this section, as we discuss below.

Again, important information is contained in the density profiles such as the ones
plotted in Fig. 5b (to be compared to Fig. 2 which corresponds to the disordered
case). Initially (ωt = 0), the density profile follows the modulations of the periodic
potential modulated by the parabolic envelope associated to the harmonic trapping
[74]. During the initial expansion stage, the density in the center decreases slowly and
follows adiabatically a Thomas-Fermi shape with a slowly decreasing instantaneous
chemical potential µ. Then, the evolution of the center stops when the chemical
potential µ exactly matches the potential depth, i.e. when the BEC fragments. This
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Figure 6. (color online) Average density in the center of the BEC trapped in
the periodic potential versus the lattice depth VR and for two lattice spacings λ.
The theoretical prediction (16) is also plotted (green dashed line).

is similar to the disordered case. However, in the case of a periodic potential, it is a
deterministic process which appears when

nc ≃ min

{√
2

(
VR

g

)
,
11µ

12g

}
. (16)

As shown in Fig. 6, this formula provides a very good value of the average density in
the center of the BEC trapped in the periodic potential. Remarkably, Eq. (16) shows
that nc does not depend on the lattice spacing λ as confirmed by the numerical results
shown in Fig. 6. This is different from the case of a blue-detuned speckle potential
(VR > 0) where nc has been shown to depend explicitly on the correlation length of
the disordered potential [see Eq. (14) and Fig. 4].

During the subsequent evolution, a part of the BEC is thus trapped in the
center while the tails still expand as shown in Fig. 5. Let us focus now onto the
tails of the BEC. To do so, let us first write the BEC wavefunction ψ = ψc + ψw
where ψc and ψw account for the center (|z| < LTF) and for the tails (|z| > LTF)
respectively. As the supports of ψc and ψw are spatially separated, we have
∆z2 =

∫
dz z2|ψc|2 +

∫
dz z2|ψw|2. The center gets trapped after a transient time

so that
∫
dz z2|ψc|2 tends to a constant, ∆z2

0 , at large times. In contrast, the tails
expand so that their density decrease. After a typical time 1/ω, a substantial part of
the interaction energy is converted into kinetic energy and the interaction term can be
neglected for the subsequent dynamics. We also neglect the periodic potential which
has a small amplitude compared to the typical energy per particle in the tails. Now,
in free space, ∆z2

w = 1

N

∫
dz z2|ψw|2 ≃ 2Ew

Nm t2 at large times where Ew is the total
(kinetic) energy in the tails of the BEC. Due to the conservation of the total energy
during the expansion, we have Nǫ = Ec + Ew where ǫ is the energy per particle
given by Eq. (15), and the energy in the center of the BEC, Ec = V 2

R
LTF/g, is easily

computed from the Thomas-Fermi profile in the center of the BEC [see Eq. (13)]. We

finally find that Ew/N ≃ 2µ
5

[
1 − 15

4

(
VR

µ

)2
]

so that ∆z2 ≃ ∆z2
0 +v2

z t
2 at times larger
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than 1/ω with

vz ≃
√

2

5
ωLTF

[
1 − 15

4

(
VR

µ

)2
]1/2

. (17)

In the absence of disorder (VR = 0), Eq. (17) is consistent with the scaling theory
[Eq. (10)] for which ∆z(t) = b(t)LTF/

√
5. In the presence of disorder, it provides a

reasonable agreement with the numerical findings as shown in the Inset of Fig. 5a. We
attribute the discrepancy at the largest values of VR to the main two approximations
that have been used. First, a strict separation between the tails and the center
at z = LTF has been used to compute Ew and we have thus neglected the small
intermediate region. Second, the interaction of the atoms with the periodic potential
is expected to increase the inertia of the expanding gas and this should contribute to
slightly lower the expansion velocity compared to the prediction (17).

4. Weak disorder: Onset of Anderson localization in the expansion of a

condensate

In section 3, we have shown that in the experimental conditions of Refs. [45, 46, 48],
Anderson localization effects are blurred in an expanding, interacting BEC owing (i) to
important repulsive interactions in the center of the BEC, and (ii) to strong reflections
from single barriers of the disordered potential in the tails of the BEC. Both effects
are related to the presence of large modulations of the disordered potential. It thus
appears necessary to work in a parameter range where the probability of single large
modulations of the disorder is negligible in order to observe unambiguous Anderson
localization of an expanding BEC.

