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REMARKS ON THE UNIQUENESS OF COMPARABLE RENORMALIZED SOLUTIONS OF ELLIPTIC EQUATIONS WITH MEASURE DATA

We give a partial uniqueness result concerning comparable renormalized solutions of the nonlinear elliptic problem -div(a(x, Du)) = µ in Ω, u = 0 on ∂Ω, where µ is a Radon measure with bounded variation on Ω.

Introduction

Let us consider the nonlinear elliptic problem

-div a(x, Du) = µ in Ω, (1) 
u = 0 on ∂Ω, (2) 
where Ω is a bounded open subset of R N with N ≥ 2, u → -div a(x, Du) is a strictly monotone operator from W 1,p 0 (Ω) into W -1,p ′ (Ω) and µ is a Radon measure with bounded variation on Ω.

In the linear case G. Stampacchia has defined in [START_REF] Stampacchia | Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus[END_REF] the notion of "solution by transposition" which insures existence and uniqueness of such a solution. If p = 2 and for the nonlinear case, this notion is generalized in [START_REF] Murat | Equations elliptiques non linéaires avec second membre L 1 ou mesure[END_REF] and the existence and uniqueness of the solution obtained as limit of approximations is proved in [START_REF] Murat | Equations elliptiques non linéaires avec second membre L 1 ou mesure[END_REF] (see also [START_REF] Boccardo | Problemi differenziali ellittici e parabolici con dati misure[END_REF] and, for a class of pseudo-monotone operator [START_REF] Droniou | A uniqueness result for quasilinear elliptic equations with measures as data[END_REF]).

If 2 -1/N < p ≤ N the existence of a solution of (1)- [START_REF] Boccardo | Problemi differenziali ellittici e parabolici con dati misure[END_REF] in the sense of distributions is proved by L. Boccardo and T. Gallouët in [START_REF] Boccardo | On some nonlinear elliptic and parabolic equations involving measure data[END_REF]. However, using the counter example of J. Serrin [START_REF] Serrin | Pathological solutions of elliptic differential equations[END_REF] it is well known that this solution is not unique in general, except in the case p = N for an appropriate choice of the space to which the solution belongs (see [START_REF] Dolzmann | Uniqueness and maximal regularity for nonlinear systems of n-laplace type with measure valued right hand side[END_REF] and [START_REF] Greco | Inverting the p-harmonic operator[END_REF]).

When µ is a function of L 1 (Ω) the notions of entropy solution [START_REF] Bénilan | An L 1theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF], of solution obtained as limit of approximations [START_REF] Dall | Approximated solutions of equations with L 1 data. application to the Hconvergence of parabolic quasi-linear equations[END_REF] and of renormalized solution [START_REF] Lions | Solutions renormalisées d'équations elliptiques[END_REF] (see also [START_REF] Murat | Soluciones renormalizadas de EDP elipticas non lineales[END_REF] and [START_REF] Murat | Equations elliptiques non linéaires avec second membre L 1 ou mesure[END_REF]) provide existence and uniqueness results (and these three notions are actually equivalent).

When µ is a Radon measure with bounded variation on Ω, G. Dal Maso, F. Murat, L. Orsina and A. Prignet have recently introduced in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF] and [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF] a notion of renormalized solution of (1)-(2) which generalizes the three (and equivalent) previous ones. The authors prove in [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF] the existence of such a renormalized solution, a stability result and partial uniqueness results for "comparable" solutions. In particular, under some assumptions on a, if u 1 and u 2 are two renormalized solutions of (1)-( 2) such that u 1u 2 belongs to L ∞ (Ω) (this condition is here the precise meaning of the fact that the two solutions are comparable), then u 1 = u 2 . The uniqueness of the renormalized solution of (1)-( 2) remains an open problem in general and the present paper is devoted to weaken this condition. We prove that the condition of being comparable can be localized in a neighborhood U of the set where µ is singular and that it is sufficient to assume that (u

1 -u 2 ) -(the negative part of u 1 -u 2 ) belongs to L ∞ (U).
The paper is organized as follows: Section 2 is devoted to give the assumptions on the data and to recall the definition of a renormalized solution of (1)- [START_REF] Boccardo | Problemi differenziali ellittici e parabolici con dati misure[END_REF]. In Section 3 (Theorems 5 and 7) we establish partial uniqueness results concerning comparable renormalized solutions of (1)-(2).