In this section, we work within the regime of weak disorder [a precise definition
is given below, see Eq. (21)]. Following the theory of Ref. [25], we show that in
this situation, Anderson localization of an interacting BEC can be observed under
appropriate conditions that we identify precisely [25]. We consider both cases of an
impurity model of disorder and of a speckle potential. In particular, for a speckle
potential, we show that the long-range correlations induce a 1D effective mobility

edge, i.e. strong exponential localization is obtained only for ξin > σR.

4.1. General model of Anderson localization of an expanding Bose-Einstein

condensate

Expansion of a Bose-Einstein condensate - Let us examine again the expansion of
the BEC in the disordered potential (see section 3.1). For weak disorder, the initial
interaction energy strongly exceeds the potential energy associated with the disorder
so that the first stage of expansion of the BEC is hardly affected by the disorder. For
instance, the numerical results of Fig. 1 for VR = 0.5µ and VR = 0.1µ confirm this
assertion for durations of expansion up to about t ≃ 10/ω. Within this time window,
the momentum distribution of the expanding BEC can thus be approximated to that
of a BEC expanding in free space [see Eq. (8)]. Calculating the Fourier transform
of the scaling solution for interacting BECs expanding in free space, ψ(z, t), using
the stationary phase approximation (valid for t ≫ ~/µ), we find the momentum
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distribution

D(k, t) ≃ 3Nξin/4√
1 − 1/b(t)

×



1 −
(

kξin√
1 − 1/b(t)

)2




× Θ



1 −
(

kξin√
1 − 1/b(t)

)2


 (18)

where Θ is the Heaviside step function. Since b(t) ≃
√

2ωt, the momentum distribution
reaches a steady-state at times t≫ 1/ω:

D(k) ≃ 3Nξin
4

×
[
1 − (kξin)

2
]
× Θ

[
1 − (kξin)

2
]
. (19)

An important feature of the momentum distribution (19) is that it has a high-
momentum cut-off at kc = 1/ξin (see Fig. 7a).

For t ≫ 1/ω, almost all the initial interaction energy is converted into kinetic
energy. Neglecting the effect of disorder at this stage, this property can be obtained
from the scaling solution (8) [90, 91]. We find that the interaction energy is
Eint(t) ≃ Eint(0)/b(t). Then using the property of conservation of the total energy
during the expansion, we find that the ratio of the kinetic energy to the interaction
energy is Ekin(t)/Eint(t) ≃ b(t) − 1 which is much larger than unity for t ≫ 1/ω. It
follows from this analysis that for times typically larger than 1/ω, the expanding BEC
is a coherent superposition of almost non-interacting plane waves of momentum k:

ψ(z, t) =

∫
dk√
2π
ψ̂(k, t)eikz , (20)

the momentum distribution D(k) = |ψ̂(k, t)|2 being stationary and determined by the
interaction-driven first expansion stage [25].

Anderson localization of quantum single particles in a correlated disordered potential -

Therefore, the interaction of each k-wave with the disordered potential can be
treated independently. According to the Anderson theory [8], the k-waves will
exponentially localize as a result of multiple scattering from the modulations of the
disordered potential. In other words, each component eikz in Eq. (20) will become
a localized function φk(z), characterized by an exponential decay at large distances:
ln |φk(z)| ≃ −γ(k)|z|, where γ(k) = 1/Lloc(k) is the so-called Lyapunov exponent,
and Lloc(k) is the localization length. The Lyapunov exponent can be calculated
analytically in a correlated disordered potential using the phase formalism approach
[94] (see also Appendix B). At the lowest order of the Born expansion which is valid
provided that γ(k) ≪ k, i.e. for

VRσR ≪ ~
2k

m
(kσR)1/2, (21)

we find the Lyapunov exponent

γ(k) ≃
√

2π

8σR

(
VR

E

)2

(kσR)2ĉ(2kσR), (22)

where E = ~
2k2/2m, and ĉ(κ) =

∫
du√
2π
c(u)eiκu is the Fourier transform of the reduced

correlation function c(u) (see Appendix A). A plot of the Lyapunov exponents versus
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Figure 7. (color online) a) Stationary momentum distribution of an expanding,
interacting Bose-Einstein condensate at large times (t > 1/ω). b) Lyapunov
exponent of single-particles of energy E as a function of the momentum k =√

2mE/~.

the momentum k is shown in Fig. 7b for a speckle potential and for a Gaussian impurity
model.

Deviations from a pure exponential decay of φk turn out to be important here.
They can be obtained using diagrammatic methods [95, 96], and one finds an integral
formula for the average density of each k-wave:

〈|φk(z)|2〉 =
π2γ(k)

2

∫ ∞

0

du u sinh(πu)

(
1 + u2

1 + cosh(πu)

)2

× exp{−2(1 + u2)γ(k)|z|}, (23)

where γ(k) is given by Eq. (22). Notice that at large distances (|z| ≫ 1/γ(k)), Eq. (23)
reduces to

〈|φk(z)|2〉 ≃
(

π7/2

64
√

2γ(k)

)
× exp{−2γ(k)|z|}

|z|3/2
, (24)

so that the exponential decay of the density of the localized single-particle states is
corrected by an algebraic decay 1/|z|3/2.

Anderson localization of the Bose-Einstein condensate - In the regime of weak
disorder defined by condition (21), the Anderson localization transforms each plane
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wave eikz which appears in the superposition (20) into the localized wave φz(z) =
r(z) sin[θ(z)] where θ(z) ≃ kz and r(z) is a slowly decaying envelop (see Appendix
B). Therefore, the Fourier transform of φk(z) is peaked around k. It follows that
the interaction of the k-wave with the disordered potential only weakly affects the
momentum distribution of the BEC. Hence, once each independent k-wave is localized,
the density of the BEC is given by the equation

n0(z) ≃
〈∣∣∣∣
∫

dk√
2π
ψ̂(k, t)φk(z)

∣∣∣∣
2
〉

(25)

with |ψ̂(k, t)|2 ≃ D(k). Assuming that the phases of the functions φk(z), which are
determined by the local properties of the disordered potential and by the evolution
time, are random, uncorrelated functions for different momenta, i.e. 〈φ∗k′ (z)φk(z)〉 ≃
2πδ(k − k′) , the density of the BEC reduces to

n0(z) ≃ 2

∫ ∞

0

dkD(k)〈|φk(z)|2〉 (26)

where we have used the properties D(k) = D(−k) and 〈|φk(z)|2〉 = 〈|φ−k(z)|2〉. This
formula is transparent and contains the main ingredients of the Anderson localization
of an interacting BEC in a disordered potential. In a first stage, the interactions drive
the expansion of the BEC and determine the momentum distribution D(k). In a second
stage, the interactions vanish and the BEC is formed of a superposition of plane waves
of energies E = ~

2k2/2m. Then, each k-wave localizes with its own localization length
Lloc(k) = 1/γ(k). We will show in the next paragraphs that the precise localization
properties of the BEC which are determined by the integral (26), strongly depend on
the correlation function of the disordered potential. This is reminiscent of the strong
dependence of the single-particle Lyapunov exponent γ(k) on the correlation function.

4.2. Anderson localization of an expanding Bose-Einstein condensate in an impurity

model of disorder

Let us consider the case of the impurity model of disorder described in the Appendix
A.2. It is made of a series of Gaussian peaks of width w and amplitude V0, all identical
and spread randomly along the z axis. This potential is generic and in the limit w → 0
with V0w fixed, we recover the widely used δ-correlated (i.e. un-correlated) disorder
made of a random series of δ peaks used in a number of theoretical investigation
of disordered systems [94]. This Gaussian impurity model of disorder can also be
implemented using the so-called impurity atom technique with ultracold atomic gases
[56, 57]. In this case, the Fourier transform of the reduced correlation function reads

ĉ(κ) =
√
π/2 exp(−κ2/4), (27)

and the amplitude and correlation length are VR =
√

w
d V0 and σR = 2w respectively

(see Appendix A.2). Inserting Eq. (27) into Eq. (22), we find

γ(k) =
πm2V 2

R
σR

2~4k2
exp[−(kσR)2] (28)

which is plotted in Fig. 7b (blue, dotted line).
Using Eqs. (19),(23),(26),(28), we now calculate the density profile of the localized

BEC. Since the density profile n0(z) is the sum over k of the functions 〈|φk(z)|2〉
which decay exponentially with a rate 2γ(k), the long-tail behavior of n0(z) is mainly
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determined by the k-components with the smallest γ(k), i.e. those with k close to
the high-momentum cut-off kc = 1/ξin. Therefore, integrating in Eq. (26) we limit
ourselves to the leading order terms in Taylor series for D(k) and γ(k) at k close to
kc. We find

n0(z) ∝
exp{−2γeff|z|}

|z|7/2
(29)

where γeff = γ(k = 1/ξin). (30)

This means that the Anderson localization of an expanding, interacting BEC
occurs, provided that the disordered potential is weak enough. In the case of an
Gaussian impurity model of disorder, the density profile shows an exponential decay
with the effective Lyapunov exponent equal to the one of a single particle of momentum
k = kc = 1/ξin [see Eq. (30)], i.e.