Assumptions and definitions

Let Ω be a bounded open subset of R N with N ≥ 2, p and p ′ two real numbers such that 1 < p < N and 1/p + 1/p ′ = 1. We assume that a : Ω × R N → R N is a Carathéodory function (i.e. measurable with respect to x and continuous with respect to ξ) such that

(3) a(x, ξ) • ξ ≥ α|ξ| p , (4) a 
(x, ξ) -a(x, ξ ′ ) • (ξ -ξ ′ ) > 0, (5) a 
(x, ξ) ≤ γ b(x) + |ξ| p-1
for every ξ, ξ ′ (ξ = ξ ′ ) in R N and almost everywhere in Ω, where γ > 0, α > 0 and b is a nonnegative function lying in L p (Ω).

We denote by M b (Ω) the set of Radon measures on Ω with total bounded variation on Ω and by M 0 (Ω) the set of measures of M b (Ω) that are absolutely continuous with respect to the p-capacity (i.e. µ ∈ M b (Ω) and µ(E) = 0 for every Borel set E such that cap p (E, Ω) = 0). For K > 0 we define as T K (r) = max(-K, min(K, r)) the truncation function at height ±K. If A is a measurable set we denote by 1l A the characteristic function of A.

We recall now a decomposition result of the Radon measures (see [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF] and [START_REF] Fukushima | On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures[END_REF]) and the definition of the gradient of a function whose truncates belong to W 1,p 0 (Ω) (see [START_REF] Bénilan | An L 1theory of existence and uniqueness of solutions of nonlinear elliptic equations[END_REF] Lemma 2.1 and [START_REF] Lions | Solutions renormalisées d'équations elliptiques[END_REF]) which are needed to define (following [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF]) a renormalized solution of (1)-(2). Proposition 1. ( [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF] and [START_REF] Fukushima | On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures[END_REF]) Let µ be an element of M b (Ω). There exists two functions f ∈ L 1 (Ω), g ∈ (L p ′ (Ω)) N , two nonnegative measures in M b (Ω), λ + and λ -, which are concentrated respectively on two disjoint Borel sets E + and E -of zero p-capacity such that [START_REF] Lions | Solutions renormalisées d'équations elliptiques[END_REF]) Let u be a measurable function defined from Ω into R which is finite almost everywhere in Ω. Assume that T K (u) ∈ W 1,p 0 (Ω) ∀K > 0. Then there exists a unique measurable function v : Ω → R N such that

µ = f -div(g) + λ + -λ -. Moreover, if µ 0 denotes f -div(g) then µ 0 ∈ M b (Ω) and the decomposition µ = µ 0 + λ + -λ -is unique. Definition 2. ([1] and
∀K > 0, DT K (u) = 1l {|u|<K} v a.e. in Ω.
This function v is called the gradient of u and is denoted by Du.

Following [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF] we are now in a position to recall the definition of renormalized solution.

Definition 3. ([6]

) Let µ be an element of M b (Ω) and µ = f -div(g)+λ + -λ - the decomposition given by Proposition 1. A function u defined from Ω into R is a renormalized solution of ( 1)-( 2) if [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF] u is measurable and finite almost everywhere in Ω and

T K (u) ∈ W 1,p 0 (Ω) ∀K > 0; (7) |Du| p-1 ∈ L q (Ω) ∀q < N N -1 ; ∀w ∈ W 1,p 0 (Ω) ∩ L ∞
(Ω) such that ∃K > 0 and two functions w +∞ and w -∞ lying in W 1,r (Ω) ∩ L ∞ (Ω) with r > N and ( 8)

w = w +∞ on {x ; u(x) > K}, w = w -∞ on {x ; u(x) < -K}, we have (9) Ω a(x, Du) • Dw dx = Ω f w dx + Ω g • Dw dx + Ω w +∞ dλ + - Ω w -∞ dλ -.
It is proved in [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF] that if a verifies (3), ( 4) and ( 5) then for any element µ belonging to M b (Ω) there exists at least a renormalized solution of (1)-(2). Remark 4. Every function w ∈ C ∞ c (Ω) is an admissible test function in (9) and then any renormalized solution of (1)-( 2) is also solution in the sense of distributions.

Furthermore if ϕ ∈ W 1,r (Ω) ∩ L ∞ (Ω) with r > N then we have [START_REF] Fukushima | On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures[END_REF] 

lim n→+∞ 1 n {|u|<n} a(x, Du) • Duϕ dx = Ω ϕ dλ + + Ω ϕ dλ -.
This property (see [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF] for more details on the properties of renormalized solutions) is obtained by using the admissible test function w = 1 n T n (u)ϕ in ( 9) and by passing to the limit as n goes to infinity.