γeff =
π/32

ξin

(
VR

µ

)2

(σR/ξin) exp[−(σR/ξin)
2]. (31)

This is a clear characteristics of Anderson localization of the BEC and it can be
observed in experiments on ultracold atoms using direct imaging techniques.

4.3. Anderson localization of an expanding Bose-Einstein condensate in a speckle

potential

Let us examine now the case of a speckle potential as described in the Appendix A.1
for which, in 1D, the Fourier transform of the reduced correlation (A.4) function reads

ĉ(κ) =
√
π/2(1 − κ/2)Θ(1 − κ/2), (32)

where Θ is the Heaviside step function. The case of a speckle potential is particularly
interesting for two reasons. First, it corresponds to the model of disorder used in
almost all present experiments with disordered BECs [44, 45, 46, 48, 79, 80]. Second,
we will see that speckle potentials offer much richer situations than the impurity model
discussed above due to peculiar long-range correlations [25].

One important feature of the speckle potential is the fact that the Fourier
transform (32) of the correlation function has a finite support. After Eq. (22), it
results that the Lyapunov exponent vanishes for k > 1/σR, i.e. that strong Anderson
localization occurs for non-interacting k-waves only for k < 1/σR [25]. In other words,
there is a 1D mobility edge at 1/σR in the Born approximation. Strictly speaking,
higher orders in the Born expansion may provide a non-vanishing Lyapunov exponent
for k > 1/σR. However, we have shown using direct numerical calculations that the
localization length (inverse Lyapunov exponent) for k > 1/σR strongly exceeds typical
sizes of ultracold atomic samples, so that we can consider k = 1/σR as an effective

mobility edge in our problem [25].
It follows that a part of the expanding BEC (i.e. its Fourier components with

k > 1/σR) expand to infinity while all the Fourier components with k < 1/σR localize
exponentially with the k-dependent Lyapunov exponent

γ(k) =
πm2V 2

R
σR

2~4k2
(1 − kσR)Θ(1 − kσR), (33)

found by inserting Eq. (32) into Eq. (22). Equation (33) is plotted in Fig. 7b (solid,
red line) and show that for a 1D speckle potential, the high-momentum cut-off
kc = min{1/ξin, 1/σR} in the integral formula (26) for the BEC density is twofold.
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The cut-off k = 1/ξin is related to the momentum distribution of the expanding BEC
and is due to the initial atom-atom interactions, while the cut-off k = 1/σR is related
to the correlation function of the 1D speckle potential and is due to the peculiar finite
range correlations of the disordered potential. Now, two very different situations must
be distinguished [25].

For ξin > σR, the high-momentum cut-off kc is provided by the momentum
distribution. In this case all non-interacting functions 〈|φk(z)|2〉 are exponentially
localized with a finite Lyapunov exponent, γ(k) ≥ γ(1/ξin) > 0. This situation is then
similar to the case of the Gaussian impurity model and, integrating Eq. (26), we find

n0(z) ∝
exp{−2γeff|z|}

|z|7/2
(34)

where γeff = γ(k = 1/ξin). (35)

Finally, the BEC density profile is exponentially localized with the effective Lyapunov
exponent

γeff =
π/32

ξin

(
VR

µ

)2

(σR/ξin)(1 − σR/ξin)Θ(1 − σR/ξin). (36)

For ξin < σR, the situation is completely different. In this case, the cut-off kc

is provided by the correlation function, and since γ(k = 1/σR) = 0, the relevant
Lyapunov exponents (γ(k) for all k < 1/σR) do not have a finite lower bound. Then,
integrating Eq. (26), we find that the BEC density profile is not exponentially localized
but rather shows an algebraic decay [25]:

n0(z) ∝
1

|z|2 . (37)

We now present numerical results performed within the Gross-Pitaevskii
approximation for the expansion of a BEC in a speckle potential [25]. The inset
of Fig. 8 (upper panel) shows that the expansion is strongly suppressed and for long
times, the BEC density profile is localized as shown in Fig. 8 (upper panel). Let us
discuss now the behavior of the tails.

For ξin > σR, the density profile obtained numerically is found to be exponentially
localized. In addition, fitting the function n0(z) ∝ exp{−2γeff|z|}/|z|7/2 to the
numerical results with the amplitude and γeff as fitting parameters, we find that the
results for γeff are in excellent agreement with the prediction (36) as shown in Fig. 8a
(lower panel).

For ξin < σR, we find that the density profile decays algebraically. We fit the
function n0(z) ∝ 1/|z|βeff with the amplitude and βeff as fitting parameters, and we
find that βeff ≃ 2 in agreement with the prediction (37) as shown in Fig. 8b (lower
panel).

5. Conclusion and perspectives

In summary, we have theoretically investigated the localization of an expanding 1D
BEC with repulsive atom-atom interactions characterized by the initial healing length
ξin in a disordered potential of finite correlation length σR. We have restricted our
study to the regime where the initial interactions of the trapped BEC dominate
over the kinetic energy and the disorder, a situation relevant to almost all current
experiments with disordered BECs [44, 45, 46, 47, 48, 79, 80]. When the BEC is
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Figure 8. (color online) Upper panel: Density profile of the localized BEC in a
speckle potential at t = 150/ω. Shown are the numerical data (black points), the
fit of the result from Eqs. (19), (23) and (26) [red solid line], and the fit of the
asymptotic formulas (34),(35) [blue dotted line]. Inset: Time evolution of the rms
size of the BEC. The parameters are VR = 0.1µ, ξin = 0.01LTF, and σR = 0.78ξin.
Lower panel: a) Lyapunov exponent γeff in units of 1/LTF for the localized BEC
in a speckle potential, in the regime ξin > σR. The solid line is γ(1/ξin) from
Eq. (36). b) Exponent of the power-law decay of the localized BEC in the regime
ξin < σR. The parameters are indicated in the figure.

released from the trapping potential while keeping the disordered potential on, we
find a strong suppression of the expansion, similar to earlier experimental observations
[45, 46, 48]. We have shown that this localization effect has completely different causes
depending on the strength of the disorder.

Strong disorder - The case of strong disorder corresponds to the situation where
several modulations of the disordered potential individually are strong-enough to
induce an almost total reflection of noninteracting particles of energy equal to the
typical expansion energy per particle of the BEC. In particular this case is relevant
to the experiments of Refs. [45, 46, 48] and to the numerics of Refs. [45, 93, 97]. In
this case, the localization results from a disorder-induced trapping [45], whose scenario
involves two processes: (i) the fragmentation of the core of the BEC on one hand, and
(ii) classical total reflections from single large modulations of the disordered potential
on the other hand. In the core of the BEC, the interactions remain important during
the initial expansion stage. The BEC is in a quasi-static Thomas-Fermi regime with an
effective chemical potential which first slowly decreases during the expansion. When
the BEC fragments, the expansion of the core of the BEC stops. In the tails of the
BEC, the interactions are negligible and the particles undergo multiple scattering from
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the modulations of the disordered potential but the expansion is ultimately stopped
by single large modulations. Hence, in the case of strong disorder, the localization is
not related to Anderson localization.

Weak disorder - In the case of weak-enough disorder, the probability of modulations
of the disordered potential such that the reflection of a particle of typical energy µ
approaches unity is negligible, and Anderson localization can show up in an expanding
BEC. The scenario is then as follows [25]. In a first stage, the interaction energy
dominates over both the kinetic energy and the disorder, and drives the initial
expansion of the BEC. After a typical time of 1/ω where ω is the frequency of the initial
trapping potential, the interaction energy vanishes and the momentum distribution
of the expanding BEC becomes stationary. At this stage, the interactions can be
neglected and the BEC wavefunction is a superposition of (almost) non-interacting
waves of momentum k. Each k-wave Anderson localizes with its own k-dependent
localization length Lloc(k). The density profile of the localized BEC is thus the
superposition of the localized k-waves and strongly depends on the correlation function
of the disordered potential.

The case of speckle potentials is particularly interesting as the Fourier transform
of their correlation function has a finite support. It follows that the localization of
the expanding BEC is exponential only for ξin > σR (in the lowest order of the Born
expansion, see Sec. 4). In the opposite situation (ξin < σR), the density profile of
the BEC decays algebraically as 1/|z|2. Therefore, for speckle potentials, there is
an effective mobility edge at ξin = σR for the Anderson localization of an expanding,
interacting BEC [25].