Uniqueness of comparable solutions

In [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF] the authors prove under assumptions (3) and ( 4), the strong monotonicity of a and the local Lipschitz continuity, or the Hölder continuity, with respect to ξ, i.e. a verifies ( 11)

   a(x, ξ) -a(x, ξ ′ ) • (ξ -ξ ′ ) ≥ α|ξ -ξ ′ | p if p ≥ 2 a(x, ξ) -a(x, ξ ′ ) • (ξ -ξ ′ ) ≥ α |ξ -ξ ′ | 2 |ξ| + |ξ ′ | 2-p if p < 2, (12) 
   a(x, ξ) -a(x, ξ ′ ) ≤ γ b(x) + |ξ| + |ξ ′ | p-2 |ξ -ξ ′ | if p ≥ 2, a(x, ξ) -a(x, ξ ′ ) ≤ γ|ξ -ξ ′ | p-1 if p < 2,
for every ξ, ξ ′ ∈ R N and almost everywhere in Ω, where γ > 0 and b is a nonnegative function in L p (Ω), that if two renormalized solutions u 1 and u 2 of (1)-(2) (relative to the same element µ ∈ M b (Ω)) satisfy the condition of being comparable, in the sense that u 1u 2 ∈ L ∞ (Ω), then u 1 = u 2 . In Theorem 7 below we weaken this condition; if there exists an open neighborhood U of E = E + ∪ E -where E + and E -are given by Proposition 1 such that (u

1 -u 2 ) -∈ L ∞ (U), then u 1 = u 2 .
This result is a consequence of the following theorem.

Theorem 5. Assume that (3), ( 4), ( 5) and ( 12) hold true. Let µ be an element of M b (Ω) and let E = E + ∪E -where E + and E -are the two disjoint Borel sets of zero p-capacity given by Proposition 1. Let u 1 and u 2 be two renormalized solutions of ( 1)-( 2) with µ as right-hand side. If moreover there exists an open set U such that

E ⊂ U ⊂ Ω, ( 13 
)
∀K > 0 lim n→+∞ 1 n U ∩{u 1 -u 2 <K} ∩{|u 1 |<n, |u 2 |<n} Du 1 -Du 2 | p dx = 0, ( 14 
)
then u 1 = u 2 .

Remark 6. Using the following property for every

m ∈ N * {|u 1 | < 2 m , |u 2 | < 2 m } ⊂{|u 1 | < 1, |u 2 | < 1} ∪ m-1 k=0 {2 k ≤ |u 1 | < 2 k+1 , |u 2 | < 2 k+1 } ∪ m-1 k=0 {2 k ≤ |u 2 | < 2 k+1 , |u 1 | < 2 k+1 },
a Cesaro argument and the fact that T 1 (u 1 ) and T 1 (u 2 ) belong to W 1,p 0 (Ω), the condition ( 14) is equivalent to

lim n→+∞ 1 n   U ∩{u 1 -u 2 <K} ∩{n≤|u 1 |<2n, |u 2 |<2n} Du 1 -Du 2 | p dx + U ∩{u 1 -u 2 <K} ∩{|u 1 |<2n, n≤|u 2 |<2n} Du 1 -Du 2 | p dx   = 0,
for all K > 0. Notice that the condition above with U = Ω and K = +∞ (so that U ∩ {u 1u 2 < K} = Ω) is the one given in [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF] (Theorem 10.3).

Theorem 7. Assume that (3), ( 4), ( 5), ( 11) and ( 12) hold true. Let µ be an element of M b (Ω) and let E = E + ∪ E -where E + and E -are the two disjoint Borel sets of zero p-capacity given by Proposition 1. Let u 1 and u 2 be two renormalized solutions of (1)-( 2) with µ as right-hand side. If moreover there exists an open set U such that E ⊂ U and (u

1 -u 2 ) -∈ L ∞ (U) (or (u 1 -u 2 ) + ∈ L ∞ (U)), then u 1 = u 2 .
Proof of Theorem 5. Using Proposition 1, let f ∈ L 1 (Ω), g ∈ (L p ′ (Ω)) N , λ + and λ -two nonnegative measures of M b (Ω) which are concentrated on two disjoint subsets E + and E -of zero p-capacity such that µ = f -div(g)+λ + -λ -. Since cap p (E + , Ω) = 0 and E + ⊂ U ⊂ Ω we have (see [START_REF] Heinonen | Nonlinear potential theory of degenerate elliptic equations[END_REF]) cap p (E + , U) = 0 (and also cap p (E -, U) = 0). Thus, following the construction of the cut-off functions in [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF], we define for all δ > 0 two functions, ψ + δ and