Perspectives - Our results suggest that the 1D Anderson localization can be observed
in an interacting BEC (initially in the Thomas-Fermi regime) expanding in a
disordered potential in experiments similar to those reported in Refs. [45, 46, 48].
We stress that special attention should be paid to using weak-enough disorder to
allow the dilution of the BEC during the first expansion stage and to avoid strong
reflections from large modulations of the disordered potential. In addition, we have
shown that the correlation function of the disordered potential plays a crucial role for
the localization properties of the BEC.

However, a couple of challenges have to be taken up to observe Anderson
localization in current experiments with expanding BECs. Indeed, in addition to
being able to produce long-enough expansions and to measure very small densities, it
appears that both disorder and interactions have to be carefully controlled.

In this respect, using disordered potentials created by optical speckle patterns is
particularly promissing. On one hand, from a practical point of view, the correlation
functions of speckle potentials are very well controlled and can be designed almost
at will. This allows for a direct comparison between experimental observations and
theoretical predictions. On the other hand, for a 1D speckle potential, the Fourier
transform of the correlation function has a cut-off at k = 1/2σR which induces an
effective mobility edge at k = 1/σR for single-particles and, correspondingly, at ξin = σR

for an expanding, interacting BEC. The presence of this effective mobility edge gives
rise to two qualitatively different regimes, which might be observed in experiments,
namely exponential localization for ξin > σR and algebraic decay of the BEC density
profile for ξin < σR.
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Equation (36) shows that for a speckle potential, the stronger localization is
obtained for ξin = 3σR/2 and for this value, Lloc increases with σR. It is thus more
favourable to work with the shortest correlation length of the disordered potential. To
date, correlation lengths about σR ≃ 0.3µm have been produced experimentally [48].

The first experiments on the expansion of a BEC in a speckle potential [45, 46, 48]
were operated at ξin ∼ σR/10. In order to reach the regime of Anderson localization, it
is crucial to lower the interaction energy of the initial condensate in order to increase
the healing length ξin. One can either use a Feshbach resonance to directly control
the atom-atom interaction strength or lower the density by lowering the number of
atoms and/or the radial confinement of the magnetic guide used in Refs. [45, 46, 48].
In the latter case, the dynamics of the expanding BEC in the radial direction can play
a role. As the radial confinement is kept during the expansion of the BEC, we expect
the radial dynamics be slow compared to the longitudinal expansion. As a result, the
radial profile of the BEC would follow adiabatically the local 1D (longitudinal) density,
reducing the dynamics to a quasi-1D problem. However, a part of the potential and
interaction energies associated to the smooth radial confinement will be converted
into longitudinal kinetic energy during the expansion. If the BEC is initially in the
3D Thomas-Fermi regime (µ ≫ ~ω⊥), the effective de Broglie wavelength of the 1D
expansion can be expected to be λdB ≃ 0.85ξin to be compared to ξin in the pure 1D
case studied here. Hence, for elongated BECs, we do not expect strong differences
compared to the 1D situation we have studied in the present work. A more detailed
discussion would require further investigation which is beyond the scope of this paper.

We expect that this work will pave the way for the experimental observation
of those non-trivial 1D localization properties. This work could also be extended to
higher dimensions (namely 2D and 3D geometries) where similar scenarios can be
expected but where localization properties would be significantly different.
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Appendix A. Random and periodic potentials

In this appendix, we give a couple of details about the inhomogeneous potentials V (z)
to which the atoms are subjected (see section 2.1) i.e. a disordered speckle potential,
a Gaussian impurity model of disorder and a periodic potential. We plot in Fig. A1
typical realizations of these potentials.

Generally, we write the potential V (z) as

V (z) = VRv(z/σR) (A.1)

and the spatial auto-correlation function C(z) = 〈V (z′ + z)V (z′)〉 − 〈V 〉2 as

C(z) = V 2
R
c(z/σR) (A.2)
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Figure A1. (color online) Typical realizations of the potentials V (z) considered
in this work. a) Speckle and periodic potentials: the solid line (red online) shows
a typical realization of a disordered speckle potential with σR ≃ 1.39 × 10−2LTF

and the dotted line (blue online) shows the periodic potential with λ = 10−1LTF.
b) Gaussian impurity model of disorder with w = 2 × 10−2LTF.

where VR is the typical amplitude of potential, σR is the typical space scale (correlation
length in the case of disordered potentials) and v(u) is a given function characteristic of
the model of inhomogeneous potential. In this work, we assume that 〈v(z)〉 = 0 where
〈.〉 represents averaging over realizations of disordered potentials or spatial averaging.

Appendix A.1. Speckle disordered potential

The main model of disorder we consider is the speckle potential, as it is the
one used in many experimental studies of disordered Bose-Einstein condensates
[44, 45, 46, 48, 79, 80]. In brief a speckle pattern is formed by diffraction of a laser
beam through a rough plate. The intensity of the speckle pattern is proportional to
the intensity of the incident laser and the correlation function is determined by the
transmission of the diffusive plate [59, 60] (see Ref. [48] for practical realizations in
the context of disordered BECs). A disordered potential (e.g. a speckle potential) is
characterized by its statistical properties, mainly the single-point intensity distribution
and the two-point correlation function.

Within the scaling defined above [see Eqs. (A.1),(A.2)], a speckle potential is
represented by a random function v(u) whose single-point statistical distribution is a
decaying exponential

P [v(u)] = exp[−{v(u) + 1}] for v(u) ≥ −1 (A.3)

and P [v(u)] = 0 otherwise.

The laser intensity pattern creates an inhomogeneous light shift for the atoms (see
Fig. A1a). For a laser which is blue-detuned compared to the atomic resonance line,
we have VR > 0 and for red detuning VR < 0 [98].

For the numerical calculations presented in the paper, we numerically generate a
1D speckle pattern using a method similar to the one described in Refs. [49, 99] in 1D
and corresponding to the following reduced correlation function:

c(u) = sinc(u)2. (A.4)

Another useful characteristics of the speckle potential in the case of blue detuning
(VR > 0) is the average number of peaks with an intensity larger than a given value
V within a given region of length LTF (see section 3.2). Elaborated methods to



CONTENTS 26

 0

 0.1

 0.2

 0.3

 0.4

−1  0  1  2  3  4  5

(σ
R

/L
T

F
) 

N
pe

ak
s 

(V
)

V/VR

σR=0.008
σR=0.018
σR=0.032
σR=0.064
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compute a number of characteristics of speckle potentials can be found in Refs. [59, 60].
Here, we use a simple approximation which suits our purpose. From the probability
distribution (A.3), we easily find that the probability density that the local disordered
potential is larger than a given value V is P (V ) = exp[−(V+VR)/VR]. Now, the density
of peaks (local maxima of the disordered potential) is 1/d where d ∝ σR is the typical
distance between two peaks. Therefore, typically, the number of peaks Npeaks whithin

a region of length LTF with intensity larger than V scales as LTF

d exp
(
−V +VR

VR

)
.

However, this rough estimate does not take into account the interplay between the
local intensity distribution and the finite correlation length of the disordered potential.
In the simulated speckle potentials, we find that the typical number of peaks with
intensity larger than V in a LTF-long region can be approximated by

Npeaks(V ) ≃ α

(
LTF

σR

)
exp

[
−βV + VR

VR

]
(A.5)

with α ≃ 0.30 and β ≃ 0.75, with very good accuracy as shown in Fig. A2.

Appendix A.2. Impurity model of disorder

A model of disorder which is very popular in theoretical studies of quantum disordered
system is the impurity model [94]:

V (z) = V0

∑

j

g(z − Zj), (A.6)

where g is a real-valued function peaked at z = 0, of width w and such that
0 ≤ g(z) ≤ 1. The locations of the impurities Zj are random and their average
distance is denoted d. The disordered potential is then formed of a series of impurities,
all identical but randomly displaced along the z axis (see Fig. A1b). Here, we consider
Gaussian-shaped impurities:

g(z) = exp(−z2/2w2). (A.7)

This potential can be realized using ultracold atoms (of another species than the
BEC) trapped in the Wannier states of the fundamental Bloch band of an optical
lattice [56, 57, 100].
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From Eq. (A.6), we find that the statistical average of the potential (A.6) is

〈V 〉 =
V0

d

∫
dx g(x) =

√
2πV0

(w
d

)
, (A.8)

and the correlation function is

C(z) =
V 2

0

d

∫
dx g(x)g(x+ z) = V 2

R
c(z/σR) (A.9)

with c(u) =
√
π exp(−x2), VR =

√
w
d V0 and σR = 2w.