ψ - δ , lying in C ∞ c (U) such that 0 ≤ ψ + δ ≤ 1, 0 ≤ ψ - δ ≤ 1 on U, ( 15 
) supp(ψ + δ ) ∩ supp(ψ - δ ) = ∅, ( 16 
) Ω ψ - δ dλ + < δ, Ω ψ + δ dλ -< δ, (17) 
Ω (1 -ψ + δ ) dλ + < δ, Ω (1 -ψ - δ ) dλ -< δ. (18) Since U ⊂ Ω, we define ψ + δ ≡ ψ - δ ≡ 0 on Ω\U so that we have ψ + δ , ψ - δ ∈ C ∞ c (Ω).
For any n ∈ N * let h n be the function defined by

h n (r) = n -T + n (|r| -n) /n ∀r ∈ R.
Let K > 0 be fixed, n ∈ N * and δ > 0. Since the function h n belongs to W 1,∞ (R) while supp(h n ) = [-2n, 2n] is compact, from the regularity of u 1 and u 2 we obtain that the function

h n (u 1 )h n (u 2 ) T K (u 1 -u 2 ) -K(ψ + δ + ψ - δ ) lies in W 1,p 0 (Ω) ∩ L ∞ (Ω)
and is equal to zero on the set {x ;

|u i (x)| > 2n} for i = 1, 2. Therefore setting W K = T K (u 1 -u 2 ) the function h n (u 1 )h n (u 2 ) W K -K(ψ + δ + ψ - δ
) is an admissible test function on both equations (1) written for u 1 and u 2 , relative to (9) of Definition 3. Subtracting the resulting equalities gives

Ω h n (u 1 )h n (u 2 ) a(Du 1 ) -a(Du 2 ) • (DW K -KD(ψ + δ -ψ - δ )) dx (A) + Ω h ′ n (u 1 )h n (u 2 ) a(Du 1 ) -a(Du 2 ) • Du 1 W K -K(ψ + δ + ψ - δ ) dx (B) + Ω h ′ n (u 2 )h n (u 1 ) a(Du 1 ) -a(Du 2 ) • Du 2 W K -K(ψ + δ + ψ - δ ) dx (C) = 0
In order to study the behavior of the terms above as n goes to infinity and δ goes to zero, A and B are split into A 1 + A 2 and B 1 + B 2 respectively, where

A 1 = Ω h n (u 1 )h n (u 2 ) a(x, Du 1 ) -a(x, Du 2 ) • DT K (u 1 -u 2 ) dx, A 2 = -K Ω h n (u 1 )h n (u 2 ) a(x, Du 1 ) -a(x, Du 2 ) • (Dψ + δ + Dψ - δ ) dx, B 1 = Ω h ′ n (u 1 )h n (u 2 ) a(x, Du 1 ) -a(x, Du 2 ) • Du 1 W K (1 -ψ + δ -ψ - δ ) dx, B 2 = Ω h ′ n (u 1 )h n (u 2 ) a(x, Du 1 ) -a(x, Du 2 ) • Du 1 W K -K (ψ + δ + ψ - δ ) dx.
From ( 5) and ( 7) it follows that a(x, Du i ) belongs in particular to L 1 (Ω) for i = 1, 2 and then a(x, Du 1 )a(x, Du 2 ) • (Dψ + δ + Dψ - δ ) belongs to L 1 (Ω). Since h n (u 1 )h n (u 2 ) converges to 1 almost everywhere as n tends to infinity and is uniformly bounded, Lebesgue Theorem leads to

lim n→+∞ A 2 = -K Ω a(x, Du 1 ) -a(x, Du 2 ) • (Dψ + δ + Dψ - δ ) dx.
Recalling that u 1 and u 2 are also solution of ( 1)-( 2) in the sense of distributions and since

ψ + δ , ψ - δ ∈ C ∞ c (Ω), we obtain that (19) lim n→+∞ A 2 = 0.
Due to the definition of ψ + δ and ψ - δ we have 1 ≥ 1ψ + δψ - δ ≥ 0. Thus Assumption (5) and Young's inequality lead to

|B 1 | ≤ C n {|u 1 |<2n} |Du 1 | p (1 -ψ + δ -ψ - δ ) dx + {|u 2 |<2n} |Du 2 | p (1 -ψ + δ -ψ - δ ) dx + Ω b p dx and (3) gives (20) |B 1 | ≤ C n {|u 1 |<2n} a(x, Du 1 ) • Du 1 (1 -ψ + δ -ψ - δ ) dx + {|u 2 |<2n} a(x, Du 2 ) • Du 2 (1 -ψ + δ -ψ - δ ) dx + Ω b p dx ,
where C is a generic constant independent of n and δ. Since 1ψ + δψ - δ ∈ C ∞ (Ω), using the property [START_REF] Fukushima | On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures[END_REF] of renormalized solutions we get for i = 1, 2

lim n→+∞ 1 2n {|u i |<2n} a(x, Du i ) • Du i (1 -ψ + δ -ψ - δ ) dx = Ω (1 -ψ + δ -ψ - δ ) dλ + + Ω (1 -ψ + δ -ψ - δ ) dλ -,
from which it follows, using ( 17 Let U n,K be the set defined by