Appendix A.3. Periodic potential

For periodic potentials (see Fig. A1a), we use

V (z) =
√

2VR cos(2πz/λ) (A.10)

corresponding to the mean value 〈V 〉 = 0 and the standard deviation ∆V = |VR|.
Such potentials are currently realized using interference patterns of laser beams in
geometries with tunable lattice spacings [38, 101].

Appendix B. Phase formalism for the calculation of Lyapunov exponents

in 1D disordered potentials with finite-range correlations

In this section, we outline the phase formalism method used to calculate the Lyapunov
exponent (inverse localization length) of a non-interacting particle of energy E =
~

2k2/2m in a 1D disordered potential with finite-range correlations [94]. The idea
consists in calculating the propagation of the particle using a perturbation on the phase

of the wavefunction ψ(z). Notice that the perturbation is not on the wavefunction
itself.

The starting point is the Schrödinger equation

Eψ(z) =
−~

2

2m

d2

dz2
ψ(z) + V (z)ψ(z). (B.1)

Without any loss of generality, we can write the wavefunction and its spatial derivative
in the form

ψ(z) = r(z) sin[θ(z)] (B.2)

ψ′(z) = kr(z) cos[θ(z)] (B.3)

where r(z) and θ(z) represent the amplitude and the phase of ψ(z), respectively.
Substituting Eqs. (B.2),(B.3) into Eq. (B.1), we find the coupled equations

θ′(z) = k − 2mV (z)

~2k
sin2[θ(z)] (B.4)

ln[r(z)/r(0)] =

∫ z

0

dz′
mV (z′)

~2k
sin[2θ(z′)] (B.5)

Notice that the amplitude r(z) is not involved in Eq. (B.4). It follows that for
weak disorder [see condition (B.9)], it can be solved easily in the lowest order of a
perturbation series of the phase θ(z). We write θ(z) = θ0 + kz + δθ(z) and we find

θ(z) ≃ θ0 + kz −
∫ z

0

dz′
2mV (z′)

~2k
sin2[θ0 + kz′] (B.6)
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in the Born approximation (lower order). Finally, substituting Eq. (B.6) into Eq. (B.5),
we find, in the limit |z| → ∞

ln[r(z)/r(0)] = +γ(k)|z| (B.7)

where γ(k) = m
4~2E

∫ +∞
−∞ dz C(z) cos(2kz), where C(z) is the correlation function of

the disordered potential [see Eq. (A.2)] or equivalently

γ(k) ≃
√

2π

8σR

(
VR

E

)2

(kσR)2ĉ(2kσR), (B.8)

is the Lyapunov exponent.
Notice that the solution (B.7) corresponds to an exponential increase of the

envelope of the wavefunction ψ(z). In general, the solution of the Schrödinger
equation in a disordered potential is the sum of an exponentially increasing function
and of an exponentially decaying function. In a finite system, boundary conditions
fix the coefficients and one finds true localized states (i.e. wavefunctions with an
exponentially decaying envelop for both z → +∞ and z → −∞). In a time-dependent
propagation scheme, the conservation of probability also imposes that the coefficient of
the exponentially increasing function vanishes. In the present calculation, since we do
not impose boundary conditions, only the exponentially increasing function remains
at infinite distance.

In spite of this unimportant limitation, this technique provides a very useful
analytic formula for the Lyapunov exponent, valid for any weak 1D disordered
potential, possibly with finite-range correlations. An important point is that the phase
formalism technique [94] clarifies the Anderson localization effect in 1D disordered
potentials. Hence, on small distances (say of the order of σR), the interaction of the
wavefunction with the disordered potential induces a small perturbation of the phase
θ(z) [see Eq. (B.4)], but hardly affect the amplitude r(z). Nevertheless, the coupling
between the phase and the amplitude [see Eq. (B.5)] is crucial and induces at large
distances (say of the order of Lloc = 1/γ) an exponential envelope, characteristic
of Anderson localization. Finally, the non-interacting localized state of energy E is
essentially a plane wave of wavenumber k =

√
2mE/~2 modulated by an exponential

envelope. This makes clear the condition of application of the phase formalism
approach which requires γ(k) ≪ k in order for the phase to be only weakly perturbed.
It follows for Eq. (B.8) that this condition reduces to

VRσR ≪ ~
2k

m
(kσR)1/2 (B.9)

where VR is the amplitude and σR is the correlation length of the disordered potential.
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