(22) U n,K = U ∩ {|u 1 | < 2n} ∩ {|u 2 | < 2n} ∩ {u 1 -u 2 < K}. Because 0 ≤ K -T K (u 1 -u 2 ) ≤ 2K1l {u 1 -u 2 <K} (recall that W K = T K (u 1 -u 2 )),
from the definition of the cut-off functions ψ + δ and ψ - δ we obtain

|B 2 | ≤ 2K n U n,K a(x, Du 1 ) -a(x, Du 2 ) |Du 1 | dx.
Using Hölder inequalities together with (5) permits us to deduce that if p ≥ 2 then

|B 2 | ≤ CK 1 n U n,K |Du 1 -Du 2 | p dx 1/p ×   1 n {|u 1 |<2n} ∩{|u 2 |<2n} b(x) + |Du 1 | + |Du 2 | p dx   1/p ′ and if p < 2 then |B 2 | ≤ CK 1 n U n,K |Du 1 -Du 2 | p dx 1/p ′   1 n {|u 1 |<2n} ∩{|u 2 |<2n} |Du 1 | p dx   1/p .
In both cases, property (10) (with ϕ ≡ 1) and ( 14 

From ( 19) and ( 23) we then have lim δ→0 lim n→+∞ A 1 = 0. Since h n (u 1 )h n (u 2 ) is nonnegative and converges to 1 almost everywhere in Ω, the monotone character of the operator a and Fatou lemma imply that for all K > 0 Proof of Theorem 7. It is sufficient to show that ( 14) holds true and to use Theorem 5. We assume that (u 1u 2 ) -belongs to L ∞ (U).

According to the properties of the difference of two renormalized solutions (see [START_REF] Maso | Definition and existence of renormalized solutions for elliptic equations with general measure data[END_REF]) we have for all K > 0

{|u 1 -u 2 |<K} a(x, Du 1 ) -a(x, Du 2 ) • (Du 1 -Du 2 ) dx ≤ CK, ( 24 
)
where C is a constant independent of K.

Let M be a real number such that M > (u 1u 2 ) - L ∞ (U ) and let K > 0, n ∈ N * and U n,K the set defined by (22). Since U ⊂ {-M < u 1u 2 } we get Remark 8. In Theorem 5, assuming a to be strongly monotone, if condition ( 14) is satisfied for K = 0 only (and not for every K > 0), then u 1 = u 2 . Indeed, in this case [START_REF] Fukushima | On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures[END_REF], [START_REF] Greco | Inverting the p-harmonic operator[END_REF] and (24) imply that lim n→+∞ 1 n {|u 1 -u 2 |<K} |Du 1 -Du 2 | p = 0 ∀K > 0 and then ( 14) is satisfied for all K > 0.

|B 1 ||B 1 |

 11 ), (18) and (20) and since b ∈ L p (Ω), lim n→+∞ = 0.

{|u 1 -u 2

 12 |<K} a(x, Du 1 )a(x, Du 2 ) • (Du 1 -Du 2 ) dx = 0, and from (4) we can conclude that u 1 = u 2 .

1 - 1 - 1 n 1 -

 1111 U n,K ⊂ {|u 1 | < 2n} ∩ {|u 2 | < 2n} ∩ {|u 1u 2 | < max(M, K)} and therefore 1 n U n,K |Du Du 2 | p dx ≤ 1 n {|u 1 |<n, |u 2 |<n} ∩{|u 1 -u 2 |<max(M,K)} |Du Du 2 | p dx.In both cases (p < 2 and p ≥ 2), the strong monotonicity of the operator a, Hölder inequalities together with (10) (with ϕ ≡ 1) and (24) allow us to prove that for all K > 0 limn→+∞ {|u 1 |<n, |u 2 |<n} ∩{|u 1 -u 2 |<max(M,K)} |Du Du 2 | p dx = 0.It follows that the conditions of Theorem 5 are satisfied and then u 1 = u 2 .
